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Matrix field theories have been argued to describe emergent geometries in the large N limit (e.g. 
AdS/CFT, c=1 matrix model etc).

We will show this by focusing on  matrix models (space time-independent matrices), as well as 
matrix quantum mechanics (which includes the c=1 model).  

In the case of large N matrix QM, we will find that the inconsistencies are resolved by a lattice geometry 
(“granular geometry”). We will briefly hint at a similar resolution for time-independent matrix models.

Here, by “geometry” we mean a bosonic field theory representation of the matrix theory. 
(Note that in 2D string theory, the only dynamical field is a scalar field).

1. Introduction

In this talk, we will point out that one may encounter certain inconsistencies in insisting on a 
continuum emergent geometry from matrix models.



Consider computing

Let us first consider matrix models (space-time independent) to see the problem.

Take p=4, g=0

Is there a continuum description (cf. bulk dual of CFT) of the above computation?

2. Matrix models



Attempt at a continuum description

This is clearly not justified at finite N, however large. Nevertheless, let us soldier on…..

Gives a saddle point solution at large N

….... (1)

𝚫 𝝀 = ∏𝒊"𝒋 𝝀𝒊 	− 𝝀𝒋 	= van der Monde determinant



Answer: NO! 
𝝆 𝝀 = 𝝆𝟎 𝝀 + 𝟏

𝑵
	𝜹𝝆 𝝀 = 𝝆𝟎 𝝀 ,    	𝜹𝝆 𝝀 	=0, since the action is strictly quadratic.  

Double scaling limit, 𝑁 → ∞, 𝑔 → 𝑔' also does not help. Possible Jacobian can help? No.

Question: Can we obtain the 𝟏
𝑵𝟐

 correction from the 𝝆 𝝀  path integral?

Large N: saddle point

Wigner semi-circle law

Recall the exact result: 𝐼( = 2 + )
*"



No smooth 𝜌(𝜆) would ever satisfy such trace identities! 

Problem really lies with the change of variable  (1), from N variables 𝝀𝒊 to an uncountable infinity of variables 𝝆 𝝀 !

One way to see this is that a generic 𝝆(𝝀) violates  trace identities  (Cayley-Hamilton) for any N, however large.

Indeed, from definition, 𝜌(𝜆) is a distribution rather than a function. Hence a functional integral over 
𝜌(𝜆) is not valid.  

𝝀𝟏𝟑 + 𝝀𝟐𝟑 −
𝟑
𝟐
𝝀𝟏 + 𝝀𝟐 𝝀𝟏𝟐 + 𝝀𝟐𝟐 + 𝟏

𝟐
 (𝝀𝟏 + 𝝀𝟐) = 𝟎



3. Matrix Quantum Mechanics
Consider computing the following vev:

For 𝑉 = )
-
	𝜔-	𝜆-	, 	 𝜒. 𝜆 = 𝐻. 𝜔	𝜆 exp −/	1"

-
, 	 𝜖. = 𝑛 + )

-
𝜔	

Is there a “continuum” description 
which reproduces this?

Δ 𝜆 = ∏2"3 𝜆2 	− 𝜆3 	= van der Monde determinant



Let us try the eigenvalue density description again. 

where 𝜓 𝜆 = ∑. 𝜒. 𝜆 	𝜓.	 , 𝜓4 𝜆 = ∑. 𝜒.∗ 𝜆 	𝜓.4	

Since the eigenvalues have become fermions, the eigenvalue density has the 
following alternative description: 𝜌 𝜆 = 𝜓4 𝜆 𝜓 𝜆  

Saddle point solution:

For harmonic oscillator potential 𝑉 = )
-
	𝜔-	𝜆-  we find that 𝜖6 = 𝑁	𝜔	

which reproduces the leading term of the exact result. 
How about the sub-leading O(1/N2) correction?

Das-Jevicki 1990, Sengupta-Wadia 1990 wrote the following density representation (collective variable) of the 
matrix path integral



The sub-leading term is given by looking at fluctuations around the saddle point:

Once again, we do not get the correct result since the change of variable from
{ 𝜆2 𝑡 , 𝑖 = 1,2, … , 𝑁 } to { 𝜌 𝜆, 𝑡 , 𝜆 ∈ 𝑅 } is not exact except in the 𝑁 → ∞ limit.

We will resolve the problem below by finding an Exact transformation of variables from 
the eigenvalues to a lattice boson field where the lattice contains precisely N points.

The loop integral involves a coincident propagator, and is divergent; this gives 

Recall that the exact result is



Before describing the new boson, let us mention another important calculation, that of 
entanglement entropy (EE), which also shows a problem with the eigenvalue density representation:

We ask the question: what is the ground state EE of an interval 𝐴 = (𝜆), 𝜆-) in the eigenvalue direction?

We can answer the question in various ways:

EE of an N-particle quantum mechanics: target space EE.  (Das, Kaushal, Liu, Mandal, Trivedi)

This is equivalent to computing the usual QFT EE in the fermion theory. 

This is given by the following formula:

3.1 Entanglement Entropy



Note that: this is obviously finite!  
(In the 2D string theory context computed and emphasized by Das 1995; later refined by Hartnoll-Mazenc 2015)

In case of free fermions (box potential), the above evaluates to the formula well-known from the statistical 
mechanics literature :

For fermions in an external potential 𝑉(𝜆)  [Das-Hampton-Liu 2022, see also Sensarma’s talk]

𝑆7 =
)
8
log(𝑝6(𝜆9)

1"	:1#
ℏ

)                                                       …..(2a)

Here, we have assumed that 𝑉(𝜆) varies slowly inside the interval A.  More sophisticated formulae exist. 
        [LeCroix-Majumdar-Schehr]

𝑆7 =
)
8
log(1":1#

<
) , 	𝜖 = =

*
   …..(2) 

Can we get these formulae from the density theory (collective variable theory)?

……. (1a)

Entanglement Entropy (fermionic formulation)



For a bosonic field theory, the EE of a region A is given by the formula

𝑆7 = 𝑇𝑟	[ 𝐶 + )
-
log 𝐶 + )

-
	− 𝐶 − )

-
log(𝐶 − )

-
)]	 ….(3)

where 𝐶- = 𝑋. 𝑃, X = 	𝜙>	𝜙? , P = 	Π>	Π? , 	 𝑥, 𝑦 ∈ 𝐴

If we consider the collective variable theory for 𝑉 𝜆 = 0,	 and restrict to quadratic fluctuations, we 
get a massless relativistic scalar field, for which eq. (3) gives the well-known  result (Holzhey-Wilczek, 
Calabrese-Cardy) 

𝑆7 =
)
8
log(1":1#

<
) , 	𝜖 = short-distance ultraviolet cut-off  …..(3a) 

Note that this result is divergent. It agrees with eq.(2) IF we choose 𝜖 = =
*

 ! 
We will find that eq.(2), as well as eq. (2a) can indeed be reproduced in terms of a lattice boson, with the 
above lattice spacing.

Entanglement Entropy (density boson formulation)

How about the full collective theory? In a new variant [Das-Jevicki 2022], it is shown that the Fermionic 
EE (1a), in case 𝑉 𝜆 = 0, has a bosonic interpretation, leading to the finite result (2), although it is not 
clear what the bosonic EE (3) yields in that case, or what happens if 𝑉 𝜆 ≠ 0

(see Sumit’s talk)



Summary so far….
1. A continuum description of  matrix models in terms of an eigenvalue density 𝝆 𝝀   is inconsistent with trace 
identities, which prevents an exact change of variables from the matrix degrees of freedom to 𝝆 𝝀 . 

2. The 𝝆 𝝀  description fails to reproduce  )
*
	expansion of moments like Tr (𝑀@), ⟨Tr (𝑴𝒑)⟩ ≠ ∫ 𝒅𝝀	 𝝆 𝝀 	 𝝀𝒑	,  

beyond the leading (𝑁 = ∞) term. (In the c=1 model, it also fails to reproduce the perturbative expansion of the 2D 
string S-matrix). 

3. In case of matrix quantum mechanics, the eigenvalue density description does not reproduce the leading large 𝑁 
expression for the entanglement entropy 𝑺𝑨 =

𝟏
𝟑
𝐥𝐨𝐠 (𝒙𝟐−𝒙𝟏 𝒑𝑭(𝒙)/ℏ) which is nonperturbative in 𝑁.  

