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Abstract

I will discuss quantum chaos and spectral correlations in periodically driven
fermionic and bosonic interacting chains in the presence and absence of
particle-number conservation. I will show that the spectral form factor
precisely follows the prediction of random matrix theory in the regime of
long chains, and for timescales that exceed the Thouless time. For long-
range interactions, random phase approximation can be used to rewrite
the spectral form factor in terms of a bi-stochastic many-body process
generated by effective spin or boson Hamiltonians. In the particle-number
conserving case, the effective Hamiltonians have SU(2) and SU(1, 1)
symmetry, respectively for fermions and bosons, resulting in universal
quadratic system-size scaling of the Thouless time, irrespective of the
particle number. In the absence of particle-number conservation, while
we find a nontrivial system-size dependence of the Thouless time for the
bosonic model, it is independent of system size for kicked fermionic chains.
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Periodically driven (Floquet) interacting lattices

A 1D lattice of interacting spinless fermions or bosons with a time-periodic
kicking in the nearest-neighbor coupling (hopping and pairing):

Ĥ(t) = Ĥ0 + Ĥ1

∑
m∈Z

δ(t−m),

Ĥ0 =

L∑
i=1

εin̂i +
∑
i<j

Uijn̂in̂j ,

Ĥ1 =

L∑
i=1

(−Jâ†i âi+1 + ∆â†i â
†
i+1 + H.c.),

Number operator n̂i = â†i âi; creation operator of a fermion/boson â†i

Uij = U0/|i − j|α, with 1 < α < 2; random onsite energies εi described
as Gaussian i.i.d. variables of zero mean and standard deviation ∆ε.

∆ = 0 or 6= 0 corresponds respectively to conservation or violation of a
total fermion/boson number N̂ =

∑L
i=1 n̂i.
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Spectral form factor (SFF) K(t)

Fluctuations in the spectral density of energy or quasienergy are often used
as the main signatures of quantum chaos and the appropriate random
matrix theory (RMT) type is determined solely by the symmetry of the
underlying dynamical systems.

Quasienergies of interest are the eigenphases ϕm of a unitary Floquet
propagator Û of evolution after one cycle: Û = T exp(−i

∫ 1
0 dtĤ(t))

Û |m〉 = e−iϕm |m〉 for m = 1, 2, . . . ,N (dimension of the Hilbert space)

Spectral density ρ(ϕ) = 2π
N
∑

m δ(ϕ− ϕm), 〈ρ(ϕ)〉ϕ ≡
∫ 2π

0
dϕ
2π ρ(ϕ) = 1

Pair correlation function R(ϑ) = 〈ρ(ϕ + ϑ/2)ρ(ϕ − ϑ/2)〉ϕ − 〈ρ(ϕ)〉2ϕ
provides a measure of spectral fluctuations.

K(t) =
N 2

2π

∫ 2π

0
dϑ〈R(ϑ)e−iϑt〉 = 〈(trÛ t)(trÛ−t)〉 − N 2δt,0

where trÛ t =
∑

m e−iϕmt, and 〈. . . 〉 denotes an average over disorder.
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SFF within RPA: bi-stochastic many-body process

Time-evolution operator Û of each cycle as a two-step Floquet propagator:

Û = V̂ Ŵ , Ŵ = e−iĤ0 and V̂ = e−iĤ1

A basis of Fock states |n〉 ≡ |n1, n2, . . . , nL〉 (not eigenstate of Û), where
nj ∈{0, 1} ({0, 1, . . . , N}) represents an occupation number of fermions

(bosons) at the lattice site j, and N ≡ 〈n|N̂ |n〉 =
∑L

j=1 nj .

Using random phase approximation (RPA) to perform the disorder aver-
aging over different realizations and making further the asymptotic ap-
proximation via identity permutations between two replicas, we can write

K(t) = 2t trMt,

where Mn,n′ = |〈n|V̂ |n′〉|2 = |〈n|e−iH1 |n′〉|2 is a N ×N square matrix.∑
n′Mn,n′ =

∑
n′〈n|V̂ |n′〉〈n′|V̂ †|n〉 = 〈n|V̂ V̂ †|n〉 = 1 : bi-stochastic

matrix
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Universal RMT form of K(t)

Largest eigenvalue of a bi-stochastic matrix is 1, while the rest of the
eigenvalues (1, λ1, λ2, . . . with 1 ≥ |λj | ≥ |λj+1|) are real as M is also
real and symmetric. Then, we obtain SFF as a sum over eigenvalues λj

K(t) = 2t
(
1 +

∑
j

λtj
)
,

where K(t) ' 2t is a leading order in t/tH result of RMT of circular
orthogonal ensemble: averaged over ensemble!
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Thouless time t∗ to reach universal K(t)

For large enough L, we approximate K(t) at long time t, 1 � t � tH ,
by truncating it after the second largest eigenvalue λ1 of M.

