Kinematic Anisotropies and Pulsar Timing Arrays

Gianmassimo Tasinato

Based on 2201.10464 with Giulia Cusin 2309.00403 2402.17312 with N. Marisol Jiménez Cruz, Ameek Malhotra, Ivonne Zavala 2406.04957 2412.14010

Swansea University and University of Bologna

0

► Several astrophysical and cosmological phenomena predict the existence of a stochastic background of gravitational waves

- Astro: Merging of compact binaries in various range masses ...
- Cosmo: Cosmological inflation, cosmic strings, phase transitions ...

► Tasks

- Detect it with sufficiently high significance
- Find methods for **distinguishing among different sources**

This talk: SGWB anisotropies

Stochastic gravitational wave background

$$\Omega_{\rm GW} = \frac{1}{\rho_c} \, \frac{d\rho_{\rm GW}}{d\ln k}$$

► Pulsars are **rapidly rotating neutron stars**: extremely precise astrophysical clocks given their period is almost constant in time.

► The **Time of Arrival** of emitted light to earth is sensitive to deformations of spacetime between pulsar and earth.

SGWB detection with PTAs

► Pulsars are **rapidly rotating neutron stars**: extremely precise astrophysical clocks given their period is almost constant in time.

► The **Time of Arrival** of emitted light to earth is sensitive to deformations of spacetime between pulsar and earth.

A change in observed period of pulsar can be attributed to the presence of a gravitational wave. It is the same principle of terrestrial interferometers – but with astronomically long arms! For this reason the frequency detected is in the nano-Hertz band.

► Pulsars are **rapidly rotating neutron stars**: extremely precise astrophysical clocks given their period is almost constant in time.

► The **Time of Arrival** of emitted light to earth is sensitive to deformations of spacetime between pulsar and earth.

► To reduce noise and avoid spurious signals, it is necessary to monitor several pulsars

Recently, several PTA collaborations found relatively strong evidence for a signal compatible with stochastic gravitational wave background.

News tropping As and Gravitational Waves

- Common spectrum process detected by NANOGrav, EPTA, PPTA, InPTA, CPTA
- ^o HD correlations detected with $\sim 3 4\sigma$ significance

-13.0

arxiv: 2309.00693

The slope though is not well measured, presently compatible with several possibilities.

► How do you actually compute HD? You do angular integrations, which need some care...

$$\Gamma^{I}_{ab}(f) = \frac{1}{2\pi \,\overline{I}(f)} \int d^2 \hat{n} \left(D^{\lambda}_{a}(\hat{n}) D^{\lambda'}_{b}(\hat{n}) \,\delta_{\lambda\lambda'} \right) \, I(f,\hat{n})$$

$$D_a^{\lambda}(\hat{n}) \equiv D_a^{ij}(\hat{n}) \mathbf{e}_{ij}^{\lambda}(\hat{n})$$
$$D_a^{ij} \equiv \frac{\hat{x}_a^i \, \hat{x}_a^j}{2(1+\hat{n} \cdot \hat{x}_a)}$$
$$\Omega_{\rm GW} = \frac{4\pi f^3}{3H_0^2} I$$

$$\Gamma_{ab}^{\rm HD} = \frac{1}{3} - \frac{y_{ab}}{6} + y_{ab} \ln y_{ab}$$

$$y_{ab} = \frac{1 - \hat{x}_a \hat{x}_b}{2} = \frac{1 - \cos \zeta}{2}$$

The Hellings-Downs curve

© Tonia Klein

\blacktriangleright Why isn't the H

[Romano-Allen]

Because for some small angles light pulses partially swim with the current of the GW, for some larger angles they swim against the current

Origin of PTA signal

Supermassive BH mergers predicted to produce amplitude ~ 10^{-15} and spectral index $\gamma = 13/3$ [Phinney (2001), Sesana et al. (2008)+]

Strong contender!

Origin of PTA signal wave background

Or is it from the early universe?

