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0. Arithmetic Geometry



Slogan:

Geometry has always involved a duality between
states and observables

States: Points of tangent or cotangent bundles of manifold, points
of projective spaces, linear functionals, objects in n-categories.

Observables: Functions, operators, objects in n-categories.



Arithmetic Geometry

is geometry based on absolutely finitely-generated number systems:

Z, Z[
√
2], Z[

√
2,
√
−1, exp(2πi/7)],

Z[
√
2,
√
−1, exp(2πi/7), π, e, Γ(5)]

In each of these examples, every element can be generated by
performing addition, subtraction, and multiplication repeatedly
starting from a finite collection of ‘seed’ elements (generators).

These are rings R that are isomorphic to quotients of
Z[x1, x2, . . . , xn] for some n:

R ' Z[x1, x2, . . . , xn]/I .



Arithmetic Geometry
To such a ring, we associate its spectrum

Spec(R),

the set of all pure states on R , ring homomorphisms

R - K

to a field, subject to an equivalence relation generated by increasing
the codomain.

We have the generating equivalence φ1 ∼ φ2 if we have a
commutative diagram

R

K1

φ1

?
⊂ - K2

φ
2

-



Arithmetic Geometry

Examples:

Spec(Z) consists of
φp : Z - Fp

for each p and
φgen : Z ⊂ - Q.

Spec(C[x ]) consists of

φa : f (x) - f (a) ∈ C

for each a ∈ C and

φgen : C[x ] ⊂ - C(x)



Arithmetic Geometry

Spec(C[x1, x2]) consists of:

(0)
φ(a1,a2) : f (x1, x2) 7→ f (a1, a2) ∈ C

for each (a1, a2) ∈ C2.

(2)
φgen : C[x1, x2] ⊂ - C(x1, x2)

(1)
φD : C[x1, x2] - C[D] ⊂ - C(D),

for each irreducible curve D ⊂ C2.



Arithmetic Geometry

An arithmetic scheme X is glued out of finitely many copies of
finitely-generated rings:

X = ∪Spec(Ri ),

and is the fundamental object of study in arithmetic geometry.

For example,

Proj(Z[z0, z1, z2]/(z0z
2
2 − z3

1 + z2
0 z1)))

= E0 ∪ E1 ∪ E2

where
E0 = Spec(Z[x , y ]/(y2 − x3 + x)),

etc.



Idle speculation on arithmetic geometry:

Perhaps arithmetic geometry, wherein observables are
intrinsically discrete, are relevant to quantum mechanics.



Arithmetic Geometry: Topology
Maps between arithmetic schemes are built up from ring
homomorphisms

A - B

which is equivalent to

Spec(B) - Spec(A).

Using this, one can choose various categories of maps∐
Ui

- X

to be open covers, which gives rise to a Cech nerve

· · · -
∐

Ui ×X Uj × Uk
-
∐

Ui ×X Uj

-
∐

Ui
- X ,

from which we can extract various notions of topology.



Arithmetic Geometry and Algebraic Number Theory
An algebraic number field is a field

F ⊃ Q,

which is finite-dimensional as a Q-vector space.

Thus, F is isomorphic to Qd equipped with a bilinear map

Qd ×Qd - Qd ,

that makes it into a field.

It turns out that
F ' Q[x ]/(f (x)),

where f (x) ∈ Q[x ] is an irreducible polynomial.

By choosing a complex root α of f (x), one also has

F ' Q[α] ⊂ C.



Arithmetic Geometry and Algebraic Number Theory
F = Q2 might be considered with the multiplication

(a, b) · (c , d) = (ac − bd , ad + bc)

which is Q[
√
−1] ' Q[x ]/(x2 + 1),

or with the multiplication

(a, b) · (c , d) = (ac + 5bd , ad + bc)

which is Q[
√
5] ' Q[x ]/(x2 − 5).

The triples
F = Q3

with

(a, b, c)·(a′, b′, c ′) = (aa′+2bc ′+2cb′, ab′+ba′+2cc ′, ac ′+bb′+ca′)

is Q[ 3
√
2] ' Q[x ]/(x3 − 2).



Arithmetic Geometry and Algebraic Number Theory

The ring of algebraic integers OF ⊂ F ' Qd is the maximal subring
of F isomorphic to Zd .