𝑁/𝐿

4. We will discuss an exact bosonization of matrix quantum mechanics (equivalently, an exact bosonization of 1D 
non-relativistic fermi gas), valid for any 𝑁, which incorporates the trace identities. 

5. The boson field lives on a lattice of 𝑵 points (granular geometry), which are in one-to-one correspondence with 
the 𝑁 eigenvalues. 

6. This new bosonization solves the abovementioned problems, including that of  the perturbative 2D string S-matrix.

Coming attractions….



We would like to find a bosonic description of matrix QM which resolves the  problems with the eigenvalue 
density description.  The main point that we would like to ensure is that the degrees of freedom on the bosonic 
side match with those of the matrix QM. 

4. Exact bosonization of Matrix QM (non-relativistic fermion)  

The way we achieve this is by finding an exact finite N bosonization of non-relativistic fermions (equiv. to MQM) 
[Dhar-GM-Suryanarayana]. 

1-particle Hilbert space  H = Span{ 𝑛	 , 𝑛 = 0,1, … ,∞} where 𝑛	 = 𝜓.4|0	⟩ 

For a single particle, there is no distinction between fermions and bosons. We can trivially define oscillators 
𝑎, 𝑎4 such that

𝑎, 𝑎4 = 1	 and 

𝑛	 = (E$)!

.!
0	 , 𝑎4 𝑛 = 𝑛 + 1 𝑛 + 1 , 𝑎 𝑛 = 𝑛 𝑛 − 1 , 𝑛 = 0,1,2, … ,∞ 

𝑎4 = ∑.H9,),…,K 𝑛 + 1	𝜓.4)4 	𝜓.	𝛿 𝜓.4𝜓. 	 𝑎 =adjoint of 𝑎4

𝑎4 

𝑎



Hilbert space= H ∧ H = Span{ 𝑓), 𝑓-	 , 0 ≤ 𝑓) < 𝑓- < ∞}

Bosonic Hilbert space = Span{ 𝑟), 𝑟- = ∏2H),-
	 (L#$)

"! L"$
""

M#!M"!
0 , 	 𝑟) ≥ 0, 𝑟- ≥ 0	} 

These definitions imply 𝑟), 𝑟-	 = 𝑓), 𝑓-	 , where 𝑟- = 𝑓), 	 𝑟) = 𝑓- 	− 𝑓) 	− 1



Figure 2: The action of �†
k on the state |~fi pushes the top k fermions up by one level, starting from

top down. Clearly, if we act on the filled Fermi sea with ~f = 0, 1, 2, ..., N � 1, one gets the state ~f =

0, 1, 2, .., N � k � 1, N � k + 1, N � k + 3, ..., N , i.e. the operator creates a hole at depth k (see also Figure

1; also compare with the action of the Schur of antisymmetric n-tensor as detailed in Appendix D). The

action of the adjoint �k involves pushing the top k fermions down, starting from down up, with the

understanding that it target level is occupied, it annhilates the state. The picture is taken from [34].
fig:

sigma-

k The basic ingredients of the construction, very briefly, involve introducing “raising”

operators �†
k (see Figure 2) and their adjoints. From the action of �k, �

†
k it follows that, on

a state |~fi,

�k�
†
k = 1, �†

k�k = ✓(rk � 1), [�k, �
†
l ] = 0 if k 6= l (23) sigma-

alg

where rk ⌘ fN�k+1 � fN�k � 1 and ✓(m) ⌘ 1 if m � 0.

The bosonic oscillators satisfying (22) are related to these �-operators by

�k =
1q

a†kak + 1
ak, �

†
k = a†k

1q
a†kak + 1

(24) sig-a

3.2 Comments on operator algebra

In the fermionic language, the complete operator algebra of the fixed fermion number

theory is clearly generated by the set of fermion biliears of the form �mn =  †
m n. The

commutation algebra of these bilinears is of the form

[�mn,�rs] = �nr�ms � �ms�nr (25) w-alg

10
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a single set of filled fermion levels. It was therefore not immediately obvious what operators

took us from one set of filled Fermi levels to another set of filled Fermi levels. This problem

was somewhat nontrivial, and was solved in [33] and further developed in [34, 35]. We will

describe the results below briefly. We will present it as an exact operator bosonization of

nonrelatistic fermions in a 1D confining potential. The connection to the giant graviton

story is not di�cult to work out. The connection to general matrix QM (with a hermitian

matrix M(t)) is obvious.

We consider a free, non-relativistic N -fermion system in a confining potential in one

dimension. The single particle energy eigenfunctions are assumed to be �i(x) with discrete,

non-degenerate energy values ✏i, i = 0, 1, 2, ..1. A simple basis of the Hilbert space is

provided by the Slater determints  (x1, ..., xN) = Detij�fi(xj) which represents states |~fi

with filled fermion levels fi, i = 1, 2, ..., N . It is useful to introduce a second-quantized

Fermion field

 (x) =
1X

i=0

�i(x) i, (18) second-

qZ
dx  †(x) (x) = N (19)

in terms of which

|~fi =  †
fN
... †

f2
 †
f1
|0iF (20) f-ket

The second line of (18) ensures that we are working with a fixed fermion number; the

allowed operator algebra is generated by bilinears of the type  †
k l.

The operator bosonization, which we found in [33] and will use below, maps these states

to the following bosonic states:

|~fi = |~ri ⌘
NY

n=1

(a†n)
rn

p
rn!

|0iB (21) identity

In this bosonization a finite number N of oscillators an, a†n, n = 1, 2, ..., N is used, which

satisfy an exact Heisenberg algera

[an, a
†
m] = �nm, n,m = 1, 2, ..., N (22) heisen

The |0iB is the no-particle state in the bosonic theory, annihilated by all the an. Note that

we have presented (21) as an equality, in the sense that the LHS and RHS are bosonic and

fermionic representations of the same state.

9
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Exact Heisenberg algebra

...
6

5

4

3

2

1

0

(a)

...
6

5

4

3

2

1

0

(b)

Figure 1: (a): Here the left column denotes the fermion filling: there are N = 3 fermions occupying

the levels 2,3,5, i.e. ~f = {2, 3, 5}. The gaps below fermion numbers 1,2 and 3 (counting from below)

are, respectively, 2,0,1. This corresponds to the Young Tableau on the right: with (r3, r2, r1) = (2, 0, 1),

i.e. there are 2 columns with 3 boxes each, 0 columns with 2 boxes and 1 column with 1 box. (b):

Here the filled levels are ~f = {0, 2, 3}, yielding (r3, r2, r1) = (0, 1, 0) which describes a single column

YT of height 2, corresponding to an antisymmetric 2-tensor representation. In both (a) and (b) the

precise correspondence between the YT and the filled fermion levels is that the Schur polynomial for the

representation R characterizing YT, acting on the filled Fermi sea, produces an excited N -fermion state

characterized by the filled fermion levels depicted.
fig:

young

has been observed in this context [36,38] and elsewhere that any set of fermion occupancies

~f can be mapped to a Young Tableaux by the rule (see Figure 1) that the number of

columns rN�k with N � k boxes is given by the “gap” below the k + 1-th fermion, i.e.

rN�k = fk+1 � fk � 1, k = 1, ..., N � 1, rN = f1 (17) rk-fn

The map (17) is not a mere formality. A multi-giant graviton state with rk giant gravi-

tons carrying angular momentum k, k = 1, 2, ..., N are created by an operator �R(Z) acting

on the ground state of the system, where �R(Z) is a Schur polynomial for a representation

R characterized by a Young tableau with rk columns each with k boxes, k = 1, 2, ..., N

[24,32,36,38]. It can be shown that such a state indeed has filled fermion levels fn related

to the rk’s by the map (17). See Appendix D for further details.

3.1 Exact operator bosonization
sec:

exact-

op

While (17) gave a map between the giant graviton states and the fermion states, and it was

found that the Schur operators characterized by {rk}, acting on the ground state, created a

fermion state given by {fn}, it was found that the action by successive Schur operators on

the ground state produced a mixture of Slater determinants which were not characterized by

8

…….. (4)

Finite number of bosonic  oscillators (=> Finite UV cut-off)



Demystifying the correspondence

We wish to understand how, e.g.       𝜎-4 0,1	 = 1,2	 , 	 𝜎)4 0,1 = 0,2	 .	 Note 0,1 = |𝐹9⟩= filled Fermi sea 

Suppose that the 1-particle fermion wavefunctions are harmonic oscillator eigenfunctions: then 

𝜎-4 is an operator which creates a hole at depth 2. The Berezin representation of such an operator is a Schur 
polynomial corresponding to the representation            (YT of height 2)          

Hole at depth 2

Hole at depth 1
History:  Holes = giant gravitons.