Large density perturbations <--> PBH

Phase Transitions

Additional possibilities studied in [arXiv: 2306.16219, 2306.16227 + more]

Example: scalar induced GW

Amplification of primordial GW induced by a peak in the curvature perturbation spectrum.

[Ananda et al, Baumann et al, Saito-Yokoyama,...]

What next? Detect the ani

▶ Both astro and cosmo SGWB, as detectable by PTA, are expected to have intrinsic anisotropies, which depend on their sources. For astro, they might be as large as $\frac{\Delta \Omega_{\rm GW}}{\bar{\Omega}_{\rm GW}} \simeq \mathcal{O}(10^{-2})$. For cosmo, $\frac{\Delta \Omega_{\rm GW}}{\bar{\Omega}_{\rm GW}} \leq \mathcal{O}(10^{-5})$. [Sato Polito-Kamionkowski], [Alba-Maldacena, Contaldi, Bartolo...GT]

No detection so far but with extra data and more time of observation a detection might be forthcoming, in case of astro SGWB.

SGWB Anisotropies

Currently PTA data is consistent with isotropy

NG15: Search for Anisotropy in the Gravitational Wave Background

SMBHB Anisotropies

Estimates vary, but **SMBHB** anisotropies are expected to be large

[Mingarelli et al. 2013; Taylor & Gair 2013; Mingarelli et al. 2017), Sato-Polito & Kamionkowski (2023) + more]

Cosmological SGWB anisotropies

CMB observations indicate large scale inhomogeneity at the 10^{-5} level

In general, cosmological SGWB anisotropies are expected to be small

See review by LISA CosWG (2022)

Kinematic anisotropies of the SGWB with PTA **Kinematic dipole anisotrop**

Ο

► For cosmo SGWB, we do expect a large **Doppler anisotropy** due to our relative motion wrt SGWB source rest frame

very similar to CMB!

- Motion towards $(l, b) = (264^\circ, 48^\circ)$ with velocity $\beta = v/c = 1.23 \times 10^{-3}$ (galactic co-ordinates)
 - ° Recent ~ $3 4\sigma$ tension between magnitude of CMB and LSS dipole, directions roughly consistent

► For cosmo SGWB, we do expect a large **Doppler anisotropy** due to our relative motion wrt SGWB source rest frame

- wrt SGWB rest frame

$$\simeq \mathcal{O}(10^{-3})$$

• Especially interesting as **independent probe** of intensity and direction of our speed

► PTA measurements of Doppler effects are also sensitive to modified gravity (circular polarization, extra scalar dofs) hence they provide additional tests of gravity

- ► Convenient to express in terms of GW intensity Ω_{GW}
- an initially isotropic intensity: [Cusin, GT]

with

► One can also get similar expressions for circular polarization, or intensity in extra dofs, and make forecasts for detection with PTA

$$= \frac{4\pi f^3}{3H_0^2} I$$

► Using conservation of graviton number in geometrical optics approx, one gets, from

The size of kinematic anisotropies depend on the scale

First task: develop theory

- First task: Develop the theory. Derive the PTA response functions to kinematic anisotropies.

 - done analytically.
 - GW polarizations.

[Anholm et al, Mingarelli et al, GT]

– Modification of HD correlations, due to extra effects of our motion wrt SGWB. - More complicated angular integrals to perform, but with some tricks can be

- Correlations now depend also on relative position of pulsars wrt \hat{v} , not only on angle between pulsars. They also depend on the (possible) presence of extra

First task: Develop the theory. Derive the PTA response functions to kinematic anisotropies.

