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Plan of the lecture

Stabilization by noise: a finite dimensional result. Infinite dimensional
analog?

A solution by transport noise

Eddy viscosity/heat diffusion coeffi cient and SPDE models

The work presented here is based on works in preparation, jointly with
Lucio Galeati, Dejun Luo, Umberto Pappalettera and based on experience
with many other collaborators and students.
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Stabilization by noise: a finite dimensional result

L. Arnold, H. Crauel, V. Wihstutz, Stabilization of linear systems by noise,
SIAM J. Control Optimiz. 1983 : in Rd , A,Bj matrices, W

j
t independent

Brownian motions, σ > 0

dXt = AXtdt + σ
N

∑
j=1
BjXt ◦ dW j

t

Top Lyapunov exponent: λσ := limt→∞
1
t log |Xt |

Theorem
There exist N and skew-symmetric matrices Bj , j = 1, ...,N such that

lim
σ→∞

λσ =
TrA
d
.
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To understand the power of the result, consider the example

A =

 1 0 0
0 0 0
0 0 −4


Then

λ0 = 1 (no noise)

lim
σ→∞

λσ =
1+ 0− 4

3
= −1
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Conjecture, by Marek Capinski (1987, talk given in Bremen): could
something similar hold for

dtT = κ∆T︸︷︷︸
A

dt + σ ∑
j
uj ·∇︸ ︷︷ ︸
Bj

T ◦ dW j
t

for large σ, when div bj = 0? T = T (t, x) is temperature (for instance).

Remark 1 : div bj = 0 ⇒ Bj skew-symmetric in L2.

Remark 2 : σ = 0 ⇒ L2-decay is e−κλ1t , λ1 first eigenvalue of −∆ (with
the given b.c.’s).

Remark 3 : Expected decay by noise: arbitrarily large (Tr∆NN → −∞).
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Two faces, both of interest for applications:

1 internal mixing
2 heat loss through a cold boundary (or, conversely, heating by warm
boundary)

The talk focuses on the second problem, more diffi cult.
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The true model (in the Boussinesq approximation) would be

∂tT = κ∆T + u ·∇T

∂tu+ u ·∇u+
1
ρ
∇p =

1
Re

∆u+ f + gezT

divu = 0

in a domain D ⊂ Rd with positive initial temperature and cold boundary:

T |t=0 > 0 in D, T |∂D = 0

and the question is whether, for large Re, heat diffusion through the
boundary is enhanced (Nusselt number increases).
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This problem is too diffi cult. We initially replace it by

dtT = κ∆Tdt +∑
j
uj ·∇T ◦ dW j

t

namely we take

u (t, x) = ∑
j
uj (x)

dW j
t

dt

white noise in time, Gaussian.
In a second stage we try to connect to a more realistic model.
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Heuristic role of turbulence in heat loss through a cold boundary.
No turbulence:
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Turbulent environment: Nusselt number ∼ ∂T
∂n |∂D increases

Franco Flandoli, Scuola Normale Superiore () Transport Noise
ICTS, Bangalore Turbulence: Problems at the Interface of Mathematics and Physics 10

/ 34



But also the fluid is zero at the boundary

A main diffi culty: also the turbulent fluid is zero at the boundary.

Therefore the mixing power of the fluid is weaker at the boundary.
However, for turbulent fluids, the boundary layer is thin compared to the
laminar case.
[Picture from a page of University of Sydney]
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Rigorous formulation

D ⊂ Rd bounded open with smooth boundary, J finite or countable index
set, κ > 0

dtT = κ∆Tdt +∑
j∈J
uj ·∇T ◦ dW j

t in [0,T ]×D

T |∂D = 0

T |t=0 = T0 in D

with uj satisfying some technical regularity assumption like
∑j∈J ‖uj‖2W 1,2(D )∩C (D) < ∞ and

uj |∂D = 0

divuj = 0
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Noise covariance

Q : D ×D → Rd×d

Q (x, y) = ∑
j∈J
uj (x)⊗ uj (y) x, y ∈ D

Q : L2
(
D;Rd

)
→ L2

(
D;Rd

)
(Qv) (x) =

∫
D
Q (x, y) v (y) dy

Two important quantities:

q (x) := min
ξ 6=0

ξTQ (x, x) ξ

ξT ξ

εQ :=
∥∥∥Q1/2

∥∥∥
L2→L2

= sup
v 6=0

∫
D

∫
D v (x)

T Q (x, y) v (y) dxdy∫
D v (x)

T v (x) dx
.
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Noise covariance and elliptic operators

(LQ f ) (x) =
1
2

d

∑
α,β=1

∂β

(
Qαβ (x, x) ∂αf (x)

)
Remark : LQ is degenerate elliptic (uj |∂D = 0⇒ Q |∂D = 0)

A0f = κ∆f
AQ f = (κ∆+ LQ ) f

with domain D (A0) = D (AQ ) = W 2,2 (D) ∩W 1,2
0 (D),

A0,AQ = D (A0)→ L2 (D).