0,1 1,2



What bosonic Hamiltonian, acting on |𝑓), 𝑓-, … , 𝑓*	⟩ = |𝑟), 𝑟-, … , 𝑟*	⟩ ,  produces the result (5)?

Hence, energy of the fermionic state |𝑓), 𝑓-, … , 𝑓*	⟩ is

=  ∑.H)* 𝜖 𝑓. = ∑.H)* 𝜖 𝑟* + 𝑟*:) +	…+ 𝑟*:.4) + 𝑛 − 1 	 ……..(5)          

Thus, e.g., for fermions in a box, where 𝜖 𝑓. = 𝛼	𝑓.-, 𝛼 =
ℏ"N"

="
	, we get 

𝐻O = 𝛼∑.H)* (∑2H.* 𝑎24𝑎2 + 𝑁	 − 𝑛)2	 = 𝐸P + 𝐻) + 𝐻- , 	 𝐸P = 𝛼 * *:) -*:)
Q

,
	

𝐻) = 2𝛼	𝑁	 ∑RH)* 𝑘	𝑎R4	𝑎R , 	 H-=
S
-
	∑RH)* −𝑘-	𝑎R4	𝑎R 	+ ∑2HR* (𝑎24𝑎2)	

-	 ….(6)

...
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3

2

1

0

(a)

...
6

5

4

3

2

1

0

(b)

Figure 1: (a): Here the left column denotes the fermion filling: there are N = 3 fermions occupying

the levels 2,3,5, i.e. ~f = {2, 3, 5}. The gaps below fermion numbers 1,2 and 3 (counting from below)

are, respectively, 2,0,1. This corresponds to the Young Tableau on the right: with (r3, r2, r1) = (2, 0, 1),

i.e. there are 2 columns with 3 boxes each, 0 columns with 2 boxes and 1 column with 1 box. (b):

Here the filled levels are ~f = {0, 2, 3}, yielding (r3, r2, r1) = (0, 1, 0) which describes a single column

YT of height 2, corresponding to an antisymmetric 2-tensor representation. In both (a) and (b) the

precise correspondence between the YT and the filled fermion levels is that the Schur polynomial for the

representation R characterizing YT, acting on the filled Fermi sea, produces an excited N -fermion state

characterized by the filled fermion levels depicted.
fig:

young

has been observed in this context [36,38] and elsewhere that any set of fermion occupancies

~f can be mapped to a Young Tableaux by the rule (see Figure 1) that the number of

columns rN�k with N � k boxes is given by the “gap” below the k + 1-th fermion, i.e.

rN�k = fk+1 � fk � 1, k = 1, ..., N � 1, rN = f1 (17) rk-fn

The map (17) is not a mere formality. A multi-giant graviton state with rk giant gravi-

tons carrying angular momentum k, k = 1, 2, ..., N are created by an operator �R(Z) acting

on the ground state of the system, where �R(Z) is a Schur polynomial for a representation

R characterized by a Young tableau with rk columns each with k boxes, k = 1, 2, ..., N

[24,32,36,38]. It can be shown that such a state indeed has filled fermion levels fn related

to the rk’s by the map (17). See Appendix D for further details.

3.1 Exact operator bosonization
sec:

exact-

op

While (17) gave a map between the giant graviton states and the fermion states, and it was

found that the Schur operators characterized by {rk}, acting on the ground state, created a

fermion state given by {fn}, it was found that the action by successive Schur operators on

the ground state produced a mixture of Slater determinants which were not characterized by

8

Bosonized Hamiltonian:
𝑓) = 𝑟*, 𝑓- = 𝑟* + 𝑟*:) + 1,… , 𝒇𝒏 = 𝒓𝑵 + 𝒓𝑵:𝟏 +	…+ 𝒓𝑵:𝒏4𝟏 + 𝒏 − 𝟏	

𝐻O = ∑.H)* 𝜖( �𝑛.) , 	 �𝑛. = ∑2H.* 𝑎24𝑎2 + 𝑁	 − 𝑛	 …..(5a)



The Bose-Fermi mapping is EXACT !   

In the fixed fermion number sector, physical excitations are fermion bilinears 𝝍𝒎
4𝝍𝒏.    ALL such bilinears 

can be written exactly in terms of the 𝑵 pairs of bosonic oscillators 𝒂𝒎4 , 𝒂𝒏 and vice versa:



Applications of the exact bosonization

E.g., for fermions in harmonic oscillator potential 

In terms of the bosons, the exact transcription on the previous page gives  

1.

Thus, our bosonic theory reproduces the fermionic moment exactly (not a surprise).

1. Calculation of moments 𝑰𝒑 

2. Entanglement entropy

In particular,

Finite number of 
fermions N

Finite number of bosonic modes N (uv-finite)

Collective field theory has 
infinite no. of modes

∞

GM-Mohan 2024
+ work in progress



For entanglement entropy, the question is slightly more involved.

The important question is, does the fermionic EE correspond to the EE of a certain “region” of a real space 
bosonic formulation of the above exact bosonization?

This is what we do next: to invent a real space version of the bosonic theory. 

We will find that indeed the fermionic EE in a region A becomes the bosonic EE in a corresponding spatial 
region of the bosonic theory.

The issue is as follows.

Consider a spatial region A in the fermionic theory. 

We have so far found an oscillator bosonization of the fermion theory. 

Of course, the Fermionic EE for the region A will have a (complicated) translation in terms of the 
bosonic Hilbert space.



Inventing local fields  from the oscillators by introducing “space”: first consider fermions in a box.

The linear dispersion relation in 𝐻) = 2𝛼	𝑁	 ∑RH)* 𝑘	𝑎R4	𝑎R  suggests a bosonic field with EOM Φ̈ 𝑥, 𝑡 = 𝜕>-Φ 𝑥, 𝑡 	…(6)

𝑥3
= 𝑗	𝜖

𝑥*4)
= 𝑁 + 1 𝜖
= 𝐿

𝑥9
= 0

Since there are a finite number 𝑵 of oscillators, we cannot 
have continuous space. We must have discrete space, with 𝑵 
lattice points, with the following normal mode expansion

=
1

3
log

0

@2(�̃2 � �̃1)

vuut2

 
�µ+

�̃2

2

!1

A (42) c=1-

EE-app

B Relativistic bosons on a lattice
app:

herzog

Let us define relativistic bosons on a periodic lattice of size L, with lattice spacing ✏ = L/N

(i.e. there are N lattice points xj = j✏, j = 1, 2, ..., N). We will be interested in the large

N , or ✏ ! 0 limit. Since there are M lattice points, the number of normal modes must also

be N . We will denote the normal modes by an, a†n, where we let n range from �(N � 1)/2

to (N � 1)/212.

�j =
(N�1)/2X

n=�(N�1)/2

1p
2!n


an exp

✓
i
2⇡nj

N

◆
+ a†n exp

✓
�i

2⇡nj

N

◆�
(43) phi_

def

⇡j =
(N�1)/2X

n=�(N�1)/2

i

r
!n

2


�an exp

✓
i
2⇡nj

N

◆
+ a†n exp

✓
�i

2⇡nj

N

◆�
, (44) pi_def

with !n = 2/✏ sin(⇡n/N) (the standard dispersion for massless free scalar field theory on a

circular lattice).

The EE calculations yield

SA =
1

3
log(n) =

1

3
log(Nl/L) (45) bose-

EE-

circular-

lattice

where n is the number of lattice points in the region of interest A. l is the size of the

interval A.

B.1 Case of the hard box

Consider the setup of “relativistic” massless bosons on a box of length L with N lattice

points and lattice spacing ✏ = L/(N + 1)13. The discrete bosonic equation of motion is

�̈j =
�j+1 + �j�1 � 2�j

✏2
(46)

12
We have taken M odd for convenience; this is not a big restriction and the case of even M can also be

handled.

13
We need to put N + 2 lattice points, including the end-points where �j are frozen to zero; this leaves

N + 1 lattice spacings in the total length L of the box.

