
Statistical Properties of the
Navier-Stokes-Voigt Model

Edriss S. Titi

University of Cambridge
Texas A&M University

and
Weizmann Institute of Science

Turbulence: Problems at the Interface of
Mathematics and Physics (ONLINE)

ICTS – December 11, 2020

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



Scales and Turbulence

Figure: Eye of the hurricane Elena
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Incompressible Navier-Stokes Equations

The velocity vector field u = (u1,u2,u3) of the fluid satisfies the
incompressible Navier-Stokes equations in the domain Ω:

∂u
∂t
− ν∆u + (u · ∇)u +∇p = f, ∇ · u = 0,

The scalar p is the kinematic pressure, and the parameter
ν > 0 is the kinematic viscosity.

Boundary Conditions
u = 0 on ∂Ω.
Periodic.
Flows in the whole space. (R2 or R3)
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Averages

One possible meaning of 〈Φ(u)〉 is the mathematical
expectation of the functional Φ with respect to a measure in
function space. For a set of smooth solutions of the NSE, one
could consider invariant measures for such set, which are
supported on the global attractor.

One could also consider measures supported on Navier-Stokes
solution paths, which should be stable with respect to small
random perturbations.

One could also consider stationary statistical solution
measures, a notion defined by Foias, which generalizes the
concept of invariant measure in the case that smooth solutions
may not be availabe. This is a measure satisfying a
Liouville-type equation.
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Functional formulation (no-slip boundary condition)

Let
V = {ϕ ∈ C∞0 (Ω); ∇ · ϕ = 0} .

The two fundamental functional spaces in this work are

H = closure of V in L2(Ω)3,

and
V = closure of V in H1(Ω)3.

We denote by PLH the (Leray-Helmhotz) orthogonal projector in
L2(Ω)3 onto the subspace H.
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Functional formulation (no-slip boundary condition)

The Stokes operator is defined by

Au = −PLH∆u.

and
B(u,v) = PLH((u · ∇)v)

is a bilinear term associated with the inertial term.
The Navier-Stokes equations functional formulation in H is

du
dt

= F(u) = f− νAu− B(u,u). (1)
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Stationary Reynolds Equations

Assuming statistical equilibrium, O. Reynolds considered
the decomposition of turbulent flow into mean and
fluctuation and derived the equations that describe their
interaction.

νA〈u〉+ B(〈u〉, 〈u〉) = fP −∇ · 〈u′ ⊗ u′〉.

where u′ = u− 〈u〉.
Second order moments of fluctuation, the Reynolds
stresses, determine the mean in the Reynolds equation.
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Projected energy balance

1
2

d
dt
∥∥uκ′,κ′′

∥∥2
2 + ν

∥∥∇uκ′,κ′′
∥∥2

2 = [eκ′ − eκ′′ ] + (f,uκ′,κ′′),

where
eκ(u) = e→κ (u)− e←κ (u)

and
e→κ (u) = −(B(uκ1,κ,uκ1,κ),uκ,∞)

e←κ (u) = (B(uκ,∞,uκ,∞),uκ1,κ)
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Kolmogorov picture of turbulence

Consider solutions of the 3D Navier-Stokes equations
describing a homogeneous turbulent flow in a domain Ω with
characteristic length L. Let k0 = L−1.
There exist two scales – Kolmogorov’s scale kν and viscous
scale k ′ν , such that in the statistical equilibrium the dynamics of
uk (t) exhibits three different regimes

The inertial range: k0 < |k | < kν . The dynamics is
governed by the inviscid Euler (ν = 0) equations.
The dissipation range: kν < |k | < k ′ν . The energy from
the inertial modes is absorbed and dissipated.
The viscous range: |k | > k ′ν . The dynamics is governed
by the linear Stokes equations.
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K41 - The locality hypothesis

The central hypothesis of the Kolmogorov’s theory of
homogeneous turbulence states that in the inertial range, there
is no interchange of energy between the shell k ′ < |k | < k ′′ and
the shell k1 < |k | < k2 if the shells [k ′, k ′′] and [k1, k2] are
separated by at least an order of magnitude.
One usually considers 2k ′′ < k1.
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K41 - Universality

Anomalous dissipation conjecture:

ε := lim
ν→0

lim
T→∞

ν

T

∫ T

0

∥∥∥∇u(ν)(t)
∥∥∥2

2
dt > 0,

Universality hypothesis: In the limit of infinite Reynolds
number, all the small scale statistical properties are
uniquely and universally determined by the scale κ−1, and
by the mean energy dissipation rate, ε.
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K41 - Scaling

Assuming statistical equilibrium, let us denote by
Uκ := 〈|uk |2〉1/2 and tκ the characteristic velocity and time
scales and length scale κ−1, respectively.