Franco Flandoli, Scuola Normale Superiore () Transport Noise
ICTS, Bangalore Turbulence: Problems at the Interface of Mathematics and Physics 14

/ 34



Principal eigenvalues

λD = Poincaré constant of D

κλD = principal eigenvalue of−A0
λD ,κ,Q = principal eigenvalue of−AQ

λD ,κ,Q ≥ κλD

Recall : AQ f = (κ∆+ LQ ) f

(LQ f ) (x) = 1
2 ∑d

α,β=1 ∂β

(
Qαβ (x, x) ∂αf (x)

)
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Recall εQ :=
∥∥Q1/2

∥∥
L2→L2 . Denote by e

tAQ the semigroup generated by
AQ : etAQT0 is the solution of the modified heat equation (Q (x, x) is the
eddy diffusion coeffi cient)

∂tT = div (κI +Q (x, x))∇T .

Theorem
Assume T0 ∈ L2 (D). Then, for every φ ∈ L∞ (D),

E

[(∫
D

φ (x)T (t, x) dx −
〈

φ, etAQT0
〉
L2

)2]
≤ εQ
2κ
‖T0‖2L2 ‖φ‖

2
∞ .

In particular

E

[(∫
D
|T (t, x)| dx

)2]
≤
(εQ

κ
+ 2 |D | exp (−2λD ,κ,Q t)

)
E
[
‖T0‖2L2

]
.
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Scheme of the proof

Itô form of the Stratonovich equation:

dtT = κ∆Tdt +∑
j∈J
uj ·∇T ◦ dW j

t︸ ︷︷ ︸
Stratonovich

dtT =

κ∆T + LQT︸ ︷︷ ︸
global corrector

 dt +∑
j∈J
uj ·∇TdW j

t︸ ︷︷ ︸
Itô

(LQT ) (x) :=
1
2 ∑
j∈J
uj (x) ·∇ (uj (x) ·∇T (x)) .

Lemma

(LQT ) (x) = 1
2 ∑d

α,β=1 ∂β

(
Qαβ (x, x) ∂αf (x)

)
.

[Based on divuj = 0.]
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Second step of the proof

dtT = (κ∆+ LQ )Tdt +∑
j∈J
uj ·∇TdW j

t

∂

∂t
etAQT0 = (κ∆+ LQ ) etAQT0

dt
(
Tt − etAQT0

)
= (κ∆+ LQ )

(
Tt − etAQT0

)
dt +∑

j∈J
uj ·∇TtdW j

t

Mild formulation:

Tt − etAQT0 = ∑
j∈J

∫ t

0
e(t−s)AQ (uj ·∇Ts ) dW j

s
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Final step of the proof

〈
φ,Tt − etAQT0

〉
= ∑

j∈J

∫ t

0

〈
e(t−s)AQ φ,uj ·∇Ts

〉
dW j

s

Maximum principle for e(t−s)AQ φ plus the inequality∫ ∞

0

∫
D
|∇T (t, x)|2 dxdt ≤ 1

2κ

∫
D
T 20 (x) dx

imply

E

[(∫
D

φ (x)T (t, x) dx−
〈

φ, etAQT0
〉
L2

)2]
≤ εQ
2κ
‖T0‖2L2 ‖φ‖

2
∞ .
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Did we improve the decay?

Zero noise decay:(∫
D
|T (t, x)| dx

)2
≤ exp (−2κλD t) ‖T0‖2L2 .

With noise, both the same and the new estimate hold:

E

[(∫
D
|T (t, x)| dx

)2]
≤
(εQ

κ
+ 2 |D | exp (−2λD ,κ,Q t)

)
E
[
‖T0‖2L2

]
.

Decay is improved on finite time intervals [0, τ] if:

1 εQ is very small
2 λD ,κ,Q >> κλD
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1 εQ is very small
2 λD ,κ,Q >> κλD

Under suitable assumptions on the domain D, denoted by Dδ the set

Dδ = {x ∈ D : dist (x, ∂D) > δ}

Theorem
There exists a constant CD with the following property:

λD ,κ,Q ≥ CD min
(

σ2,
κ

δ

)
for every σ > 0, δ > 0 and every Q such that

q (x) ≥ σ2 in Dδ
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The pictures in red and yellow illustrate the shape of the (rescaled)
principal eigenfunction φmin of (κ∆+ LQ ), associated to λD ,κ,Q

etAQT0 = e−λD ,κ,Q t 〈T0, φmin〉 φmin + o
(
e−λD ,κ,Q t 〈T0, φmin〉 φmin

)
.
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Summary

We have the estimates

E

[(∫
D

φ (x)T (t, x) dx −
〈

φ, etAQT0
〉
L2

)2]
≤ εQ
2κ
‖T0‖2L2 ‖φ‖

2
∞ .