15

we get 

Taking the ansatz �j = sin(kj✏)ei!t, we see that the box boundary condition �N+1 = 0 = �0

is satisfied when k = n⇡/(N + 1)✏ for integer n. Plugging this ansatz into the equation of

motion gives

!n =
2

✏
sin

✓
n⇡

2(N + 1)

◆
(47)

We can now compute the h��i and h⇡⇡i correlators in the ground state

h�(j)�(k)i =
NX

m=1

1

2!m
f(m, j)f(m, k) (48)

h⇡(j)⇡(k)i = ✏2
NX

m=1

!n

2
f(m, j)f(m, k), (49)

with f(m, j) =
p
2/L sin(⇡mj/(N + 1)), and use Casini-Huerta method to compute EE in

Mathematica to see that it indeed gives the expected result:

SA =
1

3
log

✓
Nl

L

◆
(50)

where l is the size of the interval A.

C Locality

|0i a†
1
|0i

0

BBBBBBBB@

1

CCCCCCCCA

h0| �(⌘) cos
�
(N � 1

2
)⌘
�
eix

h0| a1 cos
�
(N � 1

2
)⌘
�
e�ix �(⌘)

D Schur polynomials and giant gravitons
app:

schur The mathematics preliminaries for this appendix can be found, e.g. in [42]. The physics

background can be found, e.g. in [24, 32, 38].

Let us consider a state of multiple giant gravitons where rk giant gravitons have angular

momenum k, k = 1, 2, ..., N . According to [24, 32, 36, 38] such a state is created by a

16

Note that 𝜙3 , 𝜋V = 𝑖	𝛿3V  à EXACT HEISENBERG ALGEBRA

The Heisenberg algebra does not require specifying 𝜔., but if we consider the lattice version of the EOM (6) , namely 

Introducing the real space: lattice boson  GM-Mohan 2024



𝐻) = 2𝛼	𝑁	�
RH)

*

𝑘	𝑎R4	𝑎R , 	 H-=
𝛼
2	�

RH)

*

−𝑘-	𝑎R4	𝑎R 	+ �
2HR

*

(𝑎24𝑎2)	

-

	

Low energies: massless scalar

Recall that F9	 ≡ 0,1,2, …𝑁 − 1	 = 0 O. Low energy excitations above the Fermi sea correspond to 
creating holes at low depths, therefore the only non-zero occupation numbers 𝑎R4	𝑎R  are with small 𝑘 ≪ 𝑁. 
For free fermions in a box, recall eq. (6)

Under the above conditions

𝐻- ≪ 𝐻) Also, 𝐻) ≈ �𝐻) = 2𝛼	𝑁 =
N
	∑RH)* 𝜔R 	𝑎R4	𝑎R , 	𝑠𝑖𝑛𝑐𝑒	

=
N
	𝜔R =

=
N
-
<
sin 𝑘 N

- *4)
≈ 𝑘

Now, �𝐻) is the lattice Hamiltonian of a massless scalar in 1+1 dimensions, �𝐻) ≈ ∑3H),-,…,* 𝜋 𝑥3
- + (ΔW𝜙 𝑥3 )-

Note that the ground state of �𝑯𝟏, namely 𝟎 𝑩, is identical to that of the full  bosonic Hamiltonian 𝑯. (both are 
given by the state 0 O which is annihilated by the 𝑎R).  Hence EE for the ground state of 𝐻  should be that of the 
relativistic scalar:

𝑆7 =
)
8
log V

<
,  where 𝜖	is the lattice cut-off. [Holzhey-Wilczek, Calabrese-Cardy, Peschel, …]

We verify this explicitly below.  But before that ….. 



𝐻) = 2𝛼	𝑁	�
RH)

*

𝑘	𝑎R4	𝑎R , 	 𝐻-=
𝛼
2	�

RH)

*

−𝑘-	𝑎R4	𝑎R 	+ �
2HR

*

(𝑎24𝑎2)	

-

	 ,	 𝐻 = 𝐻) + 𝐻-	

�𝐻) = 2𝛼	𝑁
𝐿
𝜋	�

RH)

*

𝜔R 	𝑎R4	𝑎R , 	
𝐿
𝜋	𝜔R =

𝐿
𝜋
2
𝜖 sin 𝑘

𝜋
2 𝑁 + 1 ≈ 𝑘

�𝐻) is the lattice Hamiltonian of a massless scalar in 1+1 dimensions, �𝐻) ≈ ∑3H),-,…,* 𝜋 𝑥3
- + (ΔW𝜙 𝑥3 )-

Low temperature partition function

�𝐻) (= relativistic boson on a lattice)

𝐻)(= low energy form of H)

𝐻	(= Fermionic	Hamiltonian)

𝛽

Partition functions for various Hamiltonians as 
a function of inverse temperature  𝛽 



Taking the ansatz �j = sin(kj✏)ei!t, we see that the box boundary condition �N+1 = 0 = �0

is satisfied when k = n⇡/(N + 1)✏ for integer n. Plugging this ansatz into the equation of

motion gives

!n =
2

✏
sin

✓
n⇡

2(N + 1)

◆
(47)

We can now compute the h��i and h⇡⇡i correlators in the ground state

h�(j)�(k)i =
NX

m=1

1

2!m
f(m, j)f(m, k) (48)

h⇡(j)⇡(k)i = ✏2
NX

m=1

!n

2
f(m, j)f(m, k), (49)

with f(m, j) =
p
2/L sin(⇡mj/(N + 1)), and use Casini-Huerta method to compute EE in

Mathematica to see that it gives the result:

SA =
1

3
log

✓
Nl

L

◆
(50)

where l is the size of the interval A.

C Locality
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D Schur polynomials and giant gravitons
app:

schur The mathematics preliminaries for this appendix can be found, e.g. in [42]. The physics

background can be found, e.g. in [24, 32, 38].

Let us consider a state of multiple giant gravitons where rk giant gravitons have angular

momenum k, k = 1, 2, ..., N . According to [24, 32, 36, 38] such a state is created by a

16

Entanglement entropy: lattice boson

This PRECISELY reproduces the fermionic result!  We thus have a bosonic description reproducing the (finite) EE.

The matching of the real spaces (box →  box) is a surprise, since the bosonic field 𝜙 𝑥3 	is rather non-local in 
terms of the fermion field 𝜓(𝑥) or the fermion bilinear 𝜓4(𝑥) 𝜓(𝑦). The reason it works is that at low energies, 
the relation becomes approximately local.



Bosonic EE for fermions in a non-trivial external potential 

Ψ9 Φ 𝑥 ∼ 𝑒: ∑%,%' Z >,>' 	[ > [ >'  is the same as for a massless scalar. Hence, wouldn’t the EE remain the same?
But with a potential, the expression for the EE is different, and it depends on the potential 

𝑆 𝜆), 𝜆- = )
8
log (1"	:1#)	@( 1)

ℏ
	 , 𝑝6 𝜆 = 2 𝜖6 	− 𝑉 𝜆 , 

THIS SEEMS TO LEAD TO A PUZZLE!!

Note that (e.g. from equation (5a)), even in the presence of a non-trivial external fermion potential, the state 
0	 O remains the exact ground state of the bosonic Hamiltonian, even though it can be complicated and 

interacting. 

The simple way to see it is that the fermionic Hamiltonian is minimized by the Fermi ground state |𝐹9⟩, hence 
the corresponding state 0	 O  must minimize the bosonic Hamiltonian which is an exact translation of the 
Fermionic Hamiltonian.

If the ground state is the same, how does the dependence on the potential 𝑉 𝜆  come about???



Solution: let the potential determine the geometry of the lattice

𝑦3 = 𝑗	𝜖 𝑦*4) = 𝑁 + 1 𝜖 = 𝐿𝑦9 = 0
The existence of a non-zero  potential introduces inhomogeneity of 
space. 

