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Cluster enumerations

The key simplifying feature of the percolation problem is the fact
that all local properties in this sytem are easy to determine, using a
finite algorithm, even if the system size is large.

Consider the square lattice, site percolation problem. We pick a
randomly generated configuration of the system at concentration
p. Denote the probability that the origin belongs to a cluster of
exactly s sites as Prob(s).

Then it is easy to see that
Prob(s = 0) = 1− p ≡ q,
Prob(s = 1) = pq4,
Prob(s = 2) = 4p2q6,
and so on. Explicit expressions for Prob(s) for s = 3, 4, 5.. can be
written down with a bit of effort. Each is a polynomial in p.



There is a finite number of connected clusters containg the origin
having exactly s sites. Denote the number of clusters having s
sites and t external perimeter sites as A(s, t), then as the
probability of a specified cluster having s sites and t perimeter
sites is psqt . Then, we have

Prob(s) =
∑
t

A(s, t)psqt .

We will write the total number of clusters having s sites as

A(s) =
∑
t

A(s, t).

Pictures of such clusters were seen as reminiscent of a collection of
cells on a petri-dish, and were called animals.

For larger values of s, it is convenient to get a computer program
to calculate A(s) for a given s. One well known efficient algorithm
for this called the Martin’s algorithm.



Martin’s algorithm for enumeration of clusters

We will consider, for simplicity, clusters on the square lattice.
Extension to other lattices is straight forward.

The algorithm is a particular application of the general ’depth first’
search in computer science. It will generate all clusters of size
s ≤ smax , efficiently, and without ommisions or repetitions. It is
described next.

First we discuss how to generate a unique label for each allowed
configuration of a given cluster.



Sketch of the computer program
1. Start at the origin, and give it label 1.
2. All unlabelled neighbors are given the next available labels (here
2, 3, 4, 5) , with a given priority rule ( say E > N > W > S),
where the N,E ,W , S refer to direction of the neighbor.
4. Go the the topmost unvisited occupied site in the list of labelled
sites. Assign labels to its unlabelled neighbors sequencially, using
the priority rule.
5. Go back to step 4.
The algorithm stops when there are no unlabelled occupied sites.
The list of labelled sites will have more than N entries, as some are
unoccupied. We will identify the cluster using the sequence
1001001000..., where the r -th binary digit gives the occupancy
status of the site labelled r .
Clearly, the algorithm assigns a unique label to each cluster.
Furthermore, given the label, the cluster structure can be uniquely
inferred.



As each added site can add at most two to the number of
perimeter sites to a cluster, the binary string corresponding to a
cluster of s sites in the Martin’s algorithm can have at most 3s + 2
bits. Also, there are binary strings that do not correspond to any
cluster, e.g. 100001.
We thus conclude that on the square lattice,

A(s) ≤ 23s+2.

We can take the list of all allowed labels having length at most
3s + 2, and arrange them sequentially them in a list using the
dictionay order.

Generating the list of all allowed words upto a maximum length
can be done efficiently, using the back-track algorithm.

A very elegant and short computer program in Fortran that
implements this for a general translationally invariant lattice, using
less than 40 lines of program, is given in
S. Redner, J. Stat. Phys., 29, 309 (1982).



It is easy to get a lower bound on A(s). We can start at the origin,
and add particles sequentially at the neighbor of last placed
particle in the N or E direction. This generates a directed walk of
(s − 1) steps, and we get

A(s) ≥ 2s−1.

Coupled with the upper bound derived earlier, it makes plausible
that A(s) grows exponentially with s. In fact, the expected
asymptotic behavior for large s is

A(s) ≈ Cλss−θ[1 + subleading correction terms].

The argument is expected to be extended to other lattices. The
exponent θ is expected to be the same, for different lattices of the
same dimension.



We note that Prob(s) =
∑

t p
sqtA(s, t) ≤ A(s)ps . Thus we

conclude that
For all p < (1/λ), Prob(s) decays exponentially with s for large s.

We can similarly show the two-point correlation function G (R⃗)
that two point at a separaion R⃗ belong to the same cluster decays
to exponentially fast with |R⃗| as |r | → ∞.

Proof: If two points belong to the same cluster, there exists a
self-avoiding path on occupied sites from one to the other. There
may be more than one path. But, clearly,

G (R⃗) ≤
∑
P

Prob(P),

where the sum is over all self avoiding path P between the two
points. But the probability of a path of length L is pL. If the
number of self avoiding paths of length L is NSAW (L, R⃗), we have
G (R⃗) ≤

∑∞
L=|R⃗| p

LNSAW (L, R⃗).



But clearly, NSAW (L, R⃗) ≤ 4.3L−1.
Hence for p < 1/3, G (R⃗) decreases at least exponentially with |R⃗|.

Lower bounds on P∞(p) at high densities
We will now sketch the proof that if p is large enough, then the
probability of infinite cluster is bounded above zero. This argument
is a variation of the Peierls’ proof of the existence of spontaeous
magnetization in the Ising model at low enough temperatures.