By the universality hypothesis the possible expressions for
the characteristic time-scale at length scale κ−1 are:

tκ ∼
1

kUκ
, and tκ =

U2
κ

ε

Equating both expressions yields

Uκ ∼ ε1/3κ−1/3

and
tκ ∼

1
ε1/3κ2/3
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K41 - Scaling (Smallest Scales of motion)

Kolmogorov dissipative scale: Similarly, equating

tκ ∼
1

ε1/3κ2/3 and viscous tνκ ∼
1
νκ2

yields

κν =
( ε
ν3

)1/4

The Kolmogorov length scale is

η := κ−1
ν =

(
ν3

ε

)1/4
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Power law and Intermittency
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Some observed properties in a large class of
viscoelastic flows

Increasing the elasticity of polymers, the energy flux in the
turbulent cascade is partially supressed and transferred to
the elastic degrees of freedom. This supression remains
partial even for large values of elasticity.
..the elastic dissipation removes only a finite fraction of the
flux. Moreover the effect of polymers on turbulence is local
in scales, i.e. large enough scales are essentially not
affected by the presence of polymers.
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Navier-Stokes-Voigt equations


∂t (u(α) − α2∆u(α))− ν∆u(α) + u(α) · ∇u(α) +∇p(α) = f, x ∈ Ω,

∇ · u(α) = 0, x ∈ Ω,
u(x,0) = u0(x), x ∈ Ω,

u(x, t) = 0 x ∈ ∂Ω.
(2)

in the domain Ω, where α is a length scale parameter such that
α2/ν is the relaxation time of the fluid. The scalar p is the
kinematic pressure, and ν > 0 is the kinematic viscosity.
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Some facts about the NSV equations

Global well-posedness
(A. Oskolkov, Zap. Naučn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI), 38 (1973), 98–136.)
Finite dimension Global atrractor, determining modes.
(V. Kalantarov, E.S. Titi, Chinese Annals of Math., Ser. B,
30(6) (2009), 697–714.)
Global Well-posedness for the inviscid version.
(Y. Cao, E. Lunasin, E.S. Titi, Comm. Math. Sci., 4(4)
(2006), 823–848.)
Gevrey regularity for the attractor.
(V. Kalantarov, B. Levant, E.S. Titi, Jour. Nonlinear
Science, 19 (2009), 133–152.)
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Reynolds equations

Within this framework, the stationary Reynolds equations
are valid in H.

νA〈u〉+ 〈B(u,u)〉 = f.

This raises the question of the possibility of an effective
smooth approximation of the Navier-Stokes equations
statistics via the NSV equations.
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NSV - Inviscid conserved quantity

The inviscid conserved quantity (the α-energy) is

Sα
2 =

1
2
‖u‖22 +

α2

2
‖∇u‖22 .

We denote by εα, the total energy dissipation rate for the NSV,

εα = ν〈‖∇u‖22〉.
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Forward Cascade

Theorem
For any invariant measure of the NSV model, µα, and for every
κ′ ≤ κ′′ such that fκ′,κ′′ = 0, we have

ν〈
∥∥∇uκ′,κ′′

∥∥2〉α = (〈eκ′(u)〉α − 〈eκ′′(u)〉α). (3)

Moreover, for all κ > κ̄, we have

ν〈‖∇uκ,∞‖22〉α = 〈eκ(u)〉α. (4)
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NSV - Scaling

We define the following characteristic velocities at scale k :

U(0)
k = 〈|uk |2〉1/2,

and
U(α)

k = (1 + α2k2)〈|uk |2〉1/2.

We denote the characteristic kinetic energy at scale k by

S2(k) =
1
2

(U(0)
k )2 = 〈|uk |2〉, (5)

We denote the characteristic α-energy at scale k by

Sα
2 (k) =

1
2

U(0)
k U(α)

k , (6)

With this notation, we can write the α-energy as

Sα
2 =

∑
k

Sα
2 (k) =

1
2

∑
k

U(0)
k U(α)

k .

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



NSV - Scaling

We define the following characteristic velocities at scale k :

U(0)
k = 〈|uk |2〉1/2,

and
U(α)

k = (1 + α2k2)〈|uk |2〉1/2.

