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Plan of the lecture

o Stabilization by noise: a finite dimensional result. Infinite dimensional
analog?

@ A solution by transport noise
e Eddy viscosity/heat diffusion coefficient and SPDE models
The work presented here is based on works in preparation, jointly with

Lucio Galeati, Dejun Luo, Umberto Pappalettera and based on experience
with many other collaborators and students.
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Stabilization by noise: a finite dimensional result

L. Arnold, H. Crauel, V. Wihstutz, Stabilization of linear systems by noise,
SIAM J. Control Optimiz. 1983: in RY, A, B; matrices, W/ independent
Brownian motions, o > 0

N .
dX; = AX;dt +0 ) BX; 0 dW/
Jj=1

Top Lyapunov exponent: Ay := lim;_e % log |X¢|

There exist N and skew-symmetric matrices B, j = 1, ..., N such that

. TrA
Am A = —-.
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To understand the power of the result, consider the example

10 0
A= 00 O
0 0 —4
Then
Ap = 1 (no noise)
lim Ay = 1+0—-4 —
o—00 3
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Conjecture, by Marek Capinski (1987, talk given in Bremen): could
something similar hold for

di T = KATdt—l—(TZuJ VTodW
7 B,
J

for large o, when div bj=0?T=T (t, x) is temperature (for instance).
Remark 1: div bj = 0 = B, skew-symmetric in L.

Remark 2: 0 = 0 = [%-decay is e *1t, A; first eigenvalue of —A (with
the given b.c.’s).

Remark 3: Expected decay by noise: arbitrarily large (% — —00).
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Two faces, both of interest for applications:

@ internal mixing

@ heat loss through a cold boundary (or, conversely, heating by warm
boundary)

The talk focuses on the second problem, more difficult.
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The true model (in the Boussinesq approximation) would be
:T = kAT4+u-VT
1 1
atu—i—u-Vu—i—EVp = R—eAu—I—f—FgezT
divu = 0

in a domain D C R? with positive initial temperature and cold boundary:

Tli—o >0in D, Tlsp =0

and the question is whether, for large Re, heat diffusion through the
boundary is enhanced (Nusselt number increases).
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This problem is too difficult. We initially replace it by
d:T =xkATdt +Y u;- VT odW/
J
namely we take

(e, = Yu () 0

white noise in time, Gaussian.

In a second stage we try to connect to a more realistic model.
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Heuristic role of turbulence in heat loss through a cold boundary.

No turbulence:
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Turbulent environment: Nusselt number ~ 5y
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But also the fluid is zero at the boundary

A main difficulty: also the turbulent fluid is zero at the boundary.

Y| Laminar / y Turbulent
] ? 7
| C)
u

Therefore the mixing power of the fluid is weaker at the boundary.
However, for turbulent fluids, the boundary layer is thin compared to the
laminar case.

[Picture from a page of University of Sydney]
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Rigorous formulation

D C R? bounded open with smooth boundary, J finite or countable index
set, x > 0

d:T = kATdt+) u-VTodW in [0, T]xD
jed

Tlap = 0

T|t:0 = TO |nD

with u; satisfying some technical regularity assumption like

2
Lje HUJHWLz(D)mc(E) < o0 and

uilop = 0
divu; =
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Noise covariance

Q 5X5—>]Rd><d

Qxy) = Yu(x)®u(y) xyeD
jeJ

Q : I (D;IRd> — L2 (D;]Rd>

[ Qxy)viy)dy
Two important quantities:
N ALCICRT
TRy 3
€Q = HQ1/2 - fD Jov( y)v(y) dxdy.

