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Micro-rheology using nanomotors

Probing the cancer microenvironment

Nanomotors in real world
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Helical SwimmersHelix satisfies the non-
reciprocal condition 
needed to swim at 
low Reynolds number

Nano Lett. 2009, 9, 
6, 2243–2245

American Journal of Physics 45, 
3 (1977)

Glancing Angle 
Deposition to fabricate 

helix

Dynamics of 
nanomotors

Applications in Biology

Phys. Chem. Chem. Phys., 

2013,15, 10817-10823 

Nano Lett. 2014, 14, 4, 1968–1975 Adv. Mater. 2018, 30, 1800429



Fabrication of nanomotors: GLancing Angle 
Deposition (GLAD)
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The setup
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• Localized viscosity measurement using nanomotors

• Viscosity measurement in Newtonian and non-Newtonian 
fluids

• Viscosity measurement in fluids whose property changes in 
real-time

• Viscosity measurement in miscible fluids

Micro-rheology using nanomotors

Probing the cancer microenvironment

Nanomotors in real world
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Microrheology using nanomotors: Advantages

Compared to present microrheology
techniques:

• Faster

• Measure local heterogeneity

• Higher spatio-temporal resolution

• Ease of creating a spatio-temporal map 
of viscosity in 3D

Wei, Ming-Tzo, "Microrheology of soft matter and living cells in equilibrium 
and non-equilibrium systems" (2014).Theses and Dissertations.Paper 1666
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Microrheology using nanomotors: Technique

How is viscosity measured

𝜂 =
𝑚 𝐵 sin 𝜃𝑚

2𝜋 𝑓𝑠 Ω𝐵 sin 𝛼𝑃

𝛼𝑝 = 𝑠𝑖𝑛−1
𝑚 𝐵 sin(𝜃𝑚)

2𝜋𝜂𝑓𝑠Ω𝐵
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Newtonian and 
non-Newtonian 

fluids
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Change in viscosity 
with time

• Heated water was allowed 
to cool down

• Temperature measured 
with IR thermometer –

correlated with Brownian 
motion of beads.
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Spatial change in 
viscosity

• Nanomotor was driven from 
DI water towards glycerol.

• Nanomotor was faster than 
the mixing time of 60 cP

glycerol and water.
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Rheology in Biofluids

2% (w/v) gelatin

5% (w/v) gelatin

Matrigel (1mg/ml)
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Microrheology
using 

nanomotors

Viscosity map of dynamic fluids

Measure viscosity in Newtonian 
and non-Newtonian fluids with 
high spatio-temporal accuracy.
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Micro-rheology using nanomotors

• Maneuverability in tumor model

• Targeting cancer cells using changes in cancer 
microenvironment

• Discovery of new physico-chemical properties of cancer 
secreted matrix

Probing the cancer microenvironment

Nanomotors in real world
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Cancer 
Microenvironment : 
The ECM

• The extracellular matrix (ECM): non-cellular component of tissue 

• ECM is composed of and interlocking mesh of water, minerals, 
proteoglycans, and fibrous proteins secreted by resident cells.

• ECM is responsible for cell–cell communication, cell adhesion, and 
cell proliferation.
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Probing Cancer Microenvironment: The setup

Nanomotors are injected and 
driven through a tumor 
model made by incubating 
cells in Matrigel droplets 
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Why 3D?
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Nanomotors adhere 
near cancer cells

No adhesion to normal cell – proximal ECM

May eventually adhere to the cell surface

• Nanomotor adhere to the ECM around cancer cells.

• Adhesion is observed upto ~40µm from cell surface
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Probing Cancer Microenvironment: Results
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Cells secrete 
proteins into 

the ECM
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Cancer ECM 

and 

non-Cancer ECM
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Cell-line specific 
anisotropy

Correlation between sialic acid 
distribution and nanomotor adhesion

Hypersialated charged ECM secreted 
by cancer cells contribute to 

nanomotor adhesion 
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Differences in Cancer ECM and non-Cancer ECM

Surface modification of 
nanomotors using PFO

Charge shielding effect of PFO 
eliminates adhesion
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Potential Applications
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Cancer targeting

Preferential adhesion near Cancer secreted ECM can be used to target 
cancerous cells in a tumor
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Gauging metastatic potential

𝑭 = 𝑭𝟎𝐞𝐱𝐩(
−𝒙

𝒍𝒑
)
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Discovering new phenomenon

Anisotropic 
distribution of 

sialylation in cancer 
ECM is reported for 

the first time.

