

GDM: Cause of obesity, diabetes & CVD epidemic?

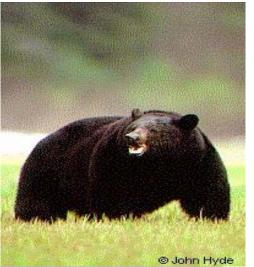
Prof P Saravanan MBBS PhD FRCP

Professor & Hon Consultant Physician
University of Warwick & George Eliot Hospital
MLHD, ICTS-TIFR Bengaluru 24 Jul 2023

Outline

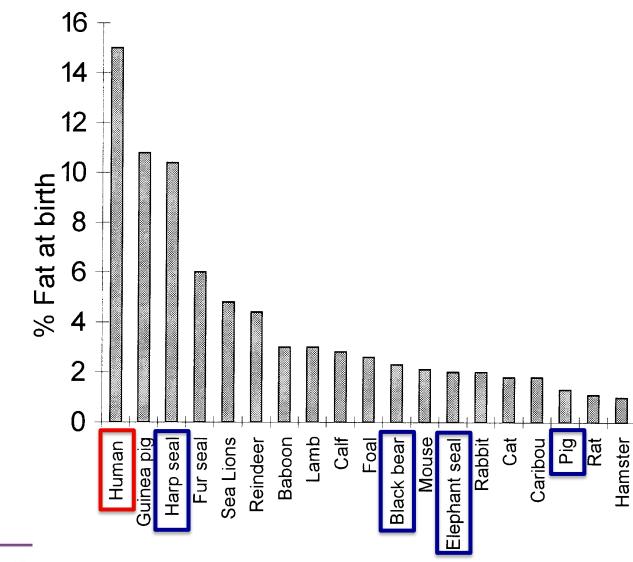
- Human evolution
- Gestational Diabetes
 - Maternal risk
 - Offspring risk
- Importance of innovative methodologies
 - Learnings from birth weight studies
 - Need for accurate personalized prediction

Rank according to % body fat?

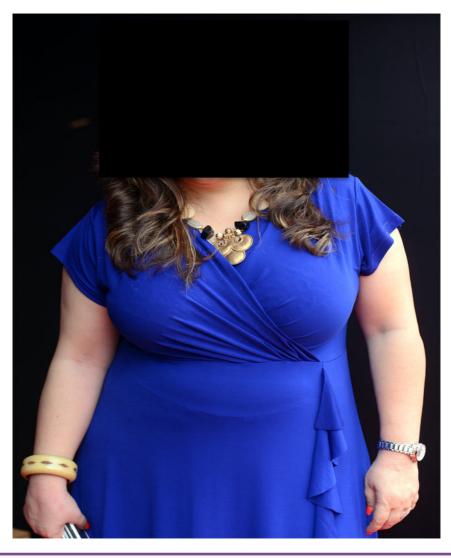




Humans



Humans



When does the process start?

Outline

- Human evolution
- Gestational Diabetes
 - Maternal risk
 - Offspring risk
- Importance of innovative methodologies
 - Learnings from birth weight studies
 - Need for accurate personalized prediction

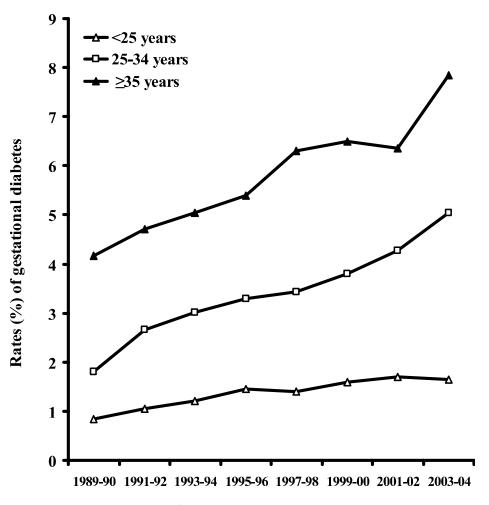
What is GDM?

