Physics without Newton's third law: phase transitions in non-reciprocal matter

E2DQM 24 Bengaluru, July 2024

Alex Edelman , Michel Fruchart , Ryo Hanai, Kyle Kawagoe, Sergei Shmakov, Cheyne Weis, Shuoguang Liu, Xioayuan Huang, Peter Littlewood and Vincenzo Vitelli

St Andrews

Shmakov, PBL Physical Review E 109, 024220 (2024) Weis et al arXiv:2207.11667 Fruchart, Hanai, PBL, VV, Nature 592, 363-369 (2021) Hanai, PBL, Physical Review Research 2, 033018 (2020) Hanai, Edelman, Ohashi, PBL, Phys. Rev. Lett. 122, 185301 (2019)

A Bose condensate viewed as a collection of synchronized oscillators

Christiaan Huygens 1629-95

1656 – Patented the pendulum clock 1663 – Elected to Royal Society 1662-5 With Alexander Bruce, and sponsored by the Royal Society, constructed maritime pendulum clocks – periodically communicating by letter

Huygens Clocks

In early 1665, Huygens discovered ``..an odd kind of sympathy perceived by him in these watches [two pendulum clocks] suspended by the side of each other.''

He deduced that effect came from "imperceptible movements" of the common frame supporting the clocks

"Huygens' Clocks", M. Bennett et al, Proc. Roy. Soc. A **458**, 563 (2002)

Oscillators are non-linear (amplitude of oscillation not small)

Non-equilibrium – steady state established between balance of driving and dissipation

There exist periodic steady states that are stable to small external perturbation ("noise")

By tuning parameters in the model (e.g. elastic vs. inertial coupling) one can make abrupt transitions from one state to another (e.g. in-phase to out-of-phase)

How does this transition happen?

Directly? viz. FM -> AF

Via disordered state? viz. FM -> PM -> AFM

Or something else?

Generically the transition from synchronized to antisynchronized occurs via an intermediate chiral state at an exceptional point.

Kim et al PRB 101.085302 (2020)

Fruchart et al. Nature 592, 363-369 (2021)

Three topics of this talk

- Are there 'phase transitions' between different kinds of synchronized states and how does one describe those transitions?
- Is there a synchronization equivalent of a critical point in a many-body system, and does it come decorated with 'universal' fluctuation dynamics?
- Is there a connection between synchronized quantum systems (e.g. a laser) and synchronization in classical models (e.g. flocks, Kuramoto models) ?

Polaritons

Kasprzak et al Nature 2006

Tosi et al 2012

Two component order parameter: mixed light and matter

Non-equilibrium condensate is established as a steady-state solution with coherent oscillation (a.k.a. laser) – balancing excitation and decay

Conventional BEC in "in-phase" mode Solution of non-linear 2x2 non-linear Schrodinger equation with eigen-frequency at (renormalized) lower polariton frequency

Hanai, Edelman, Ohashi, PBL, Phys. Rev. Lett. 122, 185301 (2019)

Two component order parameter: mixed light and matter

Non-equilibrium condensate is established as a steady-state solution with coherent oscillation (a.k.a. laser) – balancing excitation and decay

Non-equilibrium BEC in "out-of-phase" mode Solution of non-linear 2x2 non-linear Schrodinger equation with eigen-frequency at (renormalized) upper polariton frequency

Hanai, Edelman, Ohashi, PBL, Phys. Rev. Lett. 122, 185301 (2019)

No symmetry distinction between upper and lower condensates

The transition can jump (first order-like) but can also coalescence if the parameters are such that the modes become degenerate: an exceptional point Can only occur if the Hamiltonian is non-Hermitian

At the "critical exceptional point" CEP, "in-phase" and "out-of-phase" solutions are degenerate Analogous to conventional critical point (e.g. liquid-gas) but there are no massive modes – very different critical dynamics

Upper polariton condensate in WS₂ monolayer cavity

Chen et al. Nano Letters 23 (20), 9538-9546

Two-threshold behavior

Second threshold = **strong-to-weak coupling transition " "**

Photon laser = $U(1)$ -broken $$ **Polariton-BEC** = $U(1)$ -broken

… no new broken symmetries! **Why a transition**?

J. Tempel et.al, PRB **85**, 075318 (2012).

Minimal model* - two-component damped driven Gross-Pitaevskii equation with noise

$$
i\partial_t \Psi_\alpha(\mathbf{r},t) = \sum_{\beta=1,\mathrm{g}} [A_{\mathrm{GP}}]_{\alpha\beta}(\nabla^2) \Psi_\beta(\mathbf{r},t) + \eta_\alpha(\mathbf{r},t),
$$

Exciton field with pumping and nonlinearity

Nontrivial stationary solutions have to be oscillating at a fixed frequency: either E_{-} or E_{+} There is a single point in parameter space where both solutions exist – a so-called exceptional point

Non-Hermitian matrices do not generally have real eigenvalues;

in our case the balance of dissipation and decay self-tunes to a stationary state

* M. Wouters and I. Carusotto, PRL 99, 140402 (2007).