Consider λ1 scales with system size L as 1−1/t∗(L) where t∗(L) ' Lβ/D:

K(t) ' 2t(1 + λt1) ' 2t(1 + (1− 1/t∗(L))t) ' 2t(1 + e−t/t
∗(L)).

L-dependence of λ1 and t∗ is found by (a) numerically diagonalizing
M, and (b) mapping M to an effective Hamiltonian in the continuous-
time/Trotter regime, i.e., at small J,∆.

Expand V̂ in the Trotter regime of the Hamiltonian Ĥ1:

M = e−iĤ1 • eiĤ1

= (1− iĤ1 −
1

2
Ĥ2

1 + . . . ) • (1+ iĤ1 −
1

2
Ĥ2

1 + . . . )

= 1 + Ĥ1 • Ĥ1 − Ĥ2
1 • 1 +O(Ĥ4

1 ),

where Ĥ1 • Ĥ1 is an element-wise square of Ĥ1 in the Fock space basis.
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Mapping M to effective Hamiltonian : Fermions

For J,∆→ 0, M can be generated by anisotropic Heisenberg model.

M = (1− cxL)1N +
L∑
j=1

∑
ν=x,y,z

cνσ
ν
j σ

ν
j+1 +O(J4,∆4),

cx = (J2 + ∆2)/2, cy = cz = (J2 −∆2)/2. σνj : Pauli matrix at site j.

“Ground state” of the generating Hamiltonian with an eigenvalue 1 is a
ferromagnet polarized in x-direction.

For ∆ = 0, isotropic Heisenberg model (SU(2) symmetry) whose eigenen-
ergy spectrum is gapless for any magnetization (any N). Eigenvalue of
first “excited state” λ1 = 1− c1/L

2 (one x-polarized magnon excitation
with momentum k = 2π/L). β = 2 and Thouless time, t∗ ' L2/c1.

For ∆ 6= 0, anisotropic Heisenberg model which has a finite and system-
size independent gap in the energy spectrum between the ground and first
excited state. β = 0 and L-independent Thouless time.
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Mapping M to effective Hamiltonian : Bosons

Generating Hamiltonian in the Trotter regime of small J when ∆ = 0:

M = 1 +

L∑
i=1

(
J2(K̂−i K̂

+
i+1 + K̂−i+1K̂

+
i )− 2J2(K̂0

i K̂
0
i+1 −

1

4
)
)

+O(J4)

in terms of K̂0
i = −(n̂i + 1/2), K̂+

i = âi
√
n̂i, K̂

−
i =

√
n̂iâ
†
i , which

satisfy the commutation relations of SU(1, 1) algebra

[K̂+
i , K̂

−
j ] = −2K̂0

i δij , [K̂0
i , K̂

±
j ] = ±K̂±i δij .

We have [K̂α,M] = 0, where K̂α =
∑L

i=1 K̂
α
i , α ∈ {+,−, 0} satisfy

SU(1, 1) algebra.

Generating Hamiltonian of the Markov matrixM has SU(1, 1) symmetry
in the particle-number conserving case.

Numerics shows M has SU(1, 1) symmetry for arbitrary values of J
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L-dependence of Thouless time (∆ = 0): Bosons

Due to SU(1, 1) symmetry of the generating Hamiltonian, its lowest ex-
cited states can be obtained as degenerate descendants of the single-
particle (N = 1) states, i.e., by applying the operator K̂−. Therefore,
the L-dependence of λ1 is independent of N when ∆ = 0.

M|N=1
∆=0 = (1− 2J2) +

L∑
i=1

J2(â†i âi+1 + â†i+1âi) +O(J4).