"Glucose intolerance resulting in hyperglycaemia (of varying severity) which begins or first diagnosed in pregnancy"

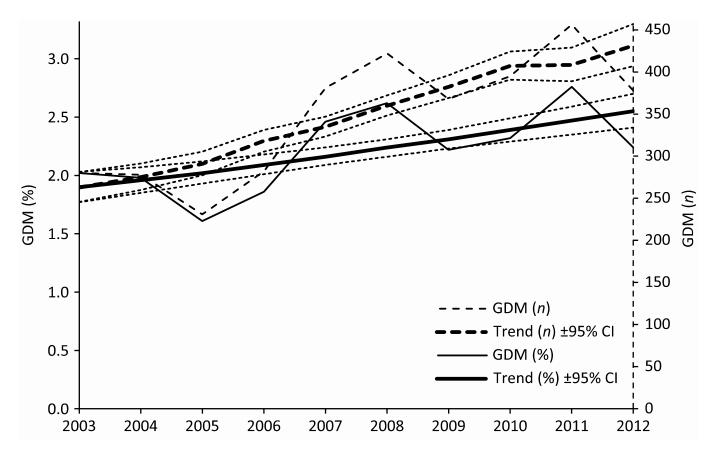
"Hyperglycaemia in pregnancy"

Currently diagnosed by OGTT around 28 weeks of pregnancy

Requires fasting and 2-hr sample

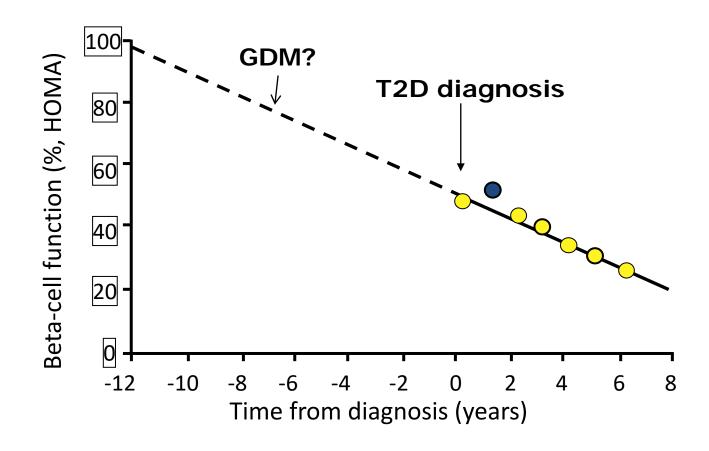

Why worry about GDM?

Doubling of GDM

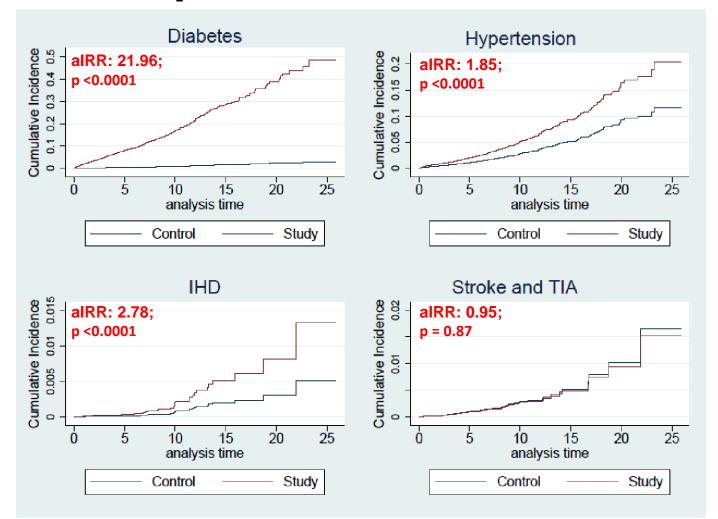

Doubling of GDM in USA in 14 years

GDM rates in Sweden

64% higher incidence of GDM in 10 years


>90% of GDM happens in developing countries

Pre-prediabetes?