𝜙 𝑦3 = �
RH)

*
1
2	𝜔R

	(𝑎R 	𝑒
-N2	3R*	 + 𝑎R4	𝑒

:	-N2	3R*	)	

𝜋 𝑦3 =
1
𝑖 �
RH)

*
𝜔R
2	

(𝑎R 	𝑒
-N2	3R*	 −	𝑎R4	𝑒

:	-N2	3R*	)	

The conjugate field is defined by

so that 𝜙(𝑥3), 𝜋(𝑦V) = 𝑖	𝛿3V  à EXACT HEISENBERG ALGEBRA

This corresponds to a reparameterization of the lattice 

2𝐸*	𝑦 = 2𝜋 *
=
	𝑦 = ∫>*

> 𝑑𝑥 2 �𝐸* 	− 𝑉 𝑥\ 	= ∫>*
> 𝑑𝑥 ′	 𝑝6(𝑥′) …..(7)

𝑥3 = 𝑥(𝑦3) 𝑥*4) = 𝑥4	𝑥9 = 𝑥:

𝑥: 𝑥4

𝑦 = 0 𝑦 = 𝐿

�𝜙 𝑥3 = 𝜙 𝑦3 , 	 ¡𝜋 𝑥3 = 𝜋 𝑦3 	

The EE is clearly 𝑺 𝒚𝟏, 𝒚𝟐 = 𝟏
𝟑
𝐥𝐨𝐠 𝒚𝟐:𝒚𝟏 𝑵

𝑳
= 𝟏

𝟑
𝒍𝒐𝒈 𝒙𝟐 − 𝒙𝟏 	𝒑𝑭(𝒙𝟎)  reproducing the fermion EE of [Das et al]! 

(we have assumed 𝑝6(𝑥) to be a slowly varying function of 𝑥 in the interval 𝑥)	, 𝑥- 	)



Justification for the coordinate transformation:

The ground state is semi-classically described by a fluid droplet occupying a certain region R, bounded by the Fermi 
surface. 

One can make a canonical transformation of the single-fermion phase space; the fluid droplet changes its shape 
(without changing the area). The boundary of the new droplet can be interpreted as the Fermi surface of a new 
Hamiltonian.

One can ask: what is the canonical transformation needed to go from the free particle (in a box) Hamiltonian 

ℎ = @"

-
	 to ℎ\ = @"

-
+ 𝑉 𝜆  ?

Such a transformation can be found. When restricted on the Fermi surface, the canonical transformation projects 
onto a transformation of the x-coordinate. The coordinate transformation precisely turns out to be (7). 



The EE of the bosonic theory for an interval 𝑨 corresponds to an operator algebra of the bosonic fields 
𝝓 𝒙 , 𝝅 𝒙 , where 𝒙 ∈ 𝑨. 

Why does the bosonic EE match with the fermionic EE then?

It can be shown that on low energy bosonic states (fermionic states near Fermi surface), the relation 
is approximately local.

From the expression of the bosonic oscillators in terms of the fermion bilinears, these local 
bosonic oscillators appear to be extremely non-local in terms of the fermion bilinears 
𝝍4 𝒙 𝝍(𝒚), involving operators which are outside of 𝑨

Locality

Why does fermionic real space map to the bosonic real space 
(albeit latticized)?



After a similarity transformation, the dynamics of the eigenvalues of M is described by N

free non-relativistic fermions trapped in a V (�) potential.

H ! �NH 00, H 00 =
NX

i=1

h(
@

@�i
,�i), h(

@

@�
,�) = � 1

(�N)2
@2

@�2
+ V (�) (32)

Note that (�N)�1 plays the role of ~ in H 00:

‘~’ = 1

�N
(33) hbar-n

and so each fermion occupies a phase space volume of �p��
2⇡ = 1/�N . In the ground state,

the fermions fill up the lowest energy single-particle eigenstates upto energy h = ✏F . The

fermion number constraint

N =

Z Z
dp d�

2⇡/�N
⇥

✓
✏F � p2

2
� V (�)

◆
(34)

gives a relation between � and ✏F

2⇡

�
= 2

Z
d�PF (�), (35) beta-

fermiE

where PF (�) =
p

2(✏F � V (�)). In the simple example of an infinite square well potential

(V = 0 for l 2 (0, L) and the wave function vanishes outside), PF (�) =
p
2✏F ✓(�)✓(L� �),

so that (35) becomes (inside the box)

2LPF = 2L
p
2✏F =

2⇡

�
. (36) beta-

fermiE-

0In this case, the formula (3) becomes

SA =
1

3

✓
log

✓
2PF (�2 � �1)

~

◆◆
=

1

3

✓
log

✓
2⇡

�L

(�2 � �1)

1/(�N)

◆◆
=

1

3

✓
log

✓
N

L
(�2 � �1)

◆◆
,

(37) SS-

hardbox

in various steps we have dropped some irrelevant numerical constants, which do not a↵ect

the dependence of the result on the physical parameters. We have used the value of ~ (33)

in the second step.

Double scaled c=1

In case of the c = 1 matrix model, (see, e.g. the reviews in [4–6]; see also the new inter-

pretations of the c = 1 model in, e.g. [7–9]) the potential V (�) needs to have a quadratic

maximum. Working concretely in the following double well potential [6]

V (�) =
1

4
�2(�� 2)2, (38) double-

well

13

3.3 A fuzzy phase space

Use coherent states: |~zi = exp
hPN

k=1
zka†k

i
|0iB. Using these as a set of (over-) complete

states at every point of a discretized time lattice, we get a path integral expression

h 0(t)|O1...ON | 0(t)i

=

Z
Dzk(t)Dz̄k(t) exp


i

Z
dt(iz̄ż � h(z̄, z))

�
O1 (z(t), z̄(t)) ...Or (z(t), z̄(t)) 0 

⇤
0

(28)

(a) Show a finite Feynman diagram

(b) Show that the trace identities are automatic.

4 A real space for the exact bosons
sec:

real-

space

Let us define relativistic bosons on a periodic lattice of size L, with lattice spacing ✏ = L/M

(i.e. there are M lattice points xj = j✏, j = 1, 2, ...,M). We will be interested in the large

M , or ✏ ! 0 limit. Since there are M lattice points, the number of normal modes must also

be M . We will denote the normal modes by an, a†n, where we let n range from �(M � 1)/2

to (M � 1)/29.

�j =
(M�1)/2X

n=�(M�1)/2

1p
2!n


an exp

✓
i
2⇡nj

M

◆
+ a†n exp

✓
�i

2⇡nj

M

◆�
(29) phi_

def

⇡j =
(M�1)/2X

n=�(M�1)/2

i

r
!n

2


�an exp

✓
i
2⇡nj

M

◆
+ a†n exp

✓
�i

2⇡nj

M

◆�
, (30) pi_def

with !n = 2/✏ sin(⇡n/M) (the standard dispersion for massless free scalar field theory on

a circular lattice).

A Matrix quantum mechanics
app:

matrix-

QM

In the following we will use the convention and notations of [6].10

S = �N

Z
dt{1

2
Tr(Ṁ)2 � TrV (M)} (31) matrix-

QM-a

9
We have taken M odd for convenience; this is not a big restriction and the case of even M can also be

handled.

10� below is analogous to the prefactor 1/g2YM in Yang-Mills action.

12

Dual to 2D string:

Ψ4 𝜆, 𝑡 Ψ 𝜆, 𝑡 = 𝜌 𝜆, 𝑡

Density fluctuations near the Fermi 
surface map to close string tachyon

5. C=1 matrix model GM-Mohan 2024
+ in progress

Entanglement entropy 𝑺𝑨=
1
3 log[2

𝜆- 	− 𝜆) 𝑝6 𝜆
ℏ ]

where 𝑝6(𝜆) = 2 𝜖6 	− 𝑉 𝜆   𝜆 = 0 𝜆 = 1 𝜆 = 2

As we saw above, this result can be obtained from the fermionic 
formulation as well as from the exact lattice boson described above.



After a similarity transformation, the dynamics of the eigenvalues of M is described by N

free non-relativistic fermions trapped in a V (�) potential.