The existence of 
sialylated proteins 
in cancer-secreted 

ECM is reported for 
the first time.
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Micro-rheology using nanomotors

Probing the cancer microenvironment

• Endodontic reinfection

• Problems with current treatment procedure

• Solving reinfection with nanomotors

Nanomotors in real world
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Root canal 
procedure
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Endodontic Reinfection
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Limitations of current technology

500µm – 850µm

LASER

Depth inside Dentinal Tubules

Ultrasound

100µm – 250µm

Relying on diffusion alone is hopeless Currently available devices
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Our solution
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34
Area of retrieved Nanorobots

NANOROBOTS CAN BE   RETRIEVED WHEN THE JOB IS DONE 

NANOROBOTS CAN KILL BACTERIA WITH HEAT



Publications

• Helical Nanomachines as Mobile Viscometer,
Advanced Functional Materials, 1705687, 2018

• Helical nanobots as mechanical probes of intra- and 
extracellular environments 

Journal of Physics: Condensed Matter, 224001, 2020

• Nanomotors Sense Local Physicochemical 
Heterogeneities in Tumor Microenvironments**.

Angewandte Chemie - International Edition (2020) 
doi:10.1002/anie.202008681.

• Nanomotors for treatment of endodontic reinfection
D. Dasgupta*, S. Srinivas*, A. Ghosh 
Chemrxiv
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Thank You
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EXTRAS
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Treating Endodontic Reinfection: Comparison
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Using standard notations to represent the Euler angles to describe the generalized

orientation of a symmetric elongated object we can obtain the angular velocities in the

body frame which are: 𝜔𝑥′ = ሶ𝜙 sin 𝜃 sin𝜓 + ሶ𝜃 cos𝜓 , 𝜔𝑦′ = ሶ𝜙 sin 𝜃 cos𝜓 −

ሶ𝜃 sin𝜓 ,𝜔𝑧′ = ሶ𝜙 cos 𝜃 + ሶ𝜓 .

Equating the two expressions for the torque and solving for ሶ𝜙, ሶ𝜓, ሶ𝜃, we get the Euler 

equations with 𝛽 = ΩB𝑡 − 𝜙:

ሶ
ሶ𝜙 =

𝑚𝐵

𝛾𝑠 sin 𝜃
(sin 𝜃𝑚𝑐𝑜𝑠 𝛽 + 𝑐𝑜𝑠𝜃𝑚 sin 𝛽 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙)

ሶ𝜃 = −
𝑚𝐵

𝛾𝑠
sin 𝛽 sin 𝜃𝑚 cos 𝜃 + cos 𝜃𝑚 sin 𝜃 sin𝜓

ሶ𝜓 =
𝑚𝐵 cos 𝜃𝑚 (sin 𝛽 cos 𝜃 cos𝜓 − cos𝛽 sin𝜓)

𝛾𝑙
− ሶ𝜙 cos 𝜃

The above equations can be solved for the steady state configurations where 𝜃 and 𝜓 remain 
constant in time. This leads to two different dynamical configurations for an object rotated by 
an external torque namely ‘tumbling’ and ‘precession’.  Tumbling motion means a precession 
angle 𝜃 = 90𝑜. This occurs for all frequencies below Ω1 denoted by 𝑚𝐵/𝛾𝑠. At very low 
actuating frequencies (𝛺

𝐵 <
𝛺

1
), the magnetic moment of the nanomotor can follow the 

applied magnetic field with a constant phase difference and hence a phase locked tumbling 
motion of the nanomotor is observed, i.e., the nanomotor shows rotation about its geometric 
short axis. Above 𝛺

1
, the nanomotor starts to precess about the axis of rotating field. This 

happens because beyond this frequency the angle between 𝑚 and 𝐵 becomes more the 90𝑜

and the moment can no longer follow the magnetic field, thus causing phase slip. Precessional
motion (𝜃 < 90𝑜) is a solution to the Euler angles and the object can show precessional phase 
locked motion for Ω𝐵 > Ω1. Above the critical frequency Ω2, the magnetic moment of the helix 
starts to phase slip with the magnetic field.



Treating Endodontic Reinfection: Oscillating field
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Differences in Cancer ECM and non-Cancer ECM
Physical differences

MDA-MB-231 HMLE
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