We denote the characteristic kinetic energy at scale k by

S2(k) =
1
2

(U(0)
k )2 = 〈|uk |2〉, (5)

We denote the characteristic α-energy at scale k by

Sα
2 (k) =

1
2

U(0)
k U(α)

k , (6)

With this notation, we can write the α-energy as

Sα
2 =

∑
k

Sα
2 (k) =

1
2

∑
k

U(0)
k U(α)

k .

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



NSV - Scaling

We define the following characteristic velocities at scale k :

U(0)
k = 〈|uk |2〉1/2,

and
U(α)

k = (1 + α2k2)〈|uk |2〉1/2.

We denote the characteristic kinetic energy at scale k by

S2(k) =
1
2

(U(0)
k )2 = 〈|uk |2〉, (5)

We denote the characteristic α-energy at scale k by

Sα
2 (k) =

1
2

U(0)
k U(α)

k , (6)

With this notation, we can write the α-energy as

Sα
2 =

∑
k

Sα
2 (k) =

1
2

∑
k

U(0)
k U(α)

k .

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



NSV - Scaling

We define the following characteristic velocities at scale k :

U(0)
k = 〈|uk |2〉1/2,

and
U(α)

k = (1 + α2k2)〈|uk |2〉1/2.

We denote the characteristic kinetic energy at scale k by

S2(k) =
1
2

(U(0)
k )2 = 〈|uk |2〉, (5)

We denote the characteristic α-energy at scale k by

Sα
2 (k) =

1
2

U(0)
k U(α)

k , (6)

With this notation, we can write the α-energy as

Sα
2 =

∑
k

Sα
2 (k) =

1
2

∑
k

U(0)
k U(α)

k .
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NSV - Scaling

Assuming the universality hypothesis the possible
expressions for the characteristic time-scale at length scale
κ−1 are:

tαk =
Sα

2 (k)

εα
,

and
tαk =

1
κUκ

.

Uκ = U(α)
k or Uκ = U(0)

k ?

Shell model simulations suggests

Uκ = U(0)
k
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NSV - Scaling

This yields

Sα
2 (k) ∼ ε2/3

α k−2/3(1 + α2k2)1/3.

U(0)
k ∼ ε1/3

α k−1/3(1 + α2k2)−1/3.

and

tαk =
1

kU(0)
k

=
(1 + α2k2)1/3

ε
1/3
α k2/3

.
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NSV - Smallest scales of motion

Equating tdissip
k ∼ 1

νκ2 and tαk , we have that the smallest scale
of motion is

For α . η =
(
ν3

ε

)1/4

ηNSV ∼ η.

For α & η =
(
ν3

ε

)1/4

ηNSV

η
∼
(
α

η

)1/3

.
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The incompressible Navier-Stokes equations

In the Fourier space variables the Navier-Stokes takes the form

duk (t)
dt

= i
∑

m+l=k

(
um(t) · lul(t)

)
− ν|k |2uk (t)− ikpk (t) + fk ,

(7a)

k · uk = 0, (7b)
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The Sabra shell model of turbulence

The Sabra shell model of turbulence describes the dynamics of
a complex “Fourier” component of a scalar velocity field un.

dun

dt
= i(kn+1un+2u∗n+1−εknun+1u∗n−1−(ε−1)kn−1un−1un−2)−νk2

n un+fn,

for n = 1,2,3, . . . , with the boundary conditions u−1 = u0 = 0.
The associated one dimensional wave number are denoted by
kn, where the discrete index n is referred as the “shell index”.
The wave numbers kn are taken to be

kn = k02n,
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Quadratic invariants

We choose 0 < ε < 1, so that in the inviscid (ν = 0) and
unforced (fn = 0, ∀n) case, the model has two quadratic
invariants.

The quantity representing the kinetic energy of the system

E =
∞∑

n=1

|un|2.

The sign-indefinite second quadratic invariant

W =
∞∑

n=1

(
1

ε− 1

)n

|un|2,

is the analog of the helicity.
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The spectrum of the shell model in 3D-regime

Figure: Uk := 〈|uk |2〉1/2 ∼ k−0.36
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Intermittency - ν = 10−9
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Preliminaries – the sequence spaces

Define a space H = `2 to be a space of square summable
infinite sequences over C, equipped with an inner product
and norm

(u, v) =
∞∑

n=1

unv∗n , |u|2 = (u,u).