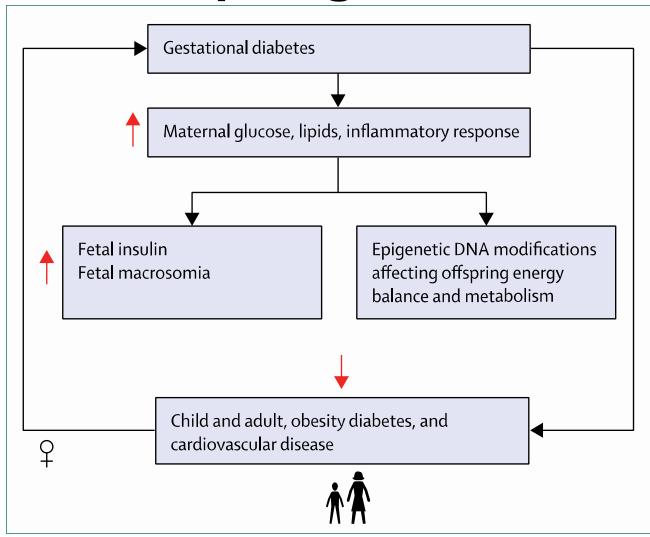
T2D, HTn & CVD post GDM in UK

THIN database: >9000 GDM >37000 Controls



Fuel-mediated Teratogenesis

Permenant change in habitus caused by abnormal concentrations of nutrients during period of intrauterine development



Offspring effects

At birth

In early adulthood

Variables	O-GDM (n = 168)	O-NoGDM (n = 141)	O-Type1 (n = 160)	O-BP (n = 128)	P a
Offspring					
Age (yr)	21.6 (1.8) ^b	21.1 (2.1) ^b	22.5 (2.2)	22.9 (2.2)	<0.001
BMI ≥25 kg/m²	40% (67/168) ^b	30% (42/141)	41% (66/160) ^b	24% (31/128)	0.005
$PM > 20 \text{ kg/m}^2$	13% (21/168)	11% (16/141)	10% (16/160)	5% (6/128)	0.1
Metabolic syndrome ^c	24% (40/168) ^b	15% (21/141) ^b	14% (23/160)	6% (7/128)	<0.001
Central obesity (M > 9/1 cm: W > 80 cm)	39% (66/168)	38% (5//1/11)	/13% (68/160)	29% (37/128)	0.1
Triglycerides ≥1.7 mmol/liter	16% (26/167) ^b	14% (20/140) ^b	6% (10/159)	5% (6/128)	0.002
Reduced HDL (M $<$ 1.03; W $<$ 1.29 mmol/liter)	37% (62/167) ^b	31% (43/140) ^b	20% (32/159)	13% (17/128)	< 0.001
Diastolic blood pressure ≥85 mm Hg	4% (6/167)	2% (3/141)	5% (8/160)	2% (2/128)	0.3
Systolic blood pressure ≥130 mm Hg	37% (62/167)	31% (44/141)	41% (66/160) ^b	24% (31/128)	0.02
Fasting plasma glucose ≥5.6 mmol/liter	41% (69/167) ^b	30% (42/138) ^b	25% (39/155) ^b	10% (13/128)	<0.001
Physical activity (≥30 min/d)	56% (94/168)	56% (79/141)	48% (77/160)	50% (64/128)	0.4
Smokers	46% (77/168)	42% (59/141)	36% (57/160)	35% (45/128)	0.2
Parents					
Paternal diabetes	8% (13/164)	8% (11/136)	5% (8/157)	9% (11/125)	0.6
Family occupational social class V or VI	27% (45/167) ^b	18% (25/140)	18% (29/160) ^b	8% (10/128)	<0.001

Pre-diabetes/T2D (adj. ORs): 7.76 4.46 4.02 ref

CVD in offspring post GDM

Why worry about GDM?