Z[i ] ⊂ Q[i ]

Z[
1 +
√
5

2
] ⊂ Q[

√
5]

Z[
3
√
2] ⊂ Q[

3
√
2]

Z[
√
−5] ⊂ Q[

√
−5]



Picture

Figure: Mumford’s picture of Spec(Z[x ])



Algebraic Number Theory and Arithmetic Topology

Arithmetic topology starts from the observation that the arithmetic
scheme

Spec(OF )

has many of the topological features of a closed 3-manifold.

If we consider Fv , the completion of F with respect to a
non-Archimedean absolute value v ,

Spec(Fv )

has many features of a closed 2 manifold.



Where we are going

A 3d topological quantum field theory Z :

Closed 3-manifold M3 - Z (M3) ∈ C

Closed 2-manifold M2 - Z (M2) ∈ VectC

Closed 1-manifold S1 - Z (S1) ∈ CatC

Closed zero-manifold pt - Z (pt) ∈ 2-CatC

In short,
Z (·)

is a complicated function of manifolds with natural properties
reflecting the construction of manifolds.



Where we are going

We will try to extend such a theory to an arithmetic topological
quantum field theory Z :

Z (Spec(OF )) ∈ C

Z (Spec(Fv )) ∈ VectC

Z (Spec(Fq)) ∈ CatC

Would like to do this via quantisation of spaces of arithmetic fields.

The basic technique used so far is to imitate the Feynman path
integral used by physicists.



I. A Tour of Physics



Classical Systems

Space of all possible states: symplectic manifold (S, ω), where
ω ∈ Ω2(S) is non-degenerate and closed.

Examples:

R3 × R3 = {(p, q)}

states of a single point particle in Euclidean space. Symplectic form

3∑
i=1

dpi ∧ dqi = d(
∑
i

pidqi )

Generalises to
T ∗X ,

where X is a manifold: θ :=
∑

i pidqi is invariantly defined. Put
ω = dθ.



Classical Systems

Examples (continued):

Smooth complex projective varieties. Symplectic form is associated
to Kaehler metric pulled back from projective space:

ω = g(J·, ·)

Most importantly for us, the space of solutions to the equations of
motion for a field theory on a spacetime manifold of the form

M = N × R

has the structure of a symplectic manifold.



Classical Systems

In the C∞-case, every symplectic structure locally looks like

n∑
i=1

dpi ∧ dqi = d(
∑
i

pidqi )

for a suitable choice of coordinates pi , qi .

Thus, a symplectic structure has no local invariants, leading to a
topological nature in its classification.

Algebraic symplectic structures on algebraic varieties are hard to
construct, but T ∗X gives a good collection of examples.



Classical Systems: Dynamics
On Rn × Rn, dynamics of a classical system are described by
Hamilton’s equations:

∂qi
∂t

=
∂h

∂pi

∂pi
∂t

= − ∂h
∂qi

where h is a function representing energy, e.g., h = p2/2m + kq2.

This can be written invariantly as the vector field Xh associated to
dh:

ω(Xh, ·) = dh.

The equation
γ′(t) = Xh(γ(t))

locally looks like Hamilton’s equations. (Here as in the following,
may be many sign errors.)



Classical Systems: Dynamics
More generally, associate vector field Xf to function f via formula

ω(Xf , ·) = df .

Symplectic structure is also used to define Poisson bracket of two
smooth functions:

{f , g} = ω(Xf ,Xg )

Locally looks like ∑
(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
).

Note that
{pi , qj} = δij

expressing a classical shadow of Heisenberg’s commutation
relations.



Classical Systems: Dynamics

Hamilton’s equations for functions: Given f , can consider f ◦ φ−t ,
where φt is the one-parameter family of diffeomorphisms induced
by Xh.

Then Hamilton’s equations imply

df

dt
= {f , h}

In particular, df /dt = 0 iff {f , h} = 0. In this case, we say f is a
conserved quantity.

The correspondence

{f }/constants↔ {Xf }

is behind Noether’s theorem relating symmetries and conserved
quantities.



Quantum Systems

Space of states is a Hilbert space H = {ψ}.

Role of functions played by self-adjoint operators

O : H - H.

Evaluating a function f at a point gets replaced by

ψ 7→ 〈ψ,Oψ〉
〈ψ,ψ〉

,

the expectation value of O in the state ψ.



