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Preview : Neutron star as DM laboratory

The micro-physics of dark matter other than its gravitational
signature is an active field of research.

The DM parameters, σχn (DM-nucleon cross-section), ⟨σv⟩
(thermally averaged annihilation cross-section) and mχ (DM
mass) are being probed to decipher its non-gravitational
interactions.

Neutron star mostly full of neutrons can capture DM particles,
thereby can probe DM parameter space. This talk : ⟨σv⟩ = 0

Quick summary
Excessive DM capture implodes the neutron star into a black hole.
Thermal state of bosonic DM is important in deciding the BH
formation.
This can be probed in gravitational wave signals, particularly
coming from binary systems.
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DM capture in neutron star
Neutron star : a compact stellar object with mostly degenerate
neutrons =⇒ MNS ≈ (1 − 2) M⊙, RNS ≈ 10 km

In DM-rich regions, DM particles can fall into gravitational
potential of neutron star and get captured if there is tiny
interaction with neutrons.

DM Capture rate
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Within 106 years, the DM density inside the star becomes,
ρχ ∼ 1021 GeVcm−3, assuming 1 GeV DM particles are
dispersed over the entire star.

ρN = 5 × 1038 GeV cm−3
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Thermalization of DM particles

Thermalization of DM particles keeps DM particles into
smaller region of the neutron star, thereby the density of DM
particles increases.
For example, if the DM particles are confined within O(cm),
then after 106 years, ρDM ∼ 1039 GeV cm−3

Thermalization is facilitated by the same DM-neutron
interaction, responsible for the capture.
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McDermott et.al (2012)

The thermal radius of DM particles are decided by the
gravitational potential of DM particles due to neutrons, i.e.
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Collapse of DM core

Captured dark matter particles being confined in a smaller
region, eventually reach at a density equal to the neutron
density. Hence, the self-gravity of DM particles becomes
important.

Thermalized dark core collapses when the DM particle number

reaches a critical value, Nsg = 3 × 1049
(

GeV
mχ

)5/2 (TNS
keV

)3/2

Bose-Einstein condensate can form, for which the DM core
collapse happens with smaller number of particles, i.e.
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Given the DM parameters (mχ, σχn) and the temperature evolution
of neutron star, BEC and non-BEC states can be determined
dynamically.
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DM-induced black holes
Conditions for black hole formation

Fast thermalization of capture DM particles

Black holes from the BEC state : TNS < Tc & Nχ > Nch

Black holes from the non-BEC state : TNS > Tc & Nχ > Nsg

Negligible black hole evaporation via Hawking radiation.

Consequently..

Mini black holes produced from DM collapse can grow
acquiring baryonic matter, eventually devour the entire star.

Black holes of (1 − 2) M⊙ form from different thermal states.

DM parameter constraint from observation

Observation of old neutron star, e.g. PSR B1620-26, age of 1010

years.

Gravitational waves from binary systems of solar mass BHs.
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Constraints on DM parameters
XENON1T+CRESST-III

σgBH formation
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In low DM mass regime, BEC and BEC-induced BHs form. In
high mass regime, BH forms out of non-BEC state.

The electroweak mass window is unconstrained by the NS
observation, due to BH evaporation.
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Distinguishing BEC BH and non-BEC BH
Implosion time : The time taken to devour the entire star
depends on the initial black hole mass.

The initial black hole mass is different for BEC (∼ mχNch) and
non-BEC case (∼ mχNsg), thus the implosion times are
different.
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for non-BEC BH.

Collapse time : tc = tcap + tI

The population study of the binary neutron stars (BNS) and solar
mass binary black holes (BBH) can be instrumental in
distinguishing between these two types of BHs.

In particular, the relative fraction of BBH and BNS is sensitive to
the collapse time. D. Singh et al. (2022)
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Takeaways

Excessive acquisition of DM inside the neutron star can
lead to the destruction of the star.
For bosonic DM, thermal states are important in deciding
the Black formation.
Finding old neutron stars is useful to constrain the DM
parameter space.
Gravitational signals from binary systems with sufficient
statistics, one can infer about the thermal state of DM
responsible for the BH formation.
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Backup Slide : Collapse time and relative
fraction

Ref : D. Singh et al. (2022)
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