LZHLz v;éO f V(X) ( )dx
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Noise covariance and elliptic operators

d

(Laf) () =5 Y. 95 (Qup (x.3) duf ()

a,f=1

Remark: Lq is degenerate elliptic (ujlsp =0 = Q[op =0)

Aof = KAf
Aof = (kA+Lg)f

with domain D (Ag) = D (Ag) = W22 (D) N W32 (D),
Ag, Ag = D (Ay) — L2 (D).
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Principal eigenvalues

@ Ap = Poincaré constant of D
@ kAp = principal eigenvalue of — Ay

@ Apx @ = principal eigenvalue of —Ag
ADx,@ 2 KAD

Recall: Aqgf = (kA+ Lq) f

(Lof) (x) = 3 T 5—1 95 (Qup (x, X) uf (x))
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Recall €g := HQ1/2HL2_)L2. Denote by et@ the semigroup generated by
Aq: €@ Ty is the solution of the modified heat equation (@ (x, x) is the
eddy diffusion coefficient)

0, T =div(xkl+ Q(x,x)) VT.

Assume Ty € L? (D). Then, for every ¢ € L* (D),

</D¢(X) T (t,x) dx — <4) S0 T0>L2>2

In particular

E|(fI7(exle) ] < (2 421Dl exp (~2A0,5.00)) E [ Tol2]

€Q
< o |l Tollz2 1911% -

v
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Scheme of the proof

[t6 form of the Stratonovich equation:

d:T =xkATdt+ Y u;- VT odW
iet Stratonovich

diT = | kAT + LT dt+ Y u;- VTdW
N~ /

jeJ ~~

global corrector 1t6
(LoT)( Zuf )=V (u(x)- VT (x)).
JEJ

(LoT) (x) = 5 Lo g1 9p (Qup (x, %) 0af (x)).

[Based on divu; = 0]

Franco Flandoli, Scuola Normale Superiore



Second step of the proof

d:T = (kA+Lg) Tdt+ Y u;- VTdW]

jed
J
ge“‘o To = (kA+Lg)e™T,
d; <Tt _ otha To) = (kA+Lg) (Tt _ etho To) dt+ Y u;- VTedW}

jeJ
Mild formulation:

t .
T, — et Ty = 2/ elt=940 (u; . V T,) dWJ
jels’0
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Final step of the proof

(9. T —eoTg) = Z/Ot (elt=ag,u;- VT, ) aw]

jeJd

(t—s

Maximum principle for e )AQ(p plus the inequality

oo 1
VTt 2ddt<—/T2 d
| LIV T ()P dxde < 5o [ T3 () dx
imply

E

2
(o007 Enox—{p.e%T) ) ] < 22 Toli2 )2
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Did we improve the decay?

Zero noise decay:

2
(/D |T(t,x)|dx) < exp (—2kApt) || To||% -

With noise, both the same and the new estimate hold:

(/ T (¢ |dx> ] < (e?o+2|D|exp(—2/\D,x,Qt)>]E {||To||f2}.

Decay is improved on finite time intervals [0, T] if:

Q € is very small
Q Apxq >>KAp
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Q € is very small
Q Apx@ >>KAp

Under suitable assumptions on the domain D, denoted by D; the set

Ds = {x € D : dist (x,0D) > 4}

There exists a constant Cp with the following property:
K
AD,K,Q > CD min (0’2, g)
for every 0 > 0, 6 > 0 and every Q such that

q(x) > 0 in Dy
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The pictures in red and yellow illustrate the

shape of the (rescaled)

principal eigenfunction ¢, . of (kA + Lg), associated to Ap x @

initial tempe

strong i
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etAQ To = e_/\D'K'Qt <T0' (Pmin> (Pmin t+o (
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@ We have the estimates

2
</ ¢ (x x) dx — <(p etAQT0> ) ] < e—iHTngz Ipl12,

@ The decay rate Ap x o improves kAp when the boundary layer J is
small and the value of

q(x):=

gTe(xx)E
A

is large in the interior.
@ The approximation is good when

_ ooy Q(xy)v(y) dxdy
Bl v Jov ()7 v (x) dx

is small. Can we have q (x) large and €g small?