This space corresponds to the sequences with the finite
kinetic energy.
Denote a sequence analog of the Sobolev spaces

Vd = {u = (u1,u2,u3, . . . ) :
∞∑

n=1

k2d
n |un|2 <∞},

for some d ∈ R. This space corresponds to sequences
with the finite d-th “derivative”.
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Solutions of the viscous model (ν > 0)

The viscous Sabra shell model has a unique weak and
strong global solutions in all the parameters regime for any
u0, f ∈ H, namely, forcing and initial conditions of the finite
kinetic energy. (P. Constantin, B. Levant and E.S. Titi,
Physica D, 219(2) (2006), 120–141.)
Moreover, if the forcing f = (f1, f2, f3, . . . ) is applied to the
finite number of modes (i.e., fn = 0 for n greater than some
N), then the solutions of the viscous shell model has an
exponentially decaying spectrum

|un|2 ≤ Ce−ckn ,

for some absolute positive constants C, c.
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The inviscid model (ν = 0)

The inviscid Sabra shell model has a weak global solution
with the finite kinetic energy

u(t) ∈ L∞([0,T ],H),

for all T > 0, in all the parameters regime for any u0, f ∈ H,
namely, forcing and initial conditions of the finite kinetic
energy. (P. Constantin, B. Levant and E.S. Titi, Physics
Review E, 75 (2007), 016304.)
The solution is not necessarily unique and does not
necessarily conserve the energy.
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The NSV-Sabra shell model of turbulence

The NSV-Sabra shell model of turbulence describes the
dynamics of a complex “Fourier” component of a scalar velocity
field un.

(1 + α2k2
n )

dun

dt
= i(kn+1un+2u∗n+1 − εknun+1u∗n−1 − (ε− 1)kn−1un−1un−2)− νk2

n un

+ fn,

for n = 1,2,3, . . . , with the boundary conditions u−1 = u0 = 0.
The associated one dimensional wave number are denoted by
kn, where the discrete index n is referred as the “shell index”.
The wave numbers kn are taken to be

kn = k02n,
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NSV-Sabra - Scaling

The α-energy, which is conserved in the unforced and inviscid
case is

E =
∞∑

n=1

(1 + α2k2
n )|un|2, (8)

The characteristic α-energy distribution at scale kn is

Sα
2 (kn) = 〈|un|2 + α2k2 |un|2〉.
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NSV-Sabra - Scaling

The characteristic kinetic energy distribution scale by scale is

S2(kn) = 〈|un|2〉,

The characteristic velocity at scale k is

U(0)
k = S2(k)1/2.

The energy dissipation rate is

εα = 〈
∑

n

k2
n |un|2〉.

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



NSV-Sabra - Scaling

The characteristic kinetic energy distribution scale by scale is

S2(kn) = 〈|un|2〉,

The characteristic velocity at scale k is

U(0)
k = S2(k)1/2.

The energy dissipation rate is

εα = 〈
∑

n

k2
n |un|2〉.

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



NSV-Sabra - Scaling

The characteristic kinetic energy distribution scale by scale is

S2(kn) = 〈|un|2〉,

The characteristic velocity at scale k is

U(0)
k = S2(k)1/2.

The energy dissipation rate is

εα = 〈
∑

n

k2
n |un|2〉.

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



ν = 10−9, α = 10−6
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ν = 10−9, α = 10−5 − 10−8
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Navier-Stokes-Voigt model suppresses intermittency

In the previous figures we have seen that for large values
of the parameter α, that are larger than the Kolmogorov
dissipation scale the Navier-Stoke-Voigh model slows the
cascade of energy in the inertial range.
As a consequence of the above fact we also show, in the
next figures, that the Navier-Stokes-Voigt model
suppresses the intermittency.
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Intermittency - ν = 10−9, α = 0
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Intermittency - ν = 10−9, α = 10−7
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Intermittency -ν = 10−9, α = 10−6
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The limit α→ 0

Do the statistical properties of the viscoelastic turbulent
flows, described by the NSV equations, converge to the
statistical properties of the Navier-Stokes equations?
Dramatic drag reduction in viscoelastic solutions, even for
very small concentration of polymers, indicates that it is not
a straightforward questions in some classes of realistic
rheological models.
Thus, the question is: Do invariant measures of the NSV
model converge, as α→ 0, to a measure associated to the
Navier-Stokes equations with physical relevant properties?
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Invariant measures
For finite dimensional dynamical systems

du(ν)

dt
= F (u(ν)), u(ν)(t) ∈ RN ,

invariant measures µ obey∫
RN
∇v Ψ(v)F (v)dµ(ν)(v) = 0.

for any test function Ψ. In infinite dimensions we need to restrict
the test functions to a limited class of admissible functions.
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Stationary Statistical Solutions

A stationary statistical solution is a Borel probability measure
µν on H such that:

(1)
∫

H
‖u‖2V dµν(u) <∞;

(2)
∫

H
〈u · ∇u − f,Ψ′(u)〉+ ν〈∇xu,∇x Ψ′(u)〉dµν(u) = 0

for any test functional Ψ ∈ T , and

(3)
∫

E1≤‖u‖H≤E2

{
ν ‖∇xu‖22 − (f,u)

}
dµν(u) ≤ 0, E1,E2 > 0.
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In practice, in order to be relevant to an experiment, the
meaning of 〈Φ(u)〉 has to be a specific empirical average (long
time average, or long time and space average).

