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The basic phenomenology of percolation theory is intuitively
obvious. Consider a box in which we pour in a mixture of
equal-sized spherical balls made of wood and aluminum. After
pouring, we attach a conducting sheet at the top and bottom, and
see if the mixture allows an electric current to flow from one sheet
to another.

It is clear that if the fraction of metal spheres is low, it will not,
and will if the concentration is high. Also, the conductivity can
only increase if a wooden ball is changed to metal anywhere in the
sample. Thus there is a phase transition from an insulating phase
to a conducting phase, as the fraction of metal balls is increased.



A randomly poured assembly of two types of spheres. Picture
taken from the website physics.emory.edu.

This is called a geometric phase transition. To study this, we only
need to have notions of probability and geometry. More advanced
concepts like energy or temperature is not required.

Actually, this phase transition shares many common features with
other phase transitions, and can act as a stepping stone for these
studies.



“Quite apart from the fact that percolation theory had its origin in
an honest applied problem (see Hammersley and Welsh (1980)), it
is a source of fascinating problems of the best kind a
mathematician can wish for: problems which are easy to state with
a minimum of preparation, but whose solutions are (apparently)
difficult and require new methods. At the same time many of the
problems are of interest to or proposed by statistical physicists and
not dreamt up merely to demonstrate ingenuity.”

Taken from the preface of Kesten’s book ’Percolation theory for
Mathematicians’ (1982).



But there is more to percolation than study of phase transitions.
The list of applications is large:

1. Gas masks
2. Disease propagation in apple orchards
3. Properties of alloys, steel...
4. Oil recovery from porous oil-bearing rock
5. Modelling of epidemic spread with moving agents
6. Connectivity in social networks, mobile phone service networks,
...

and many others...



Basic models
We consider a lattice, say hypercubical lattice in d dimensions).

At each site x , there is a random variable η(x) taking values 1 or
0, with probabilities ps and (1− ps) respectively, independently of
other sites.

A set of occupied sites, connected by nearest neighbor bonds is
called a connected cluster.

The questions we study are related to the statistical properties of
connected clusters.



The model we defined is usually called Benoulli site percolation
model. In this case, all ’nearest neighbor bonds’ are assumed
present, but sites may be occupied or unoccupied.

One also defines a bond- percolation model, in which all sites are
present, but the connecting bonds are prent with probability pb, or
bond-site percolation models, with both parameters ps and pb
needed to specify the model.



Random resistor networks: One considers a resistor at each bond,
and the resistance of the bonds are i.i.d. random variables, from a
specified distribution g(ρ).

The typical question of interst is the bulk conductance σ of a large
sample, and how it changes of the distribution is changed.

First passage percolation: In this case, we consider spread of a
fluid, injected say from apoint source at the origin. The time the
fluid takes to traverse a given bond B is random variable τB , where
the τb’s are i.i.d. random variables, with a common probability
distribution g(τ).

An example of the type of questions one studies is the avearge
behavior of the minimum time the the fluid will take between to
specified points at a large distance R from each other.



There are many variations of these basic models. But let me
mention

Drilling percolation: One takes a large L× L× L cube. On each
face, one selects a fraction p of the sites, and drills a hole
perpendicular to the face, all the way to the opposite face.

Only if p is small enough, some parts of the cube will remain as a
three-dimensional structure. Else, it will crumble into small
disconnected parts.



Picture taken from Schrenk et al, Phys. Rev. Lett. 116, 055701
(2016).



Basic phenomenology
As mentioned earlier, the general behavior of percolation models
seems simple to understand.

Figure taken from the lecture notes ’Percolation theory’ by K.
Christensen from the internet: web.mit.edu



Consider first Site Percolation. As we increase ps , the typical size
of clusters increases, and above the threshold, there is a large
cluster containing a finite fraction of the sites.

We can consider several quantities:
The mean cluster size on the cluster containing the origin diverges
as a power near pc : ⟨s⟩ ∼ |pc − p|−γ , for p ↗ pc .

Mean linear size of the clusters ξ diverges: ξ ∼ |p − pc |−ν .

Fraction of sites in the infinite cluster Pinfty ∼ [p − pc ]
β, for

p ↘ pc .

At pc , the clusters have a non-trivial fractal structure. This may be
characterized by the non-trivial value of fractal dimension D: the
average mass of the clster within distance R : M(R) ∼ RD .



Resistor Networks

Let us consider the simple case where each bond has a resistor
with conductance taking values σ1 and σ2 with probabilities
(1− p) and p, with σ1 < σ2.

We consider a hypercube of size L, and measure the conductance
C(L) across opposite facesdefine bulk conductivity σ(p, σ1, σ2) by
the limit
σ(p, σ1, σ2) = limL→∞ C (L)L2−d .

This conductivity is self-averaging for large L.

