Interacting QFT on Causal Sets

with Prof. Fay Dowker, Arad Nasiri, Dr. Stav Zalel

Emma Albertini

Theoretical Physics Group Imperial College London

Positive Geometry in Scattering Amplitudes Cosmological Correlators, February 20, 2025

Outline

- 1. Background
- 2. Free quantum Field theory on Causal sets
- 3. A diagrammatic expansion for in-in correlators

Background

A causal set is defined as a locally finite partially ordered set.

Take a pair (C, \leq) where C is a set with a partial order relation \leq which satisfies:

- $\forall a \in C, a \leq a$ Reflexivity
- $\forall a, b \in C, a \leq b \leq a \Rightarrow a = b$ Acyclicity
- $\forall a, b, c \in C$, $a \leq b \leq c \Rightarrow a \leq c$ Transitivity
- \forall $a, c \in \mathcal{C}, |[a, c]| < \infty$, where the set $[a, c] := \{b \in \mathcal{C} | a \leq b \leq c\}$ is a causal interval and |X| is the cardinality of a set X. Locally finiteness

MOTTO:

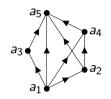
"Order + Number = Geometry"

Representation

$$\mathcal{C} = \{a_1, a_2, a_3, a_4, a_5\}$$

$$a_1 \leq a_1, a_1 \leq a_2, a_1 \leq a_3, a_1 \leq a_4, a_1 \leq a_5,$$

 $a_2 \leq a_2, a_2 \leq a_4, a_2 \leq a_5,$
 $a_3 \leq a_3, a_3 \leq a_5,$
 $a_4 \leq a_4, a_4 \leq a_5, a_5 \leq a_5,$

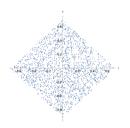


$$C = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad L = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Sprinkling: generating causal sets from continuum

Select points in (M,g) uniformly at random via a Poisson distribution and impose a partial ordering via the induced spacetime causality relation.

$$P(|\mathcal{C} \cap V| = n) = \frac{(\rho V)^n e^{-\rho V}}{n!},\tag{1}$$



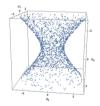


Figure: CS with 1000 elements approximated by a portion of 1+1 Minkowski

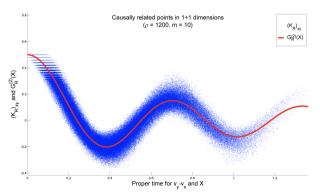
Figure: CS with 1000 elements approximated by \emph{dS}_2

This process is Lorentz invariant! only uses the invariant volume measure.

Free QFT on Causal sets

- Discrete structure \implies No tangent space \implies No equation of motion.
- Start with the retarded propagators K_{xy}^R : hops and stops model at each element of the trajectory.

$$K_R^{(2D)} := \frac{1}{2}C(\mathbb{I} + \frac{1}{2}\frac{m^2}{\rho}C)^{-1}$$
 (2)



Sorkin-Johnston vacuum

• Associate a field operator $\phi(x)$ to each $x \in \mathcal{C}$ and impose the Peierls bracket,

$$[\phi(x), \phi(y)] = i\Delta_{xy} = i(K_{xy}^R - K_{yx}^R). \tag{3}$$

Note: $[\phi(x), \phi(y)] = 0$ if $x \nmid y$.

Sorkin-Johnston vacuum

• Associate a field operator $\phi(x)$ to each $x \in \mathcal{C}$ and impose the Peierls bracket,

$$[\phi(x), \phi(y)] = i\Delta_{xy} = i(K_{xy}^R - K_{yx}^R). \tag{3}$$

Note: $[\phi(x), \phi(y)] = 0$ if $x \nmid y$.

• $i\Delta$ is **skew-symmetric** and **Hermitian** \Longrightarrow The eigenvectors of $i\Delta$ can be used to define a Gaussian vacuum state $|0\rangle$ by requiring that,

$$\langle 0|\phi(x)\phi(y)|0\rangle = Pos(i\Delta) \tag{4}$$

This is the Sorkin-Johnston (SJ) vacuum: UNIQUE on curved backgrounds as well!

Free Decoherence functional

Any expectation values can be computed in the path integral approach by integrating over all *pairs* of field configurations, $\xi, \bar{\xi} \in \mathbb{R}^N$. Denote the space of fields as $\mathcal{F} \cong \mathbb{R}^N$.