The decay rate λD ,κ,Q improves κλD when the boundary layer δ is
small and the value of

q (x) := min
ξ 6=0

ξTQ (x, x) ξ

ξT ξ

is large in the interior.
The approximation is good when

εQ :=
∥∥∥Q1/2

∥∥∥
L2→L2

= sup
v 6=0

∫
D

∫
D v (x)

T Q (x, y) v (y) dxdy∫
D v (x)

T v (x) dx

is small. Can we have q (x) large and εQ small?
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q (x) := min
ξ 6=0

ξTQ (x, x) ξ

ξT ξ

is related to the trace of the operator Q:

Tr (Q) =
∫
D
TrQ (x, x) dx

so it is not strange that we may have:

large Tr (Q)

small
∥∥Q1/2

∥∥
L2→L2 .
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Example of noise in full space

Consider the homogeneous covariance (Q (x, y) = Q (x− x)

Q (z) = σ2kζ
0

∫
k0≤|k|≤k1

1

|k|d+ζ
e ik·z

k⊗ k
|k|2

dk.

ζ > 0, k1 = +∞, σ2 large, k0 so large that σ2k−d0 is small ⇒ q (x)
large and εQ small

K41 is ζ = 4
3

−d ≤ ζ ≤ 0, k0 = 1, σ2 small, k1 so large that σ2
∫
1≤k≤k1

1
k ζ+1 dk is

large ⇒ q (x) large and εQ small

ζ = −d is white in space, ζ = 0 is the enstrophy measure.
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Example of noise in bounded domain

In a bounded domain one can mimic the previous scheme by means of the
fractional powers of the Stokes operator; however, it looks quite abstract.
More concrete: the noise previously denoted by

∑
j∈J
uj (x) dW

j
t

is now specified as
n1

∑
n=n0

∑
i∈In

Γnvn,i (x) dW n,i
t

where we have in mind a sequence of (small) space scales

rn0 > ... > rn1

and, at each scale n a typical circulation Γn and several vortex patches
vn,i (x).
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Vortex patch noise

We start with a noise at vorticity level:
n1

∑
n=n0

∑
i∈In

Γnfrn (x− xn,i )︸ ︷︷ ︸
vortex patch, scale n, center xn,i , circulation Γn

dW n,i
t

frn (x) = r
−2
n f

(
x
rn

)
, f a pdf

and define vn,i = ∇⊥∆−1D frn (· − xn,i ), namely
div vn,i = 0

∇⊥ · vn,i (x) = frn (x− xn,i )
vn,i |∂D = 0

The vortex patch noise then is:
n1

∑
n=n0

∑
i∈In

Γnvn,i (x) dW n,i
t .
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Vortex patch noise

One can prove that

q (x) ≥
n1

∑
n=n0

Γ2nr
−4
n

εQ ≤
n1

∑
n=n0

Γ2n
r−2n
log r−1n

so there is a factor r−2n which allows us to make q (x) large and εQ small,
with several combinations of multiplicative constants and choice of n0, n1.
Kolmogorov scaling (see F. Flandoli, Renormalized Onsager functions and
merging of vortex clusters, Stochastics and Dynamics 2020):

Γn =
ε1/3r5/3

n

log1/3 r−1n
.
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Realizations of this turbulent velocity field are more natural than Fourier:
stream function lines from experiment of Rivera-Ecke ’05 versus a
realization of the vortex patch noise:

Franco Flandoli, Scuola Normale Superiore () Transport Noise
ICTS, Bangalore Turbulence: Problems at the Interface of Mathematics and Physics 29

/ 34



Stochastic model reduction

Can we prove the previous result for a fluid model closer to reality? Let us
filter the solution u of the Navier-Stokes equations by a mollifier:

u : = θε ∗ u large scale

us : = u− u. small scale

The large scale component satisfies

∂tu+ (u+ us ) · ∇u+∇p = ν∆u+ Rε

divu = 0

where the remainder Rε is a commutator (small under several conditions)

Rε = u · ∇u− θε ∗ (u · ∇u) = [u · ∇, θε∗] u
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Stochastic model reduction means that we replace

∂tu+ (u+ us ) · ∇u+∇p = ν∆u+ Rε

divu = 0

∂tus = ...

by a simplified model. Example of result, (see Flandoli-Pappalettera, 2D Euler
equations with Stratonovich transport noise as a large scale stochastic model
reduction, 2020):

∂tω+ (u+ us ) · ∇ω = 0

dωs + u · ∇ωdt = − 1
τ

ωsdt +∑
j∈J
∇⊥ · ujdW j

t

converges to
dω+ u · ∇ωdt = ∑

j∈J
uj ·∇ω ◦ dW j

t .
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Conclusion

Eddy viscosity/heat diffusion coeffi cient

↑
SPDEs with transport Stratonovich noise

↑
stochastic model reduction
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Thank you!

Eddy viscosity/heat diffusion coeffi cient

↑
SPDEs with transport Stratonovich noise

↑
stochastic model reduction
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