Stationary Statistical Solutions of the Navier-Stokes equations
and long time averages.

We construct stationary statistical solutions Navier-Stokes
equations by the Krylov-Bogoliubov procedure of taking long
time averages.

LIM
T→∞

1
T

∫ T

0
Φ(u(ν)(t))dt =

∫
L2(R2)

Φ(u)dµν(u)
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Zero elasticity limit

Definition
A strong stationary statistical solution of the 3D Navier-Stokes
equations is a Borel probability measure µ on V such that

(1)
∫

V
‖u‖2D(A) dµ(u) <∞;

(2)
∫

V
(Ψ′(u), f− νAu− B(u,u))dµ(u) = 0,

for any test functional Ψ ∈ T α1 ,

(3)
∫

E1≤‖u‖2
2≤E2

{
ν ‖∇u‖22 − (f,u)

}
dµ(u) ≤ 0, E1,E2 > 0.
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Zero elasticity limit

Definition
The class of test functions T α1 is the set of functions Ψ : V → R
of the form

Ψ(u) := ΨI(u) = ψ ((u,w1), . . . , (u,wm)) , (9)

or

Ψ(u) := Ψβ
m(u) = ψ ((βχ(u),w1), . . . , βχ(u),wm)) , (10)

where
βχ(u) = χ(|uε|2)uε,

and the subscript ε means mollification. The function ψ is a C1

scalar valued function defined on Rm, m ∈ N; w1, . . . ,wm
belong to C3

0(Ω). The function χ belongs to the class C∞(R).
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Zero elasticity limit

Theorem (F. Ramos and E.S. Titi, Dis. Cont. Dyn. Sys., 28(1)
(2010), 375–403.)
Given a sequence of invariant measures of the 3D
Navier-Stokes-Voigt model, {µαn}, with αn → 0, as n→∞,
there exists a subsequence, denoted also by {µαn}, and a
Borel probability measure µ on H1, such that

lim
n→∞

∫
H1

Φ(u)dµαn (u) =

∫
H1

Φ(u)dµ(u), (11)

for all weakly continuous bounded real-valued functions Φ.
Furthermore, the weak limit measure µ is a strong stationary
statistical solution of the 3D Navier-Stokes equations.
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Now, because the function u 7→ |u|2 is weakly continuous and
bounded for u ∈ suppµα, for α ∈ [0, α0], we have

Theorem
Consider a sequence of invariant measures, {µαn}, of the 3D
Navier-Stokes-Voigt model, with αn → 0, as n→∞, converging
weakly to a stationary statistical solution µ of the Navier-Stokes
equations. Then,

lim
n→∞

∫
H1
|u|2 dµαn (u) =

∫
H1
|u|2 dµ(u). (12)
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Theorem

Consider a sequence of invariant measures, {µαn}, of the
Navier-Stokes-Voigt model, with αn → 0, as n→∞, converging
weakly to a stationary statistical solution µ of the Navier-Stokes
equations. Then, for every pair of wavenumbers κ′ ≤ κ′′ such
that fκ′,κ′′ = 0, the convergence of the net rate of energy
transfer between κ′ and κ′′:

(〈eκ′(u)〉α − 〈eκ′′(u)〉α)→ (〈eκ′(u)〉 − 〈eκ′′(u)〉) (13)

holds.

Collaborators: B. Levant, F. Ramos Statistical Properties of the Navier-Stokes-Voigt Model



Blowup Criterion for the Navier-Stokes and Euler
equations

Theorem: Larios-Titi

Let u(α) be a solution of the Navier-Stokes-Voigt−α
(correspondingly Euler-Voigt−α) model in the interval [0,T ],
with initial data u0. Suppose that

lim sup
α→0

sup
t∈[0,T ]

α2‖∇u(α)‖22 > 0

Then the strong solution of the Navier-Stokes (correspondingly
Euler) equations with the same initial data u0 ∈ Hs, for s ≥ 3,
must blow up at the interval [0,T ].
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Thank You!!
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