H ! �NH 00, H 00 =
NX

i=1

h(
@

@�i
,�i), h(

@

@�
,�) = � 1

(�N)2
@2

@�2
+ V (�) (32)

Note that (�N)�1 plays the role of ~ in H 00:

‘~’ = 1

�N
(33) hbar-n

and so each fermion occupies a phase space volume of �p��
2⇡ = 1/�N . In the ground state,

the fermions fill up the lowest energy single-particle eigenstates upto energy h = ✏F . The

fermion number constraint

N =

Z Z
dp d�

2⇡/�N
⇥

✓
✏F � p2

2
� V (�)

◆
(34)

gives a relation between � and ✏F

2⇡

�
= 2

Z
d�PF (�), (35) beta-

fermiE

where PF (�) =
p

2(✏F � V (�)). In the simple example of an infinite square well potential

(V = 0 for l 2 (0, L) and the wave function vanishes outside), PF (�) =
p
2✏F ✓(�)✓(L� �),

so that (35) becomes (inside the box)

2LPF = 2L
p
2✏F =

2⇡

�
. (36) beta-

fermiE-

0In this case, the formula (3) becomes

SA =
1

3

✓
log

✓
2PF (�2 � �1)

~

◆◆
=

1

3

✓
log

✓
2⇡

�L

(�2 � �1)

1/(�N)

◆◆
=

1

3

✓
log

✓
N

L
(�2 � �1)

◆◆
,

(37) SS-

hardbox

in various steps we have dropped some irrelevant numerical constants, which do not a↵ect

the dependence of the result on the physical parameters. We have used the value of ~ (33)

in the second step.

Double scaled c=1

In case of the c = 1 matrix model, (see, e.g. the reviews in [4–6]; see also the new inter-

pretations of the c = 1 model in, e.g. [7–9]) the potential V (�) needs to have a quadratic

maximum. Working concretely in the following double well potential [6]

V (�) =
1

4
�2(�� 2)2, (38) double-

well
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3.3 A fuzzy phase space

Use coherent states: |~zi = exp
hPN

k=1
zka†k

i
|0iB. Using these as a set of (over-) complete

states at every point of a discretized time lattice, we get a path integral expression

h 0(t)|O1...ON | 0(t)i

=

Z
Dzk(t)Dz̄k(t) exp


i

Z
dt(iz̄ż � h(z̄, z))

�
O1 (z(t), z̄(t)) ...Or (z(t), z̄(t)) 0 

⇤
0

(28)

(a) Show a finite Feynman diagram

(b) Show that the trace identities are automatic.

4 A real space for the exact bosons
sec:

real-

space

Let us define relativistic bosons on a periodic lattice of size L, with lattice spacing ✏ = L/M

(i.e. there are M lattice points xj = j✏, j = 1, 2, ...,M). We will be interested in the large

M , or ✏ ! 0 limit. Since there are M lattice points, the number of normal modes must also

be M . We will denote the normal modes by an, a†n, where we let n range from �(M � 1)/2

to (M � 1)/29.

�j =
(M�1)/2X

n=�(M�1)/2

1p
2!n


an exp

✓
i
2⇡nj

M

◆
+ a†n exp

✓
�i

2⇡nj

M

◆�
(29) phi_

def

⇡j =
(M�1)/2X

n=�(M�1)/2

i

r
!n

2


�an exp

✓
i
2⇡nj

M

◆
+ a†n exp

✓
�i

2⇡nj

M

◆�
, (30) pi_def

with !n = 2/✏ sin(⇡n/M) (the standard dispersion for massless free scalar field theory on

a circular lattice).

A Matrix quantum mechanics
app:

matrix-

QM

In the following we will use the convention and notations of [6].10

S = �N

Z
dt{1

2
Tr(Ṁ)2 � TrV (M)} (31) matrix-

QM-a

9
We have taken M odd for convenience; this is not a big restriction and the case of even M can also be

handled.

10� below is analogous to the prefactor 1/g2YM in Yang-Mills action.
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After a similarity transformation, the dynamics of the eigenvalues of M is described by N

free non-relativistic fermions trapped in a V (�) potential.

H ! �NH 00, H 00 =
NX

i=1

h(
@

@�i
,�i), h(

@

@�
,�) = � 1

(�N)2
@2

@�2
+ V (�) (32)

Note that (�N)�1 plays the role of ~ in H 00:

‘~’ = 1

�N
(33) hbar-n

and so each fermion occupies a phase space volume of �p��
2⇡ = 1/�N . In the ground state,

the fermions fill up the lowest energy single-particle eigenstates upto energy h = ✏F . The

fermion number constraint

N =

Z Z
dp d�

2⇡/�N
⇥

✓
✏F � p2

2
� V (�)

◆
(34)

gives a relation between � and ✏F

2⇡

�
= 2

Z
d�PF (�), (35) beta-

fermiE

where PF (�) =
p

2(✏F � V (�)). In the simple example of an infinite square well potential

(V = 0 for l 2 (0, L) and the wave function vanishes outside), PF (�) =
p
2✏F ✓(�)✓(L� �),

so that (35) becomes (inside the box)

2LPF = 2L
p
2✏F =

2⇡

�
. (36) beta-

fermiE-

0In this case, the formula (3) becomes

SA =
1

3

✓
log

✓
2PF (�2 � �1)

~

◆◆
=

1

3

✓
log

✓
2⇡

�L

(�2 � �1)

1/(�N)

◆◆
=

1

3

✓
log

✓
N

L
(�2 � �1)

◆◆
,

(37) SS-

hardbox

in various steps we have dropped some irrelevant numerical constants, which do not a↵ect

the dependence of the result on the physical parameters. We have used the value of ~ (33)

in the second step.

Double scaled c=1

In case of the c = 1 matrix model, (see, e.g. the reviews in [4–6]; see also the new inter-

pretations of the c = 1 model in, e.g. [7–9]) the potential V (�) needs to have a quadratic

maximum. Working concretely in the following double well potential [6]

V (�) =
1

4
�2(�� 2)2, (38) double-

well

13

we see from (35) that for large �, ✏F is small and the Fermi sea sits deep in the well which

is centered around � = 0.11 As � is reduced, the Fermi sea keeps rising until the Fermi

surface hits the local maximum of the potential (✏F ! ✏c = 1/412) at some critical value of

� = �c = 3/4. and the theory undergoes a phase transition.

The double scaling limit that maps the matrix model to string theory is defined by

N ! 1, � ! �c, µ = ��N(✏F � ✏c) (39) double-

scaling

is held fixed. In this limit, the coordinate � gets rescaled to

�̃ =
p

�N(�� 1) (40)

so that � approaches 1 as N ! 1 and we zoom in on the inverted quadratic profile of the

potential at the local maximum. The Fermi momentum takes the form

PF (�) =

s

2

✓
✏F � 1

4
�2(�� 2)2

◆

=

s

2

✓
✏F � 1

4
+

(�� 1)2

2
� (�� 1)4

4

◆
. (41)

We will now see what the general formula (3) yields for the c = 1 matrix model (we again

use the value of ~ in (33))

SA =
1

3
log

 
2(�2 � �1)�N

s

2

✓
✏F � ✏c +

(�� 1)2

2
� (�� 1)4

4

◆!

=
1

3
log

0

@2
(�̃2 � �̃1)p

�N
�N

vuut2

 
� µ

�N
+

�̃2

2�N
� �̃4

4�2N2

!1

A

=
1

3
log

0

@2(�̃2 � �̃1)

vuut2

 
�µ+

�̃2

2

!1

A (42) c=1-

EE-app

B Relativistic bosons on a lattice
app:

herzog

Let us define relativistic bosons on a periodic lattice of size L, with lattice spacing ✏ = L/M

(i.e. there are M lattice points xj = j✏, j = 1, 2, ...,M). We will be interested in the large

11
This is a matter of convention; the second well is irrelevant as long as we ignore tunnelling. The

tunnelling amplitude represents instanton e↵ects which have been discussed recently in [39–41]; we will not

discuss these in our paper.

12
This is the value of the potential maximum which occurs at � = 1.
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Also, zoom near the maximum 𝜆 = 1  

After a similarity transformation, the dynamics of the eigenvalues of M is described by N

free non-relativistic fermions trapped in a V (�) potential.