€Q = HQUZ
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T
o

is related to the trace of the operator Q:

Tr (Q) = /D TrQ (x, x) dx

so it is not strange that we may have:

o large Tr (Q)

e small HQ1/2HL2_)L2.
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Example of noise in full space

Consider the homogeneous covariance (Q (x,y) = Q (x — x)

1 ik-zk®k
e
ko<Ikl<k |k|7T¢ k|2

Q(z) = o’k

0 { >0, ki = +00, 02 large, ko so large that 02k 9 is small = g (x)
large and € small

a4
(] K41 IS g =3
o —d< (<0, k=1, o? small, k; so large that o2 f1<k<k1 ﬁdk is
large = g (x) large and €@ small

e { = —d is white in space, { = 0 is the enstrophy measure.
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Example of noise in bounded domain

In a bounded domain one can mimic the previous scheme by means of the
fractional powers of the Stokes operator; however, it looks quite abstract.
More concrete: the noise previously denoted by

Zuj dWJ
jeJ

is now specified as

Z Y Tovn,i (x) W

n=ng i€l,

where we have in mind a sequence of (small) space scales
Fng > oo > Iy

and, at each scale n a typical circulation I', and several vortex patches
Vi (X).
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Vortex patch noise

We start with a noise at vorticity level:

n .
Lnfr, (X — Xp,i dwy'!
n;”o ig _n - (x\/_'x - ) ‘

vortex patch, scale n, center x, ;, circulation I',

£, (x) = r,f <X> . fapdf
rn

and define v, ; = VLABIﬂn (- —Xp,i), namely

divv,;, = 0
VEvei(x) = £ (x—xn)
Vnilop = 0

The vortex patch noise then is:

ZZFV,,, dW”’

n=ng i€l,
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Vortex patch noise

One can prove that

2 T
€Q < Zrn n_1

n=n, 10&rn

so there is a factor r, 2 which allows us to make g (x) large and €q small,
with several combinations of multiplicative constants and choice of ng, n;.
Kolmogorov scaling (see F. Flandoli, Renormalized Onsager functions and
merging of vortex clusters, Stochastics and Dynamics 2020):

€1/3rr':;>/3

1/3 r;l'

r,=
log

Franco Flandoli, Scuola Normale Superiore



Realizations of this turbulent velocity field are more natural than Fourier:
stream function lines from experiment of Rivera-Ecke '05 versus a
realization of the vortex patch noise:
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Stochastic model reduction

Can we prove the previous result for a fluid model closer to reality? Let us
filter the solution u of the Navier-Stokes equations by a mollifier:

u : =0c%u large scale

us : =u-—u. small scale

The large scale component satisfies

i+ (U+u,) -Vi+Vp = vAu+R.
divu = 0

where the remainder R is a commutator (small under several conditions)

Re=u-Vu—0c%(u-Vu) =[u-V,0x|u
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Stochastic model reduction means that we replace

i+ (U+us) -Vi+Vp = vAu+ R
0

divu
drug
by a simplified model. Example of result, (see Flandoli-Pappalettera, 2D Euler
equations with Stratonovich transport noise as a large scale stochastic model
reduction, 2020):
o0iw+ (u+u;)-Vw = 0
_ 1 ;
dws +u-Vwdt = —;wsdt + E vt. udetf
jed

converges to _
dw +u-Vawdt =) u;-VwodW.
Jjed
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Conclusion

Eddy viscosity/heat diffusion coefficient

)

SPDEs with transport Stratonovich noise

)

stochastic model reduction
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The talk reports works in progress, based on:

@ L. Galeati, On the convergence of stochastic transport equations to a
deterministic parabolic one, SPDEs: Analysis and Computation '20

@ F. Flandoli, D. Luo, Convergence of transport noise to
Ornstein-Uhlenbeck for 2D Euler equations under the enstrophy
measure, Ann. Probab. '20

© F. Flandoli, L. Galeati, D. Luo, Scaling limit of stochastic 2D Euler
equations with transport noises to the deterministic Navier-Stokes
equations, J. Evolution Equations '20

@ F. Flandoli, U. Pappalettera, 2D Euler equations with Stratonovich
transport noise as a large scale stochastic model reduction '20.
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Thank you!

Eddy viscosity/heat diffusion coefficient

T

SPDEs with transport Stratonovich noise

1

stochastic model reduction
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