Quantum Systems

Time evolution given by Schroedinger’s equation:

dψ

dt
=

1
i~
Hψ

for an operator H representing energy.

For observables O, if

O(t) := exp(t
i

~
H)O exp(−t i

~
H),

then
dO

dt
=

i

~
[H,O].



Quantum Systems
Quantisation refers to a process

(M, ω, h) - (H,H).

It should come with a process for converting functions to operators:

a 7→ â

so that physical quantities like energy, momentum, position have
quantum mechanical expectation values. Energy is especially
important in practice.

Example: (R× R, ω), h = p2

2m + kq2 is quantised via

H = L2(R,C),

q - multiplication operator;
p - −id

dq ;

h - H =
1
2m
∇2 + kq2.



Quantum Systems

Poisson brackets should go to commutators (have started to ignore
constants and signs now):

{̂a, b} = i [â, b̂].

This is motivated by the Heisenberg commutation relations

[Pi ,Qj ] = iδij

as well as the comparison between Hamilton’s equation and
Schroedinger’s equation:

df

dt
= {f , h}

df̂

dt
= [f̂ ,H]



Quantum Systems

More generally, (Rn × Rn = {(q, p)}, ω) goes to L2(Rn) where qi
goes to the multiplication operator and pi goes to i ∂

∂qi
. Quantise

many h of the form

h =
p2

2m
+ V (q),

where V (q) is interpreted as a potential energy.

However, this does not extend to

f 7→ f̂ .

Works for linear and quadratic functions.



Quantum Systems
More precisely, finite-dimensional symplectic vector space (V , ω)
can be quantised ‘to first order’.

There is a Heisenberg Lie algebra

Heis(V , ω) = Ro V

with Lie bracket

[(a, v), (b,w)] = (0, ω(v ,w)).

For any constant c (e.g., i~), it has a unique represention

Hc

on which x ∈ R acts via xc . This allows us to quantise linear
functions and simple functions of the linear functions that often
arise as Hamiltonians, e.g.,

h(p, q) =
p2

2m
+ V (q).



Quantum Systems
Two other constructions:

1. Can replace L2(Rn) by L2(L), where L ⊂ Rn × Rn is any
Lagrangian subspace.

Given such an L, almost canonical isomorphism

FL : L2(L) ' L2(Rn)

2. Instead can use L2
hol(Cn, µ), where µ is a Gaussian measure.

This is naturally thought of as a completion of

Sym(Cn)

with respect to ∫
|f (z)|2 exp(−|z |2)dzdz̄ .

Then zi acts by multiplication while z̄i acts by d/dzi with

zi = pi + iqi , z̄i = pi − iqi .



Quantum Systems

Several advantages, including the fact that quantum states can be
evaluated at a point on the classical state space.

This extends to the idea of Kaehler geometric quantisation: Given
the symplectic (S, ω), put on it a Kaehler structure. Construct a
holomorphic line bundle L - S with connection such that
c1(L ,∇) = ω.

Note that 1 ∈ L2
hol(Cn, µ) spans the unique line killed by the z̄i .

Sometimes has the interpretation of a vacuum state. Thus, there is
such a line spanned by v0 ∈ L2(Rn). In fact, for any Lagrangian
subspace L, there is a line spanned by vL ∈ L2(Rn).



Quantum Systems

This is believed to work quite generally: When (S, ω) is quantised
to H, there should be something like a cycle map

L 7→ vL ∈ H

from Lagrangian submanifolds to lines in H.

Essentially, if dimS = 2n and

L = {f1 = 0, f2 = 0, · · · , fn = 0},

then vL is defined by
f̂ivL = 0.



II. Fields



Fields
Roughly speaking, to a physicist, everything is a field.

However, more precisely, there is a stack

S - M

over the spacetime manifold and fields are its sections:

F := Γ(M,S )

These comprise the so-called kinematics of a theory.

The ‘dynamics’ are usually formulated in terms of an action

L : F - C

The solutions of the Euler-Lagrange equation

EL(F ) := {φ ∈ F | dL(φ) = 0}

make up the classical state space.



Fields

Example:
S = T ∗M - M

F = Ω1(M)

L(A) = Max(A) :=

∫
M
‖dA‖2dvolM

In this case, the E-L equation amounts to the equation

∗dA = 0.