Near a critical exceptional point, the two modes coalesce: all fluctuations project onto a massless mode

Conventionally at a critical point a massive mode becomes gapless But is always orthogonal to transverse (Goldstone) mode

At a critical exceptional point the two modes coalesce and are indistinguishable Much stronger fluctuations: no long-range order below 4 dimensions (?) Upper critical dimension 8 dimensions (?)

Hanai & PBL , Physical Review Research 2, 033018 (2020)

Toward a general theory

Non-reciprocal phase transitions

Michel Fruchart *, Ryo Hanai *, Peter B. Littlewood, Vincenzo Vitelli

Nature (2021), arXiv:2003.13176

* These authors contributed equally to this work

Non-reciprocal Phase Transition : hawks and doves

Transition from aligned/chiral/antialigned occurs when linear response in ordered phase reaches an exceptional point

A Hamiltonian system is hermitian/symmetric Eigenvalues are real, and eigenvectors are orthogonal

A non-Hermitian/non-symmetric system: Eigenvalues can be complex, and eigenvectors are not orthogonal

At an exceptional point, two eigenvalues are degenerate, and corresponding eigenvectors merge. System is non-invertible

Models with continuous symmetry : U(1), O(2),

chiral **way**

synchronization

aligned **waves**

space

contrarian Kuramoto models

flocking $AAAAAAAA$ array pattern formation

space

multi-component flocking

Swift-Hohenberg

General phase diagram of 2 – component non-reciprocal condensates

"PT" symmetric model Spontaneous chiral symmetry breaking EP are lines (co-dimension 1)

> Flocking model (Vicsek) Interfacial travelling wave Wilson-Cowan model of neurons

"PT" non-symmetric model Chiral symmetry explicitly broken EP's are points (co-dimension 2)

> Polariton condensate Kuramoto model

Exceptional points can describe merging of limit cycles

 $\delta \dot{X} = J \delta X.$

perturbations along the eigenvector c_i of J with eigenvalue $\lambda_i + i\omega$ grows or decays as $e^{\lambda_i t}$.

C Weis, et al., arXiv:2207.11667, 2022

Rosenszweig-McArthur predator-prey model

C Weis, et al., arXiv:2207.11667, 2022

Wilson-Cowan model of excitatory/inhibitory neurons

C Weis, et al., arXiv:2207.11667, 2022

Beyond mean field: dynamics, roughening, and pattern formation

Adding noise : Analogy to a quantum critical point?

Liu, Hanai, PBL unpublished

1D non-reciprocal XY model with noise: roughening transition

Model described by non-reciprocal spins U(1) symmetry for average phase $Z₂$ (Ising like) for phase difference The effect of noise should destroy the ordered phase(s) and create a roughening transition.

[Note: Kardar-Parisi-Zhang term is forbidden by symmetry]

$$
C(t,t+\Delta t)=\frac{\langle \overline{\Psi^*(t+\Delta t,x)\Psi(t,x)}\rangle}{\langle |\Psi(t)|^2\rangle}\sim e^{-(\Delta t/\tau)^{2\beta}},
$$

Finite size scaling near CEP vs. Far from CEP

$$
C(t,t+\Delta t)=\frac{\langle \Psi^*(t+\Delta t,x)\Psi(t,x)\rangle}{\langle |\Psi(t)|^2\rangle}\sim e^{-(\Delta t/\tau)^{2\beta}},
$$

Enhanced fluctuations near CEP Underdamped sound mode

Crossover to Edwards-Wilkinson scaling away from CEP

Diffusion-Driven Dynamical Pattern Formation – Turing-Hopf bifurcation

Deterministic Quasi-Long Range Order

Can we construct "non-reciprocal quantum matter" ?

Some proposals

The non-reciprocal Dicke model

Ezequiel I. Rodríguez Chiacchio,¹ Andreas Nunnenkamp,^{2,*} and Matteo Brunelli^{3,†}

Physical Review Letters 131 (11), 113602

Ryo Hanai,^{1,*} Daiki Ootsuki,^{2,†} and Rina Tazai^{1,‡}

arXiv:2406.05957

align

$$
\hat{H} = \hat{H}_0 + \frac{\lambda}{2\sqrt{N}}\sum_{j=1}^N\sum_{m=\pm}\left(e^{-im\phi}\hat{a} + e^{im\phi}\hat{a}^\dagger\right)\hat{\sigma}^x_{j,m}
$$

$$
\dot{S}_a = \sum_{b(\neq a)} J_{ab} S_a \times S_b - \alpha_a S_a \times \dot{S}_a \quad -\gamma_a n S_a - \sum_{b(\neq a)} \Omega_{ab} S_b,
$$

7/26/24 ⁶⁶

 \mathcal{E}_F

Conclusion

There are classes of dynamical many-body phase transition between different "stationary" states of non-Hermitian (or non-reciprocal) systems that are marked by Critical Exceptional Points where fluctuations merge with a Goldstone mode and become strongly enhanced

Nearby there are unusual states – "time crystals"

CEP's in extended systems are the dynamical system analog of a critical end point in a thermodynamic system

"Universality classes" (if they exist) are different from thermodynamic phase transitions. No consensus yet on systems beyond mean field

Easy to make in biology … possible in microscopic driven quantum systems?

The Team

Stefan Ihle

Kyle Kawagoe Cheyne Weis

Xiaoyuan Huang Sergei Shmakov

University of **St Andrews**