Panel: Long-term complications of gestational diabetes

Complications for the women

- Hypertension⁸
- Type 2 diabetes^{8,24,25}
- Vascular dysfunction⁴¹
- Non-alcoholic fatty liver disease^{42,43}
- Dyslipidaemia^{8,24,25}
- Chronic inflammation^{41,44}
- Chronic kidney disease^{45,46}
- Ischaemic heart disease^{8,9}

Complications for the offspring

- Childhood obesity^{10,25}
- Excess abdominal adiposity⁴⁷
- Metabolic syndrome^{48,49}
- Hyperinsulinaemia⁵⁰
- Disordered glucose regulation in adolescents²⁷
- Higher blood pressure^{51,52}
- Possible early onset of cardiovascular disease⁵³
- Possible attention-deficit hyperactivity disorder and autism spectrum disorders 52,54,55

Outline

- Human evolution
- Gestational Diabetes
 - Maternal risk
 - Offspring risk
- Importance of innovative methodologies
 - Learnings from birth weight studies
 - Need for accurate personalized prediction

Why we need innovative methodologies?

Treating GDM may be too late?

Treatment: ~50% risk reduction

2 landmark studies: Crowther et al & Landon et al

Neonatal adiposity in GDM

Total adiposity measured by MRI Spectroscopy scan in the first 2 weeks and then at 8-12 weeks; Well controlled GDM; n= 86

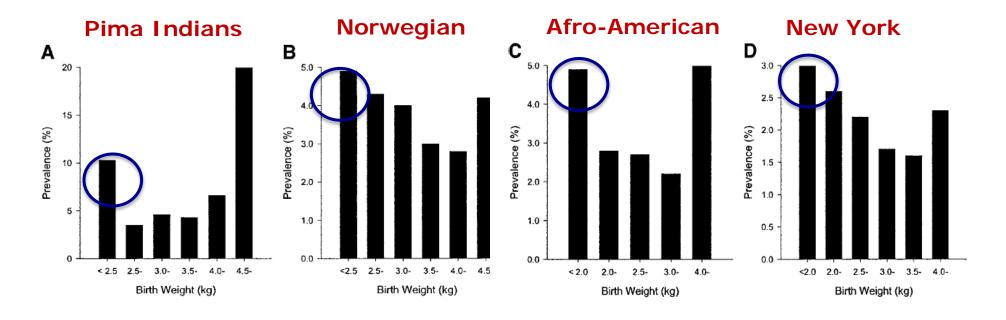
	Model 1			Model 2		
Outcomes	Difference (%)	95% CI	P value	Difference (%)	95% CI	P value
Assessment 1 Total AT Internal abdominal AT/nonabdominal	6.9	-1.4, 15.9	0.11	5.4	-3.6, 15.6	0.24
superficial subcutaneous AT ratio IHCL*				1.2	-11.3, 15.6	0.86
Assessment 2						
Total AT	16.0	6.0, 27.1	0.002	12.5	1.0, 25.0	0.03
Change in total AT	35.8	11.7, 65.2	0.003	32.4	5.2, 66.3	0.02
Internal abdominal AT/nonabdominal superficial subcutaneous AT ratio				-0.2	-15.1, 17.2	0.98
IHCL	5.7	-30.2, 59.6	0.79	3.5	-35.4, 65.6	0.89

Model 1, adjustment of AT for body size using indices (18) (not applicable for AT ratios) and IHCL for postnatal age; model 2, same as model 1 plus adjustment for infant sex and maternal prepregnancy BMI. *Non-normal distribution, and therefore the percentage difference, was not calculable.


Fetal adiposity precedes onset of GDM

Control

GDM


Glucose does not explain everything!