Together with d(dA) = 0, we get Maxwell’s equations (for the six
components of dA).

Can generalise this to F = Conn(L ), the space of connections on
a line bundle L .



Fields

Also of interest is

S = (TM)⊗n ⊗ (T ∗M)⊗m

or natural subquotients.

For example, when S = Met(M) ⊂ (T ∗M)⊗2,

EH(g) =

∫
M
R(g)dvolg ,

where R(g) is the scalar curvature of g , is the Einstein-Hilbert
action.

The E-L equation
dEH(g) = 0

is the vacuum Einstein equation.



Fields

Another important example is

F = M × Σ,

where Σ is another manifold.

This kind of theory is called a sigma model. In that case, fields are
identified with maps

φ : M - Σ.

If Σ is equipped with a metric, then

L(φ) =

∫
M
‖dφ‖2dvolM

defines an action, whose critical points are called the harmonic
maps from M to Σ. It’s often the case that Σ is equipped with
other fields that are used to define the action.



Fields

Why manifolds?

Any natural field theory defined on Minkowski space should be
defined on manifolds, possibly with some extra structure (e.g.,
metrics, spin, complex).

Sometimes, no extra structure: topological field theories

Field theories typically come with a dimension, that of the
spacetime manifolds on whose fields the theory can be defined. For
example, most kinds of string theories are two-dimensional, while
the original Chern-Simons theory is three-dimensional.



Fields

The action is typically a global integral of local functions of the
fields: ∫

M
〈Dφ,Dφ〉+ h.o.t.

But there are other important functions in field theory that are
supported on subspaces N ⊂ M.

For example, if A (P) is the space of connections on a principal
G -bundle P , then a map K : S1 - M together with a
representation V of G determines a function

Wil(K ,V ) : A - C,

Wil(K ,V )(∇) = Tr(HolK (f ∗(∇))|V )

called the Wilson loop function.



Fields: Quantisation

Given a d-dimensional field theory, can consider

EL(FN×R)

where dim N = d − 1. This typically has the structure of a
symplectic manifold Σ given by considering initial conditions on N.

Thus, can quantise to a Hilbert space

Z (N)

viewed as a function of N:

N 7→ EL(N × R) 7→ Z (N).



Fields: Quantisation

Map is monoidal:

N
∐

N ′ 7→ Z (N)⊗ Z (N ′).

N
∐

N ′ 7→ EL([N × R]
∐

[N ′ × R])

= EL(N × R)× EL(N ′ × R) 7→ Z (N)⊗ Z (N ′).

Also,
Z (N−) = Z (N)∗

(Change of orientation reverses sign of symplectic form, which
quantises to the dual.)



Fields: Quantisation

If M is a d-manifold such that

∂M = N+
1

∐
N−2 ,

i.e., a bordism from N1 to N2, then

EL(M) - EL(N1 × R)× EL(N2 × R)

is a Lagrangian correspondence.

Thus, get a vector

Z (M) ∈ Z (N1)∗ ⊗ Z (N2) = Hom(Z (N1),Z (N2)).

Concise expression:
Z (M) ∈ Z (∂M)



Fields: Quantisation

This represents the time evolution in the theory from a quantum
state in Z (N1) to one in Z (N2).

Compatible with composition of bordisms: If

M = M ∪N2 M
′,

where

∂M = N+
1

∐
N−2 , ∂M ′ = N+

2

∐
N−2

then
Z (M) = Z (M2) ◦ Z (M1).



Fields: Quantisation

We have
Z (φ) = C.

Thus, for a closed manifold M, get

Z (M) ∈ C∗ ⊗ C = C.



Fields: Path Integrals

In reality, very difficult to define the Z (M) - perturbation
theory, renormalisation, etc.
However, there is an interpretation in terms of integrals like

Z (M) =

∫
F
e−

i
~L(φ)dφ

or
〈f1(φ)f2(φ) · · · fk(φ)〉

=

∫
F
f1(φ)f2(φ) · · · fk(φ)e−

i
~L(φ)dφ

These are also typically ill-defined (modern Zeno’s paradox), but
tremendously useful guides for plausible computations and
formulation of conjectures.