Consider site percolation on the infinite square lattice, with the
density p of occupied sites. If the origin belongs to an infinite
cluster, there should not exist any simple closed loop L of
unoccupied sites that surrounds the origin.
Then, 1− P∞(p) ≤

∑
L Prob(L).

(1) Let Nℓ be the number of distinct shapes of closed loops of
perimeter ℓ. The number of closed self-avoiding loops satisfies the
bound Nℓ < 4.3ℓ−1.
(2) For a loop of perimeter ℓ, the probability that all sites are
unoccupied is qℓ.
(3) A loop of perimeter ℓ has an area ( number of sites enclosed)
at most ℓ2/16. Then, there are at most ℓ2/16 ways of placing a
particular loop L of length ell so that it encloses the origin.
Putting these together, we get
1− P∞(p) ≤

∑
ℓ=4,6,8.. 4.3

ℓ−1qℓ(ℓ2/16).

The RHS is a convergent sum for q < 1/4, and deceases as q
decreases. So we can choose q small enough, so that the sum is
less than 1. Hence proved.



We showed that in the low density phase, the cluster size
distribution decays exponentially with the cluster size s for large s.
In fact, while the result was proved for small p, one expects this
result to be true for all p < pc , and the probability of clusters of
size greater than s is bounded from above by exp[−C (p)s], where
C (p) is a decreasing function of p that tends to zero, as p tends to
pc from below.

In the regime p > pc , of course, the cluster size on an infinite
lattice could be strictly infinite. But we can ask how does the
probability of a finite large cluster of s sites decrease with s?
Interestingly, it does not decay exponentially fast. There is a
rigorous result due to Kunz and Suillard [Phys. Rev. Lett.
40(1978) p133] that it decays only as a stretched expnential, as

exp[−Cs
d−1
d ], in d-dimensions. We give only a heuristic proof here.



Consider a typical configuration of the system at p > pc . We mark
a hypercube of linear size ℓ. Then the probability that all the
boundary sites of this hypercube are absent is q2dℓ

d−1
. But the

number of sites in the largest cluster inside is with a large
probability of O(ℓd). Choose ℓ = αs1/d , with α to be large enough
so that is > s. Then, there exists a β > 0 such that

Prob(s > s0) ≥ qβs
d−1
d .



Relation of the Percolation model to the q-state
Potts model

One can express the free energies of a class of theoretical models
as the large deviation function of the number density of clusters in
the percolation model.

Let us consider the moment generating function of the r -th
moment of the total number of clusters on a lattice of V sites in
the bond-percolation problem at concentration p . We define the
large deviation function f (x) by the relation that for large V ,

Prob[number density of clusters = x] ∼ e−Vf (x).

Then it turns out that this function f (x) is actually related to the
free energy function of other well-studied models, e.g. the Ising
model.



We start by considering a model where the at each site i , there is
a spin σi that can occur in of q discrete states ( q is an integer).
For example, q = 2 is the Ising model. The Hamilonian of the
system is

H = −
∑
<ij>

Jijδ(σi , σj).

Here the δ- function is the Kronecker δ- function, taking values 1
when σi = σj , and zero otherwise. Then the partition function is
given by

ZV =
∑
{σi}

∏
<ij>

(1 + vδ(σi , σj)),

where we have written v = eβJ − 1, and the sum {σi} is over all
the qV spin configurations.

We expand this product in powers of v , and in a graphical
representation of each term, where we draw a bond between
vertices i and j , iff we use term vδ(σi , σj) in the factor in the
product. Then, the different terms correspond to all possible states
of the bonds. The weight of a configuration with B bonds is vB .



Now the summations over the spins can be done for each term,
and a term with C clusters gives the sum as qC . thus the partition
function can be written as

Z(v , q) =
∑

qCvB .

If we put q = 1, one generates bond percolation configurations
with correct relative weights, if we put v = p/q. For q = 2, we get
the partition function of the Ising model, with appropriate
identification of variables. In the limit q = 1, the partition function
is trivial Z(q = 1, v) = (1 + v)B , but taking derivatives of
∂r

∂qr logZ we get the moments of cluster numbers < C r >.



More interestingly, the expression for Z is a polynomila in q, and is
well defined for all q ≥ 0. One can take the large volume limits

lim
V→∞

logZV /V = f (v , q),

to define free energy per site f (q, v). This allows us to define the
Potts model free energy for all real q.
This generalization of the q-state Potts model for non-integer q
was the deep insight of Fortuin and Kasteleyn [ Physica. 57 (4)
(1972) 536]. It is interesting because it turns out that the critical
exponents of this model in 2-dimensions for general q can be
determined exactly using the conformal field theory, and help us
study what different critical exponents depend on and how.



Exercises

1. Write down the probabilities Prob(s) that the origin belongs to
a cluster of size s for s = 0 to 5, as expicit polynomials in p alone.
Verify that the sum differs from 1 only by terms of order p6.

2. How well can you improve the bound in the Peierls’ type proof
given here?