“Ground state” of M|N=1
∆=0 is a state with eigenvalue 1 and with zero

momentum. Eigenenergy spectrum is gapless, and first “excited state”
(with momentum k = 2π/L) goes as λ1 = 1 − c2/L

2. Thouless time,
t∗ ' L2/c2, for single boson and, due to SU(1, 1) symmetry, for any
number of bosons.

Generating Hamiltonian of M lacks SU(1, 1) symmetry when ∆ 6= 0.
Consequently, λ1 changes with N or Nmax for a fixed L.
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L-dependence of Thouless time (∆ 6= 0): Bosons
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Dashed lines indicate a linear extrapolation of the last few large Nmax

points. These linear extrapolations give λ1 ∼ 1−1.43/L0.58 or e−2.89/L0.79

at 1/Nmax → 0, which predicts a finite system-size dependence of the
Thouless time (e.g., t∗ = O(Lγ), γ = 0.7± 0.1 when J = 1,∆ = 0.7)
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Exact numerically computed K(t): fermions
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Spectral form factor K(t) for different system sizes L of the kicked spinless
fermion chain with (∆ = 0) (a,b) and without (∆ = 1) (c) particle-
number conservation. Here, J = 1, U0 = 15, α = 1.5,∆ε = 0.3 and
N/L = 1/2 for ∆ = 0. An averaging over 103 realizations of disorder is
performed. In (b) we show data collapse in scaled time t/L2.

Temporal growth of K(t) for ∆ = 1 at t� tH is independent of L which
confirms our analytical prediction based on the RPA.

For ∆ = 0, we find a nice data collapse for various L and t < tH which
confirms our above predicted L-dependence of K(t) using the RPA.
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(2022)



Spectral form factor
in fermionic and
bosonic models of

many-body quantum
chaos

Dibyendu Roy

Abstract

Model

Spectral form factor

Markov matrix

RMT form

Thouless time

Mapped Hamiltonian

Exact SFF

p. 14

Derivation of SFF: Fock space basis

Time-evolution operator Û of each cycle can be written as a two-step
unitary Floquet propagator:

Û = V̂ Ŵ , Ŵ = e−iĤ0 and V̂ = e−iĤ1

We consider a basis of Fock states |n〉 ≡ |n1, n2, . . . , nL〉, where
nj ∈ {0, 1} ({0, 1, . . . , N}) represents an occupation number of spinless

fermions (bosons) at the lattice site j, and N ≡ 〈n|N̂ |n〉 =
∑L

j=1 nj .

For ∆ = 0, [Û , N̂ ] = 0; we take only those basis states N =
L!

N !(L−N)! ( (N+L−1)!
N !(L−1)! ), which have total N fermions (bosons)

For ∆ 6= 0, we take N = 2L−1 (
∑Nmax

N=0,2,..
(N+L−1)!
N !(L−1)! ) states |n〉 with all

allowed either even or odd N fermions (bosons); Nmax: cutoff for bosons

|n〉 are not eigenstates of Û but eigenstates of Ŵ

Ŵ |n〉 = e−iθn |n〉, θn =
L∑
i=1

εini +
∑
i<j

Uijninj



Spectral form factor
in fermionic and
bosonic models of

many-body quantum
chaos

Dibyendu Roy

Abstract

Model

Spectral form factor

Markov matrix

RMT form

Thouless time

Mapped Hamiltonian

Exact SFF

p. 15

Random phase approximation (RPA)

Floquet propagator for t time steps, trÛ t, can be evaluated by inserting
1N =

∑
nτ
|nτ 〉〈nτ | at different time steps τ = 1, 2, . . . , t.

trÛ t =
∑

n1,...,nt

〈n1|V̂ Ŵ |n2〉〈n2|V̂ Ŵ . . . |nt〉〈nt|V̂ Ŵ |n1〉

=
∑

n1,...,nt

e−i
∑t
τ=1 θnτ

t∏
τ=1

Vnτ ,nτ+1
, Vnτ ,nτ+1

= 〈nτ |V̂ |nτ+1〉,

where we use PBC in time |nt+1〉 ≡ |n1〉.