Fields: Path Integrals

For example, when M is compact Riemannian, H1(M) = 0,
F = Ω1

M , and

L(φ) =

∫
M
‖φ‖2dvolM =

∫
M
〈φ,∆φ〉dvolM ,

then ∫
F
exp(−πL(φ))dφ =

1√
det∆1,M

Another realm in which Z (M), Z (N), etc have been defined
successfully is topological quantum field theory.



III. Arithmetic Topology



Arithmetic Topology

Let OF be the ring of algebraic integers in a number field F and let

X := Spec(OF ).

It has many properties of a compact closed three-manifold.

If v is a maximal ideal in OF , then kv = OF/v is a finite field and
the inclusion

Spec(kv ) ⊂ - X

is analogous to the inclusion of a knot. The main reason is

π1(Spec(kv )) = Ẑ.

The completion Spec(OF ,v ) is like the tubular neighbourhood of
the knot.



Arithmetic Topology

The completion Fv of F is the fraction field of OF ,v , so that

Spec(Fv ) = Spec(OF ,v ) \ v

is like the tubular neighbourhood with the knot deleted, which
should be homotopic to a torus.

If B is a finite set of primes and OF ,B is the set of B-integers, then

XB := Spec(OF ,B) = Spec(OF ) \ B

is like a three-manifold with boundary, the boundary having one
torus component Spec(Fv ) for each prime in B .

∂XB =
∐
v∈B

Spec(Fv ) - XB
⊂ - X .



Arithmetic topology: Arithmetic Fields

Instead of the spaces themselves, can focus on moduli spaces

M (XB ,R) := {ρ : π1(XB) - R} � R

for a p-adic Lie group R .

When B = φ, should get Z (X ) via quantization of M (X ,R).

In general, should get

Z (XB) ∈ ⊗v∈BZ (Spec(Fv ))



Arithmetic topology: Functions

A pair (x ,V ), where x ∈ XB and V is a finite-dimensional
representation of R , defines a function

ρ 7→ Tr(ρ(Frx)|V )

on M (XB ,R), an arithmetic Wilson loop.

For an AQFT, there should be an arithmetic action underlying all
constructions.



Arithmetic Topology and TQFT?

A 3d arithmetic TQFT will naturally assign a number

Z (X )

to X .

A vector space
Z (Fv )

to Fv : functions on the space of boundary conditions.

and a vector
Z (XB) ∈ Z (B) = ⊗v∈BZ (Fv )

to XB .



Arithmetic Topology and TQFT?
A 4d arithmetic TQFT will naturally assign a vector space

Z (X )

to X .

A category
Z (Fv )

to Fv .

and an object
Z (XB) ∈ Z (B) = ⊗v∈BZ (Fv )

to XB .
Compare work of Ben-Zvi, Sakellaridis, and Venkatesh in the
function field case.

There, also get vector

Z (C ) ∈ Z (X )

associated to a category C of boundary conditions for the theory.



IV. Examples of arithmetic actions



Arithmetic Actions

For technical reasons, we will assume throughout that F is totally
complex.

Would like to define

S : M (X ,R) = H1(π1(X ),R) - K

as well as path integrals∫
ρ∈M (X ,R)

exp (−S(ρ))dρ

possibly also on more general fields and/or related moduli spaces.



Arithmetic Duality

Let µn be the n-th roots of 1. Then

H3(X , µn) = H3(Spec(OF ), µn) ' 1
n
Z/Z.

This follows from

1 - µn - Gm
(·)n- Gm

- 1,

leading to
H3(X , µn) ' H3(X ,Gm)[n].

Meanwhile
H3(X ,Gm) ' Q/Z.



Arithmetic Duality

Local class field theory:

H2(Fv ,Gm) ' Q/Z

Global class field theory:

0 - H2(F ,Gm)
loc- ⊕v H

2(Fv ,Gm)
∑
- Q/Z - 0.

0 - H2(XB ,Gm)
locB- ⊕v∈B H2(Fv ,Gm)

∑
- Q/Z - 0.

But
⊕v∈BH

2(Fv ,Gm) = H2(∂XB ,Gm),

so that
coker(locB) ' H3

c (XB ,Gm) ' H3(X ,Gm).



Finite Arithmetic Chern-Simons Functionals

Assume µn ⊂ F . Then

H3(X ,Z/n) ' H3(X , µn) ' 1
n
Z/Z,

so we get a map

inv : H3(π1(X ),Z/n) - H3(X , µn) ' 1
n
Z/Z.