Given a causet (C, \preceq) with |C| = N, the *measure* of this integral is the decoherence functional

$$D_0(\xi,\bar{\xi}) = \langle 0|\delta(\phi_1 - \bar{\xi}_1)\delta(\phi_2 - \bar{\xi}_2)...\delta(\phi_N - \bar{\xi}_N)\delta(\phi_N - \xi_N)...\delta(\phi_2 - \xi_2)\delta(\phi_1 - \xi_1)|0\rangle$$

= $\delta(L(\xi,\bar{\xi})) e^{i\Delta S(\xi,\bar{\xi})}$

for i = 1 ... N is any natural labelling of all the elements $x \in C$, i.e $x_j \prec x_k \Rightarrow j < k$ and for some linear function L and quadratic function $\Delta S(\xi, \bar{\xi})$.

Analogous to $\Delta S[\gamma, \gamma'] = S[\gamma] - S[\gamma']$ for continuum quantum theory.

The delta-functions in $D_0(\xi,\bar{\xi})$ act to causally/anti-causally order the corresponding functions of the field operators

Causal Ordering

Define the causal ordering operator C whose action on a product of two fields is,

$$C[\phi(x)\phi(y)] = \begin{cases} \phi(x)\phi(y) & \text{if } x \succ y\\ \phi(y)\phi(x) & \text{if } x \prec y, \end{cases}$$
 (5)

- For a spacelike pair of points $x \nmid y$: $C[\phi(x)\phi(y)] = \phi(x)\phi(y) = \phi(y)\phi(x)$.
- In a labelled causal set: ordering a product of operators by decreasing label from left to right = causal ordering, e.g. $\phi(4)\phi(4)\phi(2)\phi(1)$

Causal ordering is the causal set analogue of the time ordering of the continuum. Define the Feynman propagator as

$$\Delta_{xy}^F = \langle C[\phi(x)\phi(y)] \rangle. \tag{6}$$

Free "Feynman" 2-point function

The delta-functions in $D_0(\xi,\bar{\xi})$ act to causally/anti-causally order the corresponding functions of the field operators

For example, to get the value of the 2-point function, $W_{xy} = \langle 0|\phi_x\phi_y|0\rangle$, for two fixed causet elements $x,y\in\mathcal{C}$, we integrate $\bar{\xi}_x\xi_y$ against this measure, i.e.

$$\int_{\mathbb{R}^{2N}} d^N \bar{\xi} d^N \xi \, D_0(\xi, \bar{\xi}) \, \bar{\xi}_x \xi_y = W_{xy} \tag{7}$$

Free "Feynman" 2-point function

The delta-functions in $D_0(\xi,\bar{\xi})$ act to causally/anti-causally order the corresponding functions of the field operators

For example, to get the value of the 2-point function, $W_{xy} = \langle 0|\phi_x\phi_y|0\rangle$, for two fixed causet elements $x,y\in\mathcal{C}$, we integrate $\bar{\xi}_x\xi_y$ against this measure, i.e.

$$\int_{\mathbb{R}^{2N}} d^N \bar{\xi} d^N \xi \, D_0(\xi, \bar{\xi}) \, \bar{\xi}_x \xi_y = W_{xy} \tag{7}$$

Let $y \prec x$, then

$$\int d^{N}\xi \int d^{N}\bar{\xi} \ D_{0}(\xi,\bar{\xi})\xi^{x}\xi^{y} = \langle \phi^{x}\phi^{y} \rangle$$

$$= \langle C[\phi^{x}\phi^{y}] \rangle$$

$$= \Delta_{xy}^{F}.$$
(8)

The Heisenberg field in the continuum

In the continuum, the Heisenberg field $\phi^H(t, \mathbf{x})$ is related to the interaction picture field $\phi(t, \mathbf{x})$ via,

$$\phi^{H}(t,\mathbf{x}) = U^{\dagger}(t,t_0)\phi(t,\mathbf{x})U(t,t_0). \tag{9}$$

where,

$$U(t,t_0) = T\left[e^{-i\int_{t_0}^t H(t)dt}\right] \quad (t \ge t_0)$$
 (10)

is the time-evolution operator and where H is the interacting Hamiltonian in the interaction picture.

The Heisenberg field in the continuum

In the continuum, the Heisenberg field $\phi^H(t, \mathbf{x})$ is related to the interaction picture field $\phi(t, \mathbf{x})$ via,

$$\phi^{H}(t,\mathbf{x}) = U^{\dagger}(t,t_0)\phi(t,\mathbf{x})U(t,t_0). \tag{9}$$

where,

$$U(t,t_0) = T\left[e^{-i\int_{t_0}^t H(t)dt}\right] \quad (t \ge t_0)$$
(10)

is the time-evolution operator and where \boldsymbol{H} is the interacting Hamiltonian in the interaction picture.

Recipe:

- Replace the time integral by a sum over causal set points
- Replace the time-ordering T with the causal ordering C. Under the action of C, all field commutators vanish and we can express the exponential of a sum as a product of exponentials.