K(t) =
∑

n1,...,nt

∑
n′1,...,n

′
t

〈e−i
∑t
τ=1(θnτ−θn′τ )〉

t∏
τ=1

Vnτ ,nτ+1
V ∗n′τ ,n′τ+1

The phases θnτ for different |nτ 〉 (modulo 2π) are assumed to be indepen-

dent random numbers for Ĥ0 with random onsite energies and long-range
interaction. Within RPA, averaging over the disorder realizations gives:

〈e−i
∑t
τ=1(θnτ−θn′τ )〉 ' δ{n1,...,nt},{n′1,...,n′t},
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Bi-stochastic (Markov) matrix M

For times t� tH = N in a large enough system, the probability that two
configurations repeat in time t is proportional to t/tH , and all configura-
tions nτ in the string {n1, n2, . . . , nt} can be assumed different.

RPA implies that there is a permutation π ∈ St so that we can relate n′τ =
nπ(τ). There are t cyclic permutations and t anti-cyclic permutations for
which the matrices Vnτ ,nτ+1

in a string {n1, n2, . . . , nt} are the same as
Vn′τ ,n′τ+1

in a string {n′1, n′2, . . . , n′t}. Thus, we get in the leading order:

K(t) =
∑

n1,...,nt

t∏
τ=1

Vnτ ,nτ+1
V ∗nπ(τ),nπ(τ+1)

= 2t
∑

n1,...,nt

t∏
τ=1

|Vnτ ,nτ+1
|2 = 2t trMt,

where Mn,n′ = |〈n|V̂ |n′〉|2 = |〈n|e−iH1 |n′〉|2 is a N ×N square matrix.∑
n′

Mn,n′ =
∑
n′

〈n|V̂ |n′〉〈n′|V̂ †|n〉 = 〈n|V̂ V̂ †|n〉 = 1
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L-dependence of Thouless time : Fermions

L-dependence of first excited states (single magnon states) in different
magnetization sector is the same due to the SU(2) symmetry of isotropic
Heisenberg model, and it gives the quadratic L-dependence of t∗ for all
filling fractions N/L (including N = 1) in the presence of U(1) symmetry.

Numerics shows M has SU(2) symmetry for arbitrary J when ∆ = 0.

J = 1,∆ = 0 J = 1,∆ = 0.3

L λ1 λ2 λ3 L λ1 λ2 λ3

10 0.653 0.5023 0.4275 10 0.7594 0.6139 0.5288
12 0.7495 0.6087 0.5263 12 0.75938 0.6079 0.5677
14 0.8115 0.6892 0.6098 14 0.75938 0.6152 0.6041
16 0.8535 0.7493 0.6939 15 0.75938 0.6328 0.6026

J = 1,∆ = 0, β = 1.86 (using L = 12, 14, 16) if we are fitting to λ1 =
1 − 1/t∗ and β = 2.08 if fitting to λ1 = e−1/t∗ . When J = 1,∆ = 0.3,
we find consistently β = 0.
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L-dependence of Thouless time (∆ = 0): Bosons

J = 1,∆ = 0, N/L = 1/2 J = 1,∆ = 0, N/L = 1/4

L λ1 λ2 λ3 L λ1 λ2 λ3

8 0.8526 0.7486 0.6680 8 0.8526 0.7486 0.4847
10 0.9042 0.8283 0.7658 12 0.9329 0.8764 0.8278
12 0.9329 0.8764 0.8278 16 0.9619 0.9278 0.8970
14 0.9504 0.9071 0.8688 20 0.9755 0.9529 0.9320

J = 1,∆ = 0: λ1 ∼ 1−8.29/L1.94 (or λ1 ∼ e−11.4/L2.05
) for N/L = 1/2

(using L = 10, 12, 14), and λ1 ∼ 1− 9.0/L1.97 (or λ1 ∼ e−10.5/L2.02
) for

N/L = 1/4 (using L = 12, 16, 20).

The above exponents for two different finite size fittings of λ1 show a
clear trend towards O(L2) scaling of t∗ in the bosonic chain when ∆ = 0.

The generating Hamiltonian ofM lacks SU(1, 1) symmetry when ∆ 6= 0.
Consequently, the second largest eigenvalue λ1 changes with N or Nmax

for a fixed L.
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L-dependence of Thouless time (∆ 6= 0): Bosons
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Second largest eigenvalue λ1 ofM with 1/Nmax, for three lengths L and
two sets of J,∆ in the absence of U(1) symmetry. The dashed lines denote
algebraic and linear extrapolation of the last few large Nmax points for
J,∆ = 1 and J = 0.1,∆ = 0.01, respectively. The two plots at different
J,∆ display an opposite trend in the L-dependence of λ1 and Thouless
time for a small and a large J,∆.