Let R have trivial π1(X )-action. On the moduli space

M (X ,R) = Hom(π1(X ),R)//R,

of continuous representations of π1(X ), a Chern-Simons functional
is defined as follows.



Finite Arithmetic Chern-Simons Functionals

The functional will depend on the choice of a cohomology class (a
level)

c ∈ H3(R,Z/n).

Then
CSc : M (X ,R) - 1

n
Z/Z

is defined by

ρ 7→ ρ∗(c) ∈ H3(π1(X ),Z/n) 7→ inv(ρ∗(c)).



Finite Arithmetic Chern-Simons Functionals
Example:

Let R = Z/n. Then

MX = Hom(π1(X ),Z/n) = H1
et(X ,Z/n).

Take c ∈ H3(R,Z/n) to be given as

a ∪ δa,

where a ∈ H1(R,Z/n) = Hom(Z/n,Z/n) is the class coming from
the identity map, while

δ : H1(R,Z/n) - H2(R,Z/n)

is the Bockstein map coming from the extension

0 - Z/n - Z/n2 - Z/n - 0.

Then
CSa∪δa(ρ) = inv(ρ∗(a) ∪ ρ∗(δa)).



BF-theory

Have a function

H1(X ,V )× H1(X ,D(V ))
BF- 1

n
Z/Z

defined by
(a, b) 7→ inv(da ∪ b)

For this, V is a finite n-torsion group scheme that admits a suitable
Bockstein map

d : H1(X ,V ) - H2(X ,V )

and D(V ) is the Cartier dual.

Variant:

H1(XB ,V )× H1
c (XB ,D(V ))

BF- 1
n
Z/Z



Remark on arithmetic differentials
The Bockstein map

d : H1(X ,Z/n) - H2(X ,Z/n)

is very much like a differential. In crystalline cohomology of
varieties over perfect fields of positive characteristic, Bockstein
maps on crystalline cohomology sheaves are used to construct the
De Rham-Witt complex.

In general, whenever you have an extension

0 - V - E - V - 0,

there is a differential

H1(X ,V ) - H2(X ,V )

that can be used to construct arithmetic functionals.

More general differentials arise from deformation theory.



V. Some simple arithmetic path integrals



Arithmetic Chern-Simons

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo]

Let n = p, a prime and assume the Bockstein map

d : H1(X ,Z/p) - H2(X ,Z/p)

is an isomorphism.

Then ∑
ρ∈H1(X ,Z/p)

exp[2πiCS(ρ)]

=
√
|ClX [p]|

(
det(d)

p

)
i [

(p−1)2dim(ClX [p])
4 ].



Arithmetic BF -theory: [Joint work with Magnus Carlson]

BF : H1(X , µn)× H1(X ,Z/n) - 1
n
Z/Z,

(a, b) 7→ inv(da ∪ b).

Proposition
For n >> 0, ∑

(a,b)∈H1(X ,µn)×H1(X ,Z/n)

exp(2πiBF (a, b))

= |ClX [n]||O×X /(O×X )n|.

Compare with

L(r)(Triv , 0)

r !
= −|ClX |‖ det(O×F )‖



Arithmetic BF -theory

Similarly, if E is an elliptic curve with Neron model E , then we have

0 - E [n] - E [n2] - E [n] - 0

for n coprime to the conductor and the orders of component groups
of E .

This gives us a map

BF : H1(X ,E [n])× H1(X ,E [n]) - 1
n
Z/Z,

as
(a, b) - inv(da ∪ b).



Arithmetic BF -theory

Proposition
Assume Sha(E ) is finite. For n >> 0 as above,∑

(a,b)∈H1(X ,E [n])×H1(X ,E [n])

exp(2πiBF (a, b))

= |X(A)[n]||E (F )/n|2·

Compare

L(r)(TpE , 0)

r !
= (
∏
v

cv )|XE ||‖ det(E (F ))‖2



Questions

In the paper ‘Relative Langlands Duality’ of Ben-Zvi, Sakellaridis,
and Venkatesh, there is a construction of L-functions in a space

Γ(M (X ,R),L )

of sections of a line bundle on M (X ,R) via a conjectural
four-dimensional arithmetic TQFT.

Can one construct arithmetic L-functions via ATQFT?

Is there a QFT explanation of the arithmetic Langlands
correspondence?