Birth weight & risk of GDM

U shaped relation
Both low and high BW association
Intergenerational risk transmission

Born to GDM

Ethnic differences

Ethnic specific LGA risk

	All women (I	All women (N=10 356)		White British women (N=4105)		South Asian women (N=5445)	
	Fasting glucose threshold (mmol/L)	2 h post-load glucose threshold (mmol/L)	Fasting glucose threshold (mmol/L)	2 h post-load glucose threshold (mmol/L)	Fasting glucose threshold (mmol/L)	2 h post-load glucose threshold (mmol/L)	
Birthweight >90th percentile	5.3	NP	5.6	NP	5.1	NP	
Sum skinfolds >90th percentile	5.2	7.5	5.2	NP	5.2	7.2	
Average glucose concentration for both birthweight and sum of skinfolds >90th percentile	5·3	7.5	5.4	NP	5.2	7.2	

NP=not possible to work out a threshold because within our study none of the women reached a threshold that gave an odds ratio of 1.75 or greater (the International Association of Diabetes and Pregnancy Study Groups consensus minimal odds ratio deemed to be of clinical importance).

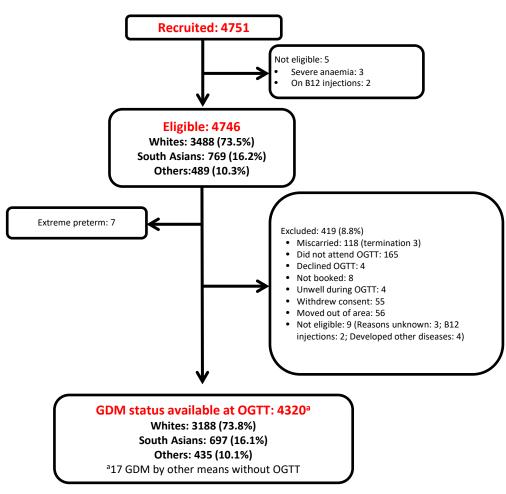
Thresholds of glucose concentrations and OR ~1.75 for birthweight >90th and sum of skinfolds >90th percentiles

GDM were excluded; GDM diagnosed if FPG ≥6.1 and 2-hr ≥7.8 mmol/l (110 and 140mg/dl)

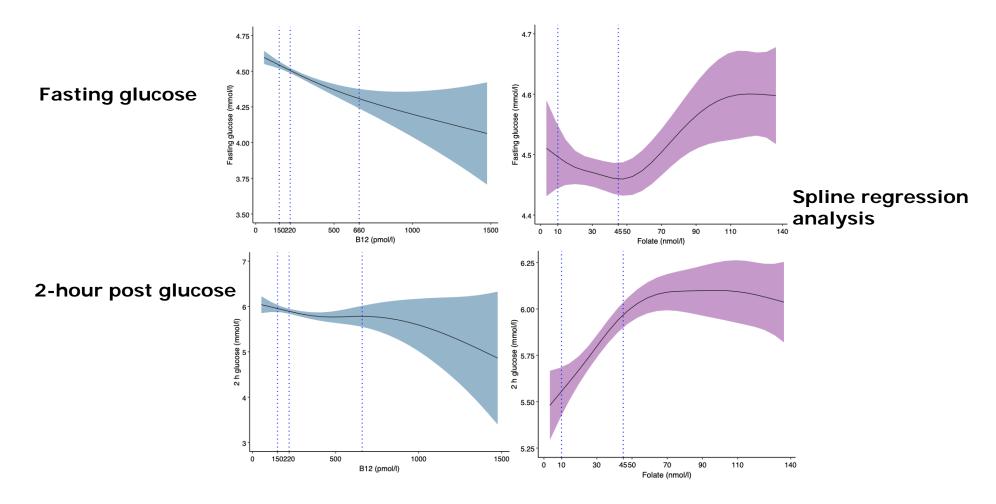
Risk factors for GDM

- Age (lowest <20yrs)
- BMI more than 30
- Previous macrosomic baby (4.5kg)
- Previous GDM
- PCOS
- First degree relative with diabetes
- Polyhydramnios & fetal abdo circumference >97 centile
- Certain ethnic groups:
 - South Asian (India, Pakistan or Bangladesh)
 - Black & Afro-Caribbean
 - Middle Eastern (Saudi Arabia, UAE, Iraq, Jordan, Syria, Oman,
 Qatar, Kuwait, Lebanon or Egypt)