H ! �NH 00, H 00 =
NX

i=1

h(
@

@�i
,�i), h(

@

@�
,�) = � 1

(�N)2
@2

@�2
+ V (�) (32)

Note that (�N)�1 plays the role of ~ in H 00:

‘~’ = 1

�N
(33) hbar-n

and so each fermion occupies a phase space volume of �p��
2⇡ = 1/�N . In the ground state,

the fermions fill up the lowest energy single-particle eigenstates upto energy h = ✏F . The

fermion number constraint

N =

Z Z
dp d�

2⇡/�N
⇥

✓
✏F � p2

2
� V (�)

◆
(34)

gives a relation between � and ✏F

2⇡

�
= 2

Z
d�PF (�), (35) beta-

fermiE

where PF (�) =
p

2(✏F � V (�)). In the simple example of an infinite square well potential

(V = 0 for l 2 (0, L) and the wave function vanishes outside), PF (�) =
p
2✏F ✓(�)✓(L� �),

so that (35) becomes (inside the box)

2LPF = 2L
p
2✏F =

2⇡

�
. (36) beta-

fermiE-

0In this case, the formula (3) becomes

SA =
1

3

✓
log

✓
2PF (�2 � �1)

~

◆◆
=

1

3

✓
log

✓
2⇡

�L

(�2 � �1)

1/(�N)

◆◆
=

1

3

✓
log

✓
N

L
(�2 � �1)

◆◆
,

(37) SS-

hardbox

in various steps we have dropped some irrelevant numerical constants, which do not a↵ect

the dependence of the result on the physical parameters. We have used the value of ~ (33)

in the second step.

Double scaled c=1

In case of the c = 1 matrix model, (see, e.g. the reviews in [4–6]; see also the new inter-

pretations of the c = 1 model in, e.g. [7–9]) the potential V (�) needs to have a quadratic

maximum. Working concretely in the following double well potential [6]

V (�) =
1

4
�2(�� 2)2, (38) double-

well

13

“Single scaling” → 0

we see from (35) that for large �, ✏F is small and the Fermi sea sits deep in the well which

is centered around � = 0.11 As � is reduced, the Fermi sea keeps rising until the Fermi

surface hits the local maximum of the potential (✏F ! ✏c = 1/412) at some critical value of

� = �c = 3/4. and the theory undergoes a phase transition.

The double scaling limit that maps the matrix model to string theory is defined by

N ! 1, � ! �c, µ = ��N(✏F � ✏c) (39) double-

scaling

is held fixed. In this limit, the coordinate � gets rescaled to

�̃ =
p

�N(�� 1) (40)

so that � approaches 1 as N ! 1 and we zoom in on the inverted quadratic profile of the

potential at the local maximum. The Fermi momentum takes the form

PF (�) =

s

2

✓
✏F � 1

4
�2(�� 2)2

◆

=

s

2

✓
✏F � 1

4
+

(�� 1)2

2
� (�� 1)4

4

◆
. (41)

We will now see what the general formula (3) yields for the c = 1 matrix model (we again

use the value of ~ in (33))

SA =
1

3
log

 
2(�2 � �1)�N

s

2

✓
✏F � ✏c +

(�� 1)2

2
� (�� 1)4

4

◆!

=
1

3
log

0

@2
(�̃2 � �̃1)p

�N
�N

vuut2

 
� µ

�N
+

�̃2

2�N
� �̃4

4�2N2

!1

A

=
1

3
log

0

@2(�̃2 � �̃1)

vuut2

 
�µ+

�̃2

2

!1

A (42) c=1-

EE-app

B Relativistic bosons on a lattice
app:

herzog

Let us define relativistic bosons on a periodic lattice of size L, with lattice spacing ✏ = L/M

(i.e. there are M lattice points xj = j✏, j = 1, 2, ...,M). We will be interested in the large

11
This is a matter of convention; the second well is irrelevant as long as we ignore tunnelling. The

tunnelling amplitude represents instanton e↵ects which have been discussed recently in [39–41]; we will not

discuss these in our paper.

12
This is the value of the potential maximum which occurs at � = 1.
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“Double  scaling”

Double scaled c=1 matrix model

𝜆 = 0 𝜆 = 1 𝜆 = 2

𝜖' =
1
4
𝜖6

𝑉 𝜆 = )
(
	− 1	:) "

-
+ 1:) ,

(
= )

(
−

_1"

-`*
+

_1,

( `* " 

𝑝6(𝜆) = 2 𝜖6 	− 𝑉 𝜆 = 2(− a
`*
−

_1"

-`*
+

_1,

( `* ") ∼ 𝟏/ 𝑵  

à Taking fermi level near the top

𝜖6 − 𝜖' = 𝜖6 −
1
4 = −

𝜇
𝛽𝑁

𝜆- 	− 𝜆) = ( 𝜆-	− 𝜆))/ 𝛽𝑁 ∼ 𝟏/ 𝑵 1
ℏ ∼ 𝑵



we see from (35) that for large �, ✏F is small and the Fermi sea sits deep in the well which

is centered around � = 0.11 As � is reduced, the Fermi sea keeps rising until the Fermi

surface hits the local maximum of the potential (✏F ! ✏c = 1/412) at some critical value of

� = �c = 3/4. and the theory undergoes a phase transition.

The double scaling limit that maps the matrix model to string theory is defined by

N ! 1, � ! �c, µ = ��N(✏F � ✏c) (39) double-

scaling

is held fixed. In this limit, the coordinate � gets rescaled to

�̃ =
p
�N(�� 1) (40)

so that � approaches 1 as N ! 1 and we zoom in on the inverted quadratic profile of the

potential at the local maximum. The Fermi momentum takes the form

PF (�) =

s

2

✓
✏F � 1

4
�2(�� 2)2

◆

=

s

2

✓
✏F � 1

4
+

(�� 1)2

2
� (�� 1)4

4

◆
. (41)

We will now see what the general formula (3) yields for the c = 1 matrix model (we again

use the value of ~ in (33))

SA =
1

3
log

 
2(�2 � �1)�N

s

2

✓
✏F � ✏c +

(�� 1)2

2
� (�� 1)4

4

◆!

=
1

3
log

0

@2
(�̃2 � �̃1)p

�N
�N

vuut2

 
� µ

�N
+

�̃2

2�N
� �̃4

4�2N2

!1

A

=
1

3
log

0

@2(�̃2 � �̃1)

vuut2

 
�µ+

�̃2

2

!1

A (42) c=1-

EE-app

B Relativistic bosons on a lattice
app:

herzog

Let us define relativistic bosons on a periodic lattice of size L, with lattice spacing ✏ = L/M

(i.e. there are M lattice points xj = j✏, j = 1, 2, ...,M). We will be interested in the large

11
This is a matter of convention; the second well is irrelevant as long as we ignore tunnelling. The

tunnelling amplitude represents instanton e↵ects which have been discussed recently in [39–41]; we will not

discuss these in our paper.

12
This is the value of the potential maximum which occurs at � = 1.
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Entanglement entropy 𝑺𝑨

(background-subtracted) closed string tachyon T (x, t) of the 2D string theory, with � and

x defined as above in (9). The coordinate space of the 2D string is x, which is measured in

units of the string length. Reinserting ls in the above formula (10), we get

SA =
1

3

✓
log

✓
x2 � x1

lsgs
sinh2(x0/ls)

◆◆
(11) c=1-

EE-

finalThis formula has a surprise, as the role of the short distance cut-o↵ seems to be played by

✏ = lsgs, (12) ls-gs

rather than just the string length ls, which is what one a priori expects in a string theory.

We will find that the EE can be explained in terms of a bosonic variable which has a natural

short distance cut-o↵ equal to (12).

The rest of the paper is organized as follows. In Section 2 we review some of the other

limitations of the description of matrix QM in terms of the eigenvalue density ⇢(�), besides

the subtlety involving the entanglement entropy mentioned above. In

2 Limitations with the density variable
sec:

prob As mentioned above, a natural continuum description of a large dimensional matrix would

appear to be its eigenvalue density

⇢(�) =
NX

i=1

�(�� �i) (13) rho-

lam

Indeed, in the context of the zero dimensional random matrix model, in the classic

paper [19] the (path) integral for the singlet (U(N) invariant) sector of a large dimensional

matrix model is expressed in terms of a path integral over ⇢(�). In the large N limit, the

latter path integral is dominated by a saddle point value of ⇢(�) (the ‘Wigner semicircle

distribution’ in case of the Gaussian matrix model).7 Expectation values of U(N) invariant

quantities, such as the traces

a(p) ⌘ trMp =
NX

i=1

�p
i =

Z
d� ⇢(�)�p (14) moments

are correctly reproduced in the strict N ! 1 limit by this saddle point value.

7
The precise saddle point solution is ⇢(�) = 1

2⇡

p
4� �2✓(4� �2

) [19].