Clearly, σ(p, σ1, σ2) increases from σ1 to σ2 as p increases from 0
to 1.
The special limits where σ1 = 0, σ2 = 1 ( called Insulator -Resistor
percolation), and σ1 = 1, σ2 = ∞ ( metal-superconductor
percolation) are of special interest.



In the first case, σ(p, σ1, σ2) = 0 for p < pc . And in the second
case, the bulk conductivity is infinite for p > pc .

Clearly, σ(p,Λσ1,Λσ2) = Λσ(p, σ1, σ2).
Hence we may write
σ(p, σ1, σ2) = σ1f (p, σ1/σ2), where f is function only of the ratio
σ1/σ2, and p.

Here, in the first case, we can define an exponent t1 as the power
with which σ increases from zero value for p just above pc .
Similarly, we define t2 as the exponent diverges to infinity for p
just below pc .



For non-zero value σ1/σ2, the function f is a continuous function
of p even at pc , but perhaps would be a singular function of p at
pc).

First -passage percolation

Here also, we can study many different distributions of
bond-traversal times. Consider the case where the traversal time
for a bond takes only two possible values: τ1, and τ2, with
probabilities p and (1− p), with τ1 < τ2.
The limiting cases of special interest are τ1 = 0, τ2 = 1, and
τ1 = 1, τ2 = ∞. Qualitatitive behavior is similar to the resistor
networks case.



Depending on p, in the first case, there are two possible phases,
one in which fluid can spread infinitely far in zero time, and one
where it spreads with finite velocity. In the second case, for p
below percolation threshold, the fluid only spreads to a finite
distance from the source.

One can consider a general probability distribution for τ , where τ
takes any non-negative real value. In the following, we will assume
that the distribution is nonzero only in a bounded interval
0 < τ ≤ tmax .

The basic result in this case is that region that is reached by the
fluided up to time T has a linear size that increases linearly with
T . In fact, one can define the asymptotic speed v(Ω) of the
advancing front in the direction Ω as the linit of the distance
reached up to time T in the direction Ω and T . Exact calculation
of v(Ω) has not been possible in any ’non-trivial’ case, including
the two-dimensional square lattice, even for the more tractable
case where τ has an exponential distribution of mean 1.



A picture of a the wetted cluster in the first passage percolation on
the square lattice ( taken from the article by F. Manin et al
[Discrete and Computational Geometry (2023) 69:771–799].
This model is also called the Eden model in literature. The invaded
set has 105 sites here.



Exact solution of the percolation problem on a line

It is quite straight forward to calculate exactly different properties
in the one-dimensional case.

Consider a infinite line of sites labelled by integer x ,
−∞ < x < +∞.

Consider site percolation, with each site occupied independently of
others with probability p. We put q = 1− p.
Then, it is easily seen that
(1) Prob. that origin belongs to cluster of size s = q, for s = 0

= sq2ps , for s ≥ 1.
(2) Expected number of sites in the cluster at the origin = 1/q.



(3) Prob. that two sites at distance r belong to the same cluster =
pr .

Hence we see that pc for 1-d site percolation =1.

Correlation length diverges as 1/q as p → 1.
The solution of the bond percolation problem is similar.



Exact solution on the Bethe lattice
The Bethe lattice is an infinite tree of uniform coordination
number ( here 3).

Let As be the number of distinct clusters of s sites, rooted at the
origin.
We define the animal numbers generating function A(x) by

A(x) =
∞∑
s=1

Asx
s .

Then,
A(x) = x + 3x2 + 9x3 + ...



It is convenient to define a generating function for clusters starting
at the top site of a subtree, and growing below.

Clearly, B(x) = x + 2x2 + 5x3 + ....
Then we see that we have

A(x) = x [1 + B(x)]3.

and
B(x) = x [1 + B(x)]2.

Solving this quadratic equation for B(x), we get

B(x) = [1− 2x −
√
1− 4x ]/2x .

Use binomial theorem to expand this powers of x , we get, for large
s,

As ∼ 4ss−3/2.



On the Bethe lattice, each cluster of s sites has external perimeter
s + 2, and hence the probability of the origin belonging to a cluster
of s sites (s ≥ 1) is Asp

sqs+2

This is largest for large s , if p = 1/2 = pc here. At pc , Prob(s)
decreases as s−3/2 for large s.

For p > pc , let B∞ denote the probability the given subtree is
connected to sites at infinity, then clearly,

B∞ = 2pB∞ − p2B2
∞,

which has the solution

B∞ = (2p − 1)/p2.

And we have probability that the origin belongs to an infinite
cluster

P∞ = p[1− (1− B∞)3].



Exercises

1. Can you relate the exponents t1 and t2 defined in the random
resitor model, using some good behavior condition on the scaling
function f ?

2. Find the exact formula for the correlation length in the
bond-percolation problem on the infinite ladder graph

3. Extend the analysis of Bethe lattice case to other coordination
numbers.
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