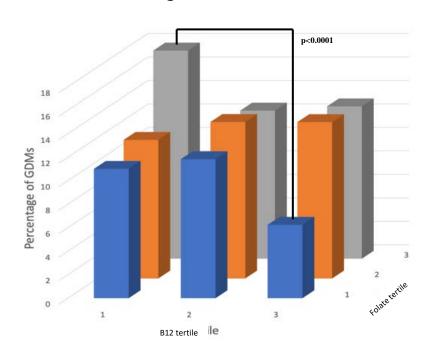
PRIDE rationale

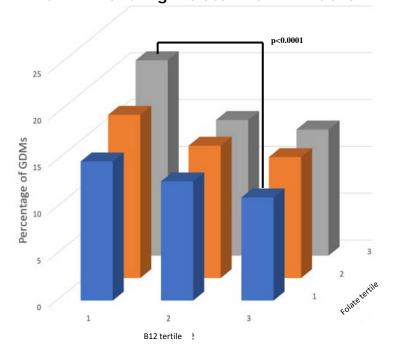

- Known risk factors only picks up ~60% of all GDM
 - Need for identification of other markers
 - n=4500; 10 centres
- Damage to the offspring may have already happened
 - Accurate early pregnancy prediction can prevent GDM

Baseline characteristics: Early pregnancy


Maternal Characteristics at Booking	All (n=4746) Mean ± SD Median (IQR) [§] n (%)^	Whites (n=3488) Mean ± SD Median (IQR) [§] n (%)^	South Asians (n=769) Mean ± SD Median (IQR) [§] n (%)^	Others (n=489) Mean ± SD Median (IQR) [§] n (%)^	p-value
Age (years)	30.51 ± 5.29	30.1 ± 5.35	31.57±4.72	31.4 ± 5.4	<0.0001
Multi parity (≥2) ^	919 (19.4)	698 (20.0)	119 (15.5)	102 (20.9)	0.01
Gestational age (weeks)	12.45 ± 1.44	12.39 ± 1.47	12.51 ± 1.39	12.8 ± 1.21	<0.0001
Height (cm)	164.28 ± 6.83	165.32 ± 6.64	160.69 ± 6.24	162.57 ± 6.84	<0.0001
Weight (kg)	83.33 ± 20.49	88.3 ± 19.6	66.44 ± 13.93	74.44 ± 18.04	<0.0001
BMI (kg/m²)	30.8 ± 7.06	32.3 ± 6.92	25.7 ± 4.96	28.1 ± 6.27	<0.0001
Waist Circumference (cm) ^a	98.54 ± 16.41	101.9 ± 15.95	87.73 ± 12.78	91.45 ± 15.16	<0.0001
Biochemical characteristics	n=4630	n=3396	n=759	n=475	
B12 (pmol/l)§	238.2 (183.3, 311.2)	230.3 (181.1, 298.0)	233.3 (177.9, 319.9)	316.5 (237.3, 429.3)	<0.0001
Folate (nmol/l)§	35.9 (24.8, 52.2)	33.8 (23.2, 51.3)	43.0 (30.4, 54.0)	38.3 (27.0, 51.6)	<0.0001
tHcy (μmol/l) ^{§b}	11.3 (8.6, 14.7)	11.4 (8.7, 14.8)	11.1 (8.7, 14.7)	10.9 (8.3, 13.8)	0.12
B12 insufficiency at <150pmol/l^	490 (10.6)	365 (10.7)	101 (13.3)	23 (4.8)	<0.0001
B12 insufficiency at <220pmol/l^	1985 (42.8)	1536 (45.2)	348 (45.8)	98 (20.6)	<0.0001
Folate deficiency (<10nmol/l)^	69 (1.5)	61 (1.8)	1 (0.1)	7 (1.5)	0.003
Folate excess (>45nmol/l)^	1640 (35.4)	1139 (33.5)	342 (45.1)	159 (33.5)	<0.0001
Using Folate supplements^	3424 (78.2)	2569 (79.5)	526 (76.0)	329 (72.3)	<0.0001
Using Multivitamin supplements^	2494 (58.1)	1840 (58.2)	425 (62.7)	229 (50.9)	<0.0001