$$\Gamma_{ab}(f) = \left[1 - \frac{\beta^2}{6} \left(1 - n_I^2 - \alpha_I\right)\right] \Gamma_{ab}^{(0)} + \beta \left(n_I - 1\right) \Gamma_{ab}^{(1)} + \frac{\beta^2}{2} \left(2 - 3n_I + n_I^2 + \alpha_I\right) \Gamma_{ab}^{(2)},$$

$$\Gamma_{ab}^{(0)} = \frac{1}{3} - \frac{y_{ab}}{6} + y_{ab} \ln y_{ab}$$

$$\Gamma_{ab}^{(1)} = \left(\frac{1}{12} + \frac{y_{ab}}{2} + \frac{y_{ab} \ln y_{ab}}{2(1 - y_{ab})}\right) \left[\hat{v} \cdot \hat{x}_a + \frac{y_{ab} \ln y_{ab}}{2(1 - y_{ab})}\right]$$

$$n_I = \frac{d \ln I}{d \ln f} \quad , \quad \alpha_I = \frac{d n_I}{d \ln f}$$

 $+\hat{v}\cdot\hat{x}_b]$,

$$\Gamma_{ab}^{(0)} = \frac{1}{3} - \frac{y_{ab}}{6} + y_{ab} \ln y_{ab}$$

$$\Gamma_{ab}^{(1)} = \left(\frac{1}{12} + \frac{y_{ab}}{2} + \frac{y_{ab} \ln y_{ab}}{2(1 - y_{ab})}\right) \left[\hat{v} \cdot \hat{x}_a + \hat{v}_a\right]$$

Circular polarisation

PTA blind to circular polarisation monopole — planar detector

$$\Gamma_{ab}^{V} = \beta \ (n_{V} - 1) \ G_{ab}^{(1)} V$$
$$G_{ab}^{(1)} = -\left(\frac{1}{3} + \frac{y_{ab} \ln y_{ab}}{4(1 - y_{ab})}\right) \ [\hat{v} \cdot (\hat{x} + \hat{y}_{ab})]$$

Cosmological sources e.g. GW from axion-gauge fields [Unal et al. 2023 + more]

PTA response begins at dipole

Second task: quantitative forecasts, and design new methods to extract info from data

Perspectives for Detecting Kinematic Anisotropies with PTA

► Take existing NANOGrav data, and model signal as power law

$$I(f) = \frac{A^2}{2f} \left(\frac{f}{f_{\star}}\right)^{3-\gamma}$$

Use NANOGrav likelihood and methods in ENTERPRISE packages.

Idealised scenario with $N \gg 100$ identical pulsars distributed uniformly We make several simplifying assumptions -> most optimistic estimate

[Keane et al. (2015), Janssen et al. (2015)]

 $-2\ln\mathcal{L} = \sum_{f}\sum_{AB} \left(\hat{\mathcal{R}}_{A} - \frac{\Gamma_{A}}{(47)}\right)$

- Assuming a Gaussian likelihood in the timing residual cross-spectra
 - A, B =pairs of pulsars

$$\left(\frac{\Delta \cdot I}{4\pi f}\right)^{2} C_{AB}^{-1} \left(\hat{\mathcal{R}}_{B} - \frac{\Gamma_{B} \cdot I}{(4\pi f)^{2}}\right)$$

 $N_{\text{pair}} \times N_{\text{pair}} \text{ covariance matrix}$

Weak signal Fisher matrix

We extend results of Haïmoud, Smith & Mingarelli (2020)

$$\Delta \theta_i = \sqrt{(\mathcal{F}^{-1})_{ii}}, \quad \vec{\theta} = \{\beta, \theta, \phi\}$$

$$\mathcal{F}_{ij} \propto \frac{2T}{S_N^2} N_{\text{pair}} \times \begin{bmatrix} \frac{I_0^2 (1-n_I)^2 F_1}{3} & 0 & 0\\ 0 & \frac{F_1 I_0^2 (1-n_I)^2 \beta^2}{3} & 0\\ 0 & 0 & \frac{F_1 I_0^2 (1-n_I)^2 \beta^2 \sin^2 \theta}{3} \end{bmatrix}, \quad F_1 \approx F_0/7$$

—— dipole magnitude and direction

Weak signal results

 $\sim 30^{\circ}$ degree localisation of dipole direction

Challenging even with ~4000 pulsars

Strong signal regime

Detection will be challenging even for futuristic experiments

See also Depta et al. (2024) for strong signal results

Circular polarisation (for general anisotropies)