4

𝜆 = 2𝜇	cosh(
𝑥
𝑙b
	)	

(background-subtracted) closed string tachyon T (x, t) of the 2D string theory, with � and

x defined as above in (9). The coordinate space of the 2D string is x, which is measured in

units of the string length. Reinserting ls in the above formula (10), we get

SA =
1

3

✓
log

✓
x2 � x1

lsgs
sinh2(x0/ls)

◆◆
(11) c=1-

EE-

finalThis formula has a surprise, as the role of the short distance cut-o↵ seems to be played by

✏ = lsgs, (12) ls-gs

rather than just the string length ls, which is what one a priori expects in a string theory.

We will find that the EE can be explained in terms of a bosonic variable which has a natural

short distance cut-o↵ equal to (12).

The rest of the paper is organized as follows. In Section 2 we review some of the other

limitations of the description of matrix QM in terms of the eigenvalue density ⇢(�), besides

the subtlety involving the entanglement entropy mentioned above. In

2 Limitations with the density variable
sec:

prob As mentioned above, a natural continuum description of a large dimensional matrix would

appear to be its eigenvalue density

⇢(�) =
NX

i=1

�(�� �i) (13) rho-

lam

Indeed, in the context of the zero dimensional random matrix model, in the classic

paper [19] the (path) integral for the singlet (U(N) invariant) sector of a large dimensional

matrix model is expressed in terms of a path integral over ⇢(�). In the large N limit, the

latter path integral is dominated by a saddle point value of ⇢(�) (the ‘Wigner semicircle

distribution’ in case of the Gaussian matrix model).7 Expectation values of U(N) invariant

quantities, such as the traces

a(p) ⌘ trMp =
NX

i=1

�p
i =

Z
d� ⇢(�)�p (14) moments

are correctly reproduced in the strict N ! 1 limit by this saddle point value.

7
The precise saddle point solution is ⇢(�) = 1

2⇡

p
4� �2✓(4� �2

) [19].

4

The EE in eq. (8) was originally derived by Das (1995) and Hartnoll-Mazenc (2015) using the fermion theory. 
As we see, we have derived this here using the exact lattice boson theory.

(Note that (see Sumit’s talk) in collective field theory, the EE is expected to be divergent in any order of 
perturbation theory). 

Below, we will discuss the relation of this bosonic field with D0 branes. But, before that, we 
discuss how our lattice boson correctly captures loop corrections to 2D string S-matrix elements.

… (8)



S- matrix of 2D string theory

𝑆 1 → 1 = 𝑆! + 𝑔"#	𝑆$, 𝑆! = 𝜔,	 𝑆$=
1
24 𝑖	𝜔# + 2	𝑖	𝜔% − 𝜔& + 𝑂 𝑔"% 	

Sengupta-Wadia 1990, GM-Sengupta-Wadia 1991, Moore-Plessar-Ramgoolam 1991

𝑆) corresponds to a 1-loop contribution in the string theory. This has been exactly 
reproduced by a torus world sheet calculation by Yin et al 2018.    

Tachyon 
scattering
off the wall

0 𝜌 1 𝜌 2 |0⟩

c=1 Matrix model (= Fermion field theory) gives 

In collective field theory, given by the cubic action,

the above one-loop term corresponds to the following diagram

In (GM-Sengupta-Wadia 1991), it was shown to be quadratically divergent. The divergence could be removed by a 
counter-term, but  the remaining finite expression differed from  𝑆) above.

Result: In our new bosonic formulation, the above 𝑆 1 → 1  is exactly reproduced! 



(McGreevy-Verlinde, Klebanov-Maldacena-Seiberg, Berenstein, Gaiotto-Itzhaki-Rastelli) 

𝑀23 𝑡 ≡ 𝑇23 𝑡 =	open string tachyon field on N D0 branes = dual to 2D closed string in a linear dilaton background 

𝑉 𝑀 = − )
-S'	

𝑀-	 is reinterpreted as 𝑉 𝑇 = − )
-S'	

𝑇-  which is part of the spacetime tachyon potential, with mass2 = − )
S'
	

Eigenvalues of the matrix 𝑀, namely 𝜆2 𝑡 , represent  open string tachyon field on the 𝑖-th D0 brane. 

In this rolling tachyon background, string world-sheet action becomes (in 𝑙b = 1 units)

Closed string field ∫ 𝑑𝜆	Ψ4 𝜆 	𝜆	Ψ 𝜆 ,  generated by the D0 brane, is  	𝐵𝑑	 𝑉 𝜆, 𝑡 	𝐵𝑑	 = 𝜇 sin 𝜋 𝜆9 cosh 𝑡  (same as (9))

Classical soluoon (with 𝑙b = 𝛼\	 ):	𝜆2 𝑡 = 𝜇 sin 𝜋 𝜆9 cosh c
V-

 …(9)

This is the rolling tachyon solution on an unstable D brane (Sen)

𝑆db = ∫ 𝑑-𝜉	𝜕𝑋a𝜕	𝑋a 	+ 𝜆9	∫ 𝑑𝜎	cosh(𝑡 𝜎 )	

Such a boundary deformation to a CFT corresponds to a boundary  state 	𝐵𝑑	

𝜆2,9 < 𝜇	

𝜆2,9 = 𝜇	

𝜆2,9 > 𝜇	

Eigenvalue above the fermi surface (particle): 𝜆9 = real, hence at 𝑡 = 0, 𝜆2 ≤ 𝜇	 (see the blue dot)

Eigenvalue below the fermi surface (hole): 𝜆9 =
)
-
+ 𝑖	��𝜆9	, ��𝜆9 	=	real, hence at 𝑡 = 0, 𝜆2 ≥ 𝜇	 (see the black dot)

𝑉 𝜆, 𝑡 = vertex operator related to the 
ground ring element 𝑂#,% + 𝑂%,#	



𝑟) = 4, 𝑟- = 0,… →	(𝒂𝟏4)𝟒
	 ⇒ 	𝑓)= 0, 𝑓- = 1,… , 𝑓e = 4, 𝑓Q = 9	
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𝑟( = 1, 𝑟) = 0,… , 𝑟Q = 0 →	𝒂𝟒4 ⇒ 	𝑓)= 0, 𝑓- = 1, 𝑓8 = 5, . . 𝑓Q = 8	

particle at height 4

hole at depth 4 

𝜆2,9 < 𝜇	

𝜆2,9 = 𝜇	

𝜆2,9 > 𝜇	



Unitary matrix model:

∫ 𝐷𝑈	𝑂(𝑈) = ∫ ∏2H),…,* 𝑑-𝑢2 	exp[−∑RH),…,*
g.	g.
R
	]	 𝑂(𝑢2 , »𝑢2 	) 

This can be rigorously shown for operators which are not “too large”, i.e. when
𝑶 = ∏𝒊H𝟏,…,𝑵𝒖𝒊

𝑷𝒊 𝒖𝒊𝑸𝒊  with ∑𝒋 𝒋	𝑷𝒋 ≤ 𝑵,	 ∑𝒋 𝒋	𝑸𝒋 ≤ 𝑵,	

The above equation can be rewritten in terms of a lattice field:

𝜒 𝜃3 = �
.H),..,*

𝑢.
𝑛
	exp 𝑖	𝑛	𝜃3 = �

.H),…,*

𝑢.
𝑛
	exp 𝑖	2𝜋	𝑛

𝑗
𝑁 ,	 𝜃3 = 2𝜋

𝑗
𝑁

∫ 𝐷𝑈	𝑂(𝑈) = ∫ ∏3H),…,* d𝜒 𝜃3 	d𝜒(𝜃3)	 exp[−∑3H),…,* 	 𝜒 𝜃3 𝜒(𝜃3)]	 𝑂(𝜒(𝜃3), 𝜒(𝜃3)	) 

Lattice boson for unitary matrix model GM-Ramgoolam-Suroshe, in 
progress



We pointed out subtleties with a continuum description of large N limit of matrix models: both for the 
time-independent matrix model (c=0), as well as for matrix QM (in particular c=1)

CONCLUSIONS

For matrix QM, a continuum description in terms of the eigenvalue density (the collective variable) 
gives divergent answers for (a) moments and (b) entanglement entropy, whereas they are finite in 
the matrix QM. 

We found an exact lattice bosonization of matrix QM. It resolves the two problems mentioned above.

It appears that the exact boson field 𝜙(𝑥) is a second quantized field describing multiple D0 
branes!  It is perhaps natural that such a field theory comes with a cut-off  𝑔b𝑙b.

What is the lesson for higher dimensions? E.g. for N=4 SYM ßà AdS gravity, … ?  