Example: $\mathcal{H}(z) = g_z \phi_z^4$

Consider interaction point z in a total ordered: $x \prec z \prec y$.

The field expansion terminates at a finite order in the interaction coupling. This order increases with the order of the interaction Hamiltonian and with the number of points to the past of x which are contained in the interaction region.

MANIFESTLY CAUSAL: Each internal vertex is connected to at least one external vertex by at least one directed path.

Interacting Decoherence functional

The interacting decoherence functional is,

$$D_{g}(\xi,\bar{\xi}) = D_{0}(\xi,\bar{\xi}) e^{-i\mathcal{V}_{int}(\xi) + i\mathcal{V}_{int}(\bar{\xi})}.$$
(11)

where $V_{int}(\xi) = \sum_{x=1}^{N} P_x(\xi_x)$ with each local P_x is a real polynomial, that may vary from element to element.

A generating functional for in-in correlators

The in-in generating functional is given in terms of the Interacting DF:

$$\mathcal{Z}^{in-in}[J,\bar{J}] = \int d^N \xi \, d^N \bar{\xi} \, D_g(\xi,\bar{\xi}) \, e^{-iJ.\xi} \, e^{i\bar{J}.\bar{\xi}}, \tag{12}$$

where J and \bar{J} are two independent sources. For example, the in-in causally ordered 2-point correlator is given by

$$i\frac{\partial}{\partial J_{x}}i\frac{\partial}{\partial J_{y}}\mathcal{Z}^{in-in}[J,\bar{J}]\Big|_{J=0,\bar{J}=0} = \left\langle C\left[\phi_{x}^{H}\phi_{y}^{H}\right]\right\rangle, \tag{13}$$

with similar expressions with more derivatives for the causally ordered in-in n-point correlators. Derivatives with respect to \bar{J} similarly result in anti-causally ordered products of field operators.

A generating functional for in-out correlators

The generating functional for the causally ordered in-out correlators is not given in terms of the interacting decoherence functional but closely

$$\mathcal{Z}^{in-out}[J] = \frac{\int d^N \xi d^N \bar{\xi} D_0(\xi, \bar{\xi}) e^{-i\mathcal{V}_{int}(\xi)} e^{-iJ\cdot\xi}}{\int d^N \xi d^N \bar{\xi} D_0(\xi, \bar{\xi}) e^{-i\mathcal{V}_{int}(\xi)}},$$
(14)

Now we have,

$$i\frac{\partial}{\partial J_{x}}i\frac{\partial}{\partial J_{y}}\mathcal{Z}^{in-out}[J]\Big|_{J=0} = \frac{\langle \hat{S} C[\phi_{x}^{H}\phi_{y}^{H}]\rangle}{\langle \hat{S}\rangle}, \qquad (15)$$

where the S-operator is given by,

$$\hat{S} = C[\prod_{z \in \mathcal{C}} e^{-i\mathcal{H}(z)}] \tag{16}$$

The expansion DOES NOT TERMINATE at a finite order even if the causal set itself is finite. The diagrams are identical to those of the continuum, with $\langle \hat{S} \rangle$ given by the sum of vacuum bubble diagrams.

The S-matrix on a causal set

Scattering amplitudes are given by the overlap of an in- and an out-state. Taking 2-to-2 scattering as an example, the associated amplitude is,

$$_{out}\langle\lambda_{3},\lambda_{4}|\lambda_{1},\lambda_{2}\rangle_{in}=\langle\lambda_{3},\lambda_{4};N|\lambda_{1},\lambda_{2};1\rangle=\langle\lambda_{3},\lambda_{4}|\hat{S}|\lambda_{1},\lambda_{2}\rangle, \tag{17}$$

where on the RHS, $|\lambda, \lambda'\rangle$ are the particle states of the free theory and \hat{S} reduces to,

$$\hat{S} = C[\prod_{z} e^{-i\mathcal{H}(z)}],\tag{18}$$

where the product is over points z in the interaction region.

Outlook: The discrete cosmological collider

- Can we compute cosmological correlators on a causal set background? Yes! We can
 also define an S-matrix.
- A new tool for cosmological collider physics, can produce predictions to compare against cosmological data to test for spacetime discreteness
- Can also help with developing techniques for continuum cosmological spacetimes, for instance defining a unique vacuum state.
- Can offer a novel regularization of the continuum, since there are no UV divergences on a causal set.

Summary

- Causal Set Theory is an approach to quantum gravity in which spacetime is fundamentally discrete.
- It's a tool for new discoveries of non- local and Lorentz-invariant physics.
- New developments are enabling us to make concrete predictions, including for cosmological collider physics.

THANKS FOR LISTENING!