Near maximal polarisation may be detected with SKA ($N_{\rm psr}\gtrsim 10^3$)

Degree of circular polarisation

$$\epsilon_V = \frac{V}{I}$$

Unconstrained by current data (again for cosmo SGWB)

Astrometry and SGWB

Precision astrometry with a large number of stars as a SGWB detector

[see Book, Flanagan (2010) for a review]

Gaia has $N \sim 10^9$ observed over 10 years with $\mathcal{O}(mas)$ precision. Already used to put constraints on low-frequency SGWB [Darling et al. 2018; Aoyama et al. 2021; Jaraba et al. (2023)]

Astrometry x PTA

Cross-correlations

The angular deflections and timing residuals induced by the SGWB are correlated

$$\frac{y)n_i - x_i}{(1 - y)} \left(2y - 2y^2 + 3y^2 \ln(y) \right)$$

Can cross-correlating Astrometry with PTA help?

Astrometry x PTA

Power-law

~10 % improvement over current PTA constraints

Astrometry x PTA

Dipole anisotropy

Minimum detectable dipole anisotropy relative to monopole ~ 0.05.

Current PTA level ~ 0.1

- much larger than intrinsic ones (like CMB)
- Scorbickinemated to Bobesponse to such anisotropies, and made initial forecasts for their detection
- on SGWB properties

$$I(f,\hat{n}) = \bar{I}(f) \left[1 + (1 - n_I)\beta(\hat{n} \cdot \hat{v}) + O(\beta + O(\beta + 1)) \right]$$
$$n_I = \frac{d\ln \bar{I}}{d\ln f}$$

COBE dipole detection (1994)

Conclusions

▶ If the SGWB is cosmological, it will present kinematic anisotropies with an amplitude

▶ More work to better characterize the prospects of detection, with more refined noise characterization, and with more systematic analysis of how the measurements depend

SGWB induced timing residual

$$\delta t_p^{\rm GW}(t)$$

$$\delta t_p^{
m GW}(f$$

 $= \frac{1}{2} \hat{p}_i \hat{p}_j \int_{t-D}^t dt' h_{ij}(t', (t-t')\hat{p})$

 $\delta t_p^{\rm GW}(f) = \frac{\hat{p}^i \hat{p}^j}{4\pi i f} \int d^2 \hat{n} \, \frac{h_{ij}(f, \hat{n})}{(1 + \hat{n} \cdot \hat{p})}$

arXiv: 2306.16219

$$\Gamma_{ab}(f) = \left[1 - \frac{\beta^2}{6} \left(1 - n_I^2 - \alpha_I\right)\right] \Gamma_{ab}^{(0)} + \beta (n_I - 1) \Gamma_{ab}^{(1)} + \frac{\beta^2}{2} \left(2 - 3n_I + n_I^2 + \alpha_I\right) \Gamma_{ab}^{(2)},$$

$$\Gamma_{ab}^{(0)} = \frac{1}{3} - \frac{y_{ab}}{6} + y_{ab} \ln y_{ab}$$

$$\Gamma_{ab}^{(1)} = \left(\frac{1}{12} + \frac{y_{ab}}{2} + \frac{y_{ab} \ln y_{ab}}{2(1 - y_{ab})}\right) [\hat{v}]$$

$$y_{ab} = \frac{1 - \hat{x}_a \hat{x}_b}{2} = \frac{1 - \cos\zeta}{2}$$

$$n_I = \frac{d \ln I}{d \ln f} \quad , \quad \alpha_I = \frac{d n_I}{d \ln f}$$

 $\left[\hat{v}\cdot\hat{x}_a+\hat{v}\cdot\hat{x}_b\right]\,,$

250 uniformly distributed pulsars

~ 20° degree localisation of dipole $\beta = (1.2 \pm 0.2) \times 10^{-3}$

noise