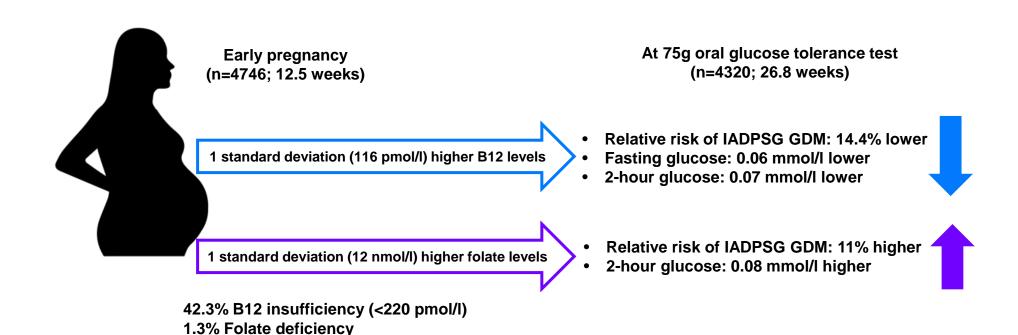
Relationship between B12-folate with glucose




B12-folate imbalance and GDM

'Low B12 and high folate' with NICE-GDM

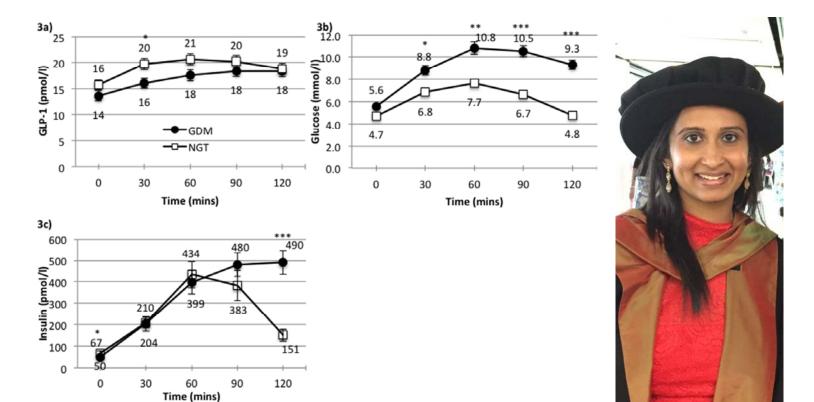
'Low B12 and high folate' with IADPSG-GDM



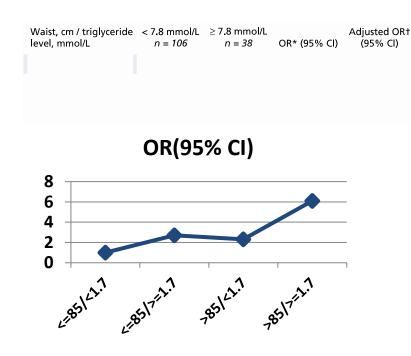
Summary

IADPSG: International Association of Diabetes and Pregnancy Study Group

GDM: Gestational Diabetes Mellitus


36.5% Folate excess

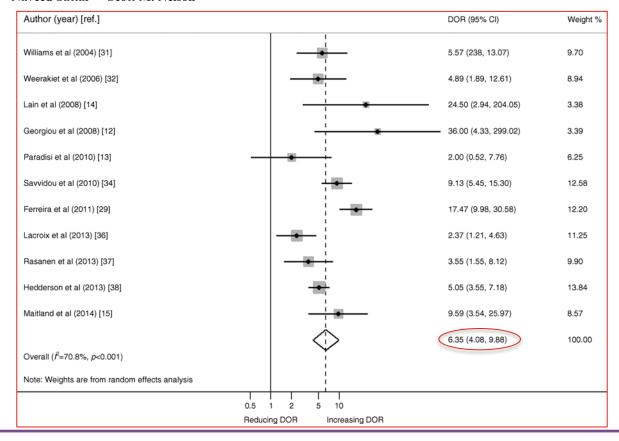
GLP1 levels in GDM


Sukumar N et al, Diabetes 2018

Hypertriglyceridemic waist and GDM

- Measured at 11-14 wks
- 75g OGTT at 24-28 wks
- Waist >85cms, +TG>1.7mM = OR 6.1
- Disturbed metabolism from early pregnancy

Brisson D et.al, CMAJ 2010.



Accuracy of circulating adiponectin for predicting gestational diabetes: a systematic review and meta-analysis

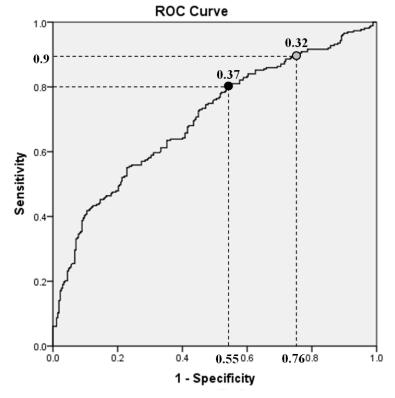
Stamatina Iliodromiti¹ • Jennifer Sassarini¹ • Thomas W. Kelsey² • Robert S. Lindsay³ • Naveed Sattar³ • Scott M. Nelson¹

Diastolic BP

Table 2 Multivariable regression analysis result for formulating the composite risk score B

Adjusted OR (95% CI)

P Value


Fang Q et al, (submitted)

Composite risk score

Fang Q et al, (submitted)

Need for innovation

- Adverse disease programming is complex
- Identification of novel risk predictors is evolving rapidly
- Ethnic variations
- Factors that affect mothers may not affect offspring and vice versa

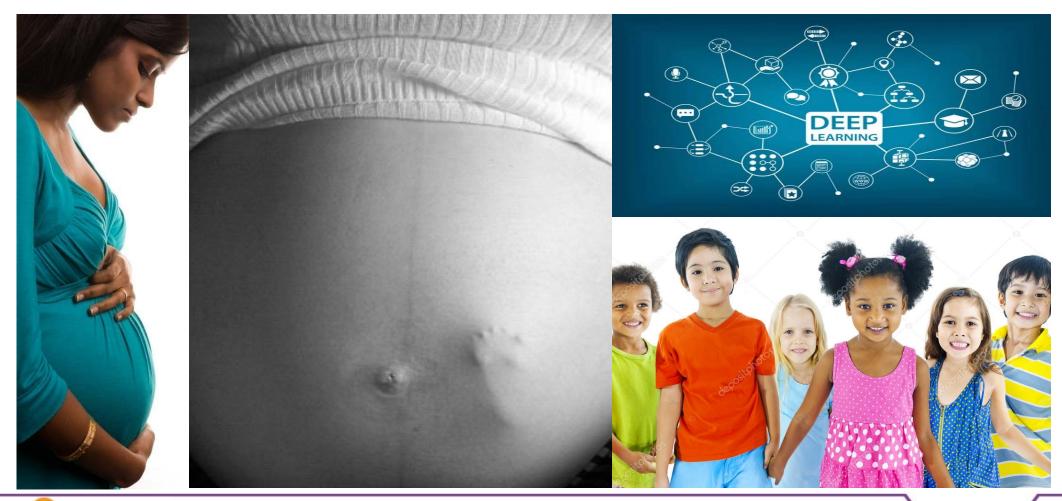
Need for innovation

- Composite risk prediction
- Personalization
- Accounting for inter- and intra individual variations
- Availability of better datasets

Summary

- Human evolution Still a long way to go...
- Gestational Diabetes Contributes to CVD epidemic; potentially other neurodevelopmental issues
- Importance of innovative methodologies Complex issues & simple analyses cannot solve

Conclusion - 1



Conclusion - 2

My funders

Thank you

