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2402.17312 with N. Marisol Jiménez Cruz, Ameek Malhotra, Ivonne Zavala

Prepared for submission to JHEP

Kinematic Anisotropies and Pulsar Timing Arrays

Gianmassimo Tasinato

Swansea University and University of Bologna

Abstract:

Based on

2201.10464 with Giulia Cusin

2309.00403

2402.17312

2406.04957
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1 Stochastic gravitational wave background

I Several astrophysical and cosmological phenomena predict the existence of a

stochastic background of gravitational waves

– Astro: Merging of compact binaries in various range masses . . .

– Cosmo: Cosmological inflation, cosmic strings, phase transitions . . .

I Tasks

– Detect it with su�ciently high significance

– Find methods for distinguishing among di↵erent sources

2 Pulsar Timing Arrays and Gravitational Waves

• Pulsars are rapidly rotating neutron stars: extremely precise astrophysical clocks

given their period is almost constant in time.

• The Time of Arrival of emitted light to earth is sensitive to deformations of space-

time between pulsar and earth.

• A change in observed period of pulsar can be attributed to the presence of a grav-

itational wave. It is the same principle of terrestrial interferometers – but with as-

tronomically long arms! For this reason the frequency detected is in the nano-Hertz

band.

• Recently, several PTA collaborations found relatively strong evidence for a signal

compatible with stochastic gravitational wave background.

E.g. NANOGrav monitored 67 pulsars for a 15 years period. They found the char-

acteristic angular correlation between signals detected with di↵erent pulsars, as pre-

dicted by General Relativity. This is called Hellings-Downs curve.

• The measured amplitude of the background is

⌦GW =
1

⇢c

d⇢GW

d ln k
' (5± 2)⇥ 10�9

The slope though is not well measured, but the central value is well higher than what

expected from a background emitted by a population of supermassive black holes.

• Hence, the signal might have a cosmological origin.
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SGWB characterised in terms of:


Spectral shape 


Anisotropies  

non-Gaussianity  

Polarisation (circular/linear) 

ΩGW( f )

δΩGW( f, ̂n)

⟨hhh⟩…

SGWB Characterisation

7

1 Stochastic gravitational wave background

I Several astrophysical and cosmological phenomena predict the existence of a

stochastic background of gravitational waves (SGWB)

– Astro: Merging of compact binaries in various range masses . . .

– Cosmo: Cosmological inflation, cosmic strings, phase transitions . . .

I Tasks

– Detect it with su�ciently high significance

– Find methods for distinguishing among di↵erent sources

This talk: SGWB anisotropies

then a couple of slides with figs on freq dep

[Moore et al]
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Figure A3. A plot of the dimensionless energy density in GWs against frequency for a
variety of detectors and sources.

Figure A2. A plot of the square root of PSD against frequency for a variety of detectors
and sources.

Class. Quantum Grav. 32 (2015) 015014 C J Moore et al
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3 Pulsar Timing Arrays and Gravitational Waves

I Recently, several PTA collaborations found relatively strong evidence for a signal

compatible with stochastic gravitational wave background.

E.g. NANOGrav monitored 67 pulsars for a 15 years period. They found the char-

acteristic angular correlation between signals detected with di↵erent pulsars, as pre-

dicted by General Relativity. This is called Hellings-Downs curve.

I The measured amplitude of the background is

⌦GW =
1

⇢c

d⇢GW

d ln k
' (5± 2)⇥ 10�9

The slope though is not well measured, presently compatible with several possibilities.
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News from PTAs

Common spectrum process detected by 
NANOGrav, EPTA, PPTA, InPTA, CPTA 


HD correlations detected with ~  
significance
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12

NANOGrav 15 year analysis

3 Pulsar Timing Arrays and Gravitational Waves

I Recently, several PTA collaborations found relatively strong evidence for a signal

compatible with stochastic gravitational wave background.

E.g. NANOGrav monitored 67 pulsars for a 15 years period. They found the char-

acteristic angular correlation between signals detected with di↵erent pulsars, as pre-

dicted by General Relativity. This is called Hellings-Downs curve.

I The measured amplitude of the background is

⌦GW =
1

⇢c

d⇢GW

d ln k
' (5± 2)⇥ 10�9

The slope though is not well measured, presently compatible with several possibilities.

– 4 –

3 Pulsar Timing Arrays and Gravitational Waves

I Recently, several PTA collaborations found relatively strong evidence for a signal

compatible with stochastic gravitational wave background.

E.g. NANOGrav monitored 67 pulsars for a 15 years period. They found the char-

acteristic angular correlation between signals detected with di↵erent pulsars, as pre-

dicted by General Relativity. This is called Hellings-Downs curve.

I The measured amplitude of the background is

⌦GW =
1

⇢c

d⇢GW

d ln k
' (5± 2)⇥ 10�9

The slope though is not well measured, presently compatible with several possibilities.

– 4 –

dataset, we are able to place an upper limit � < 0.026 at 95% C.L. on the magnitude of this

dipole, assuming a cosmological origin for the signal and the dipole direction to be the same as

inferred from the CMB. We also show that the kinematic dipole will be well within the reach

of an SKA-like experiment, due to its lower noise levels and the significantly more pulsars it

is expected to observe. For such an experiment, we demonstrate that measuring the dipole

magnitude at a level ��/� ' 0.1 and the direction �(l, b) ' 10� is definitely a realistic target.

We also highlight how the positions of the pulsars observed as well as the spectral shape of the

SGWB a↵ects the sensitivity to the kinematic dipole.

The increased sensitivity of SKA will allow for measurements of the dipole magnitude and

direction at a level precise enough to test whether the rest frames of the CMB and cosmolog-

ical SGWB coincide. While one would naturally expect this to be the case, the emergence of

the recent CMB-LSS dipole tension underscores the importance of verifying this assumption

experimentally. In this way, observation of the the SGWB kinematic dipole could enable us to

not only pinpoint the origin of the PTA signal, but also serve as an independent test of the

cosmological principle. Last, but not least, Doppler anisotropies can also provide independent

tests of modifications of Einstein gravity. The search for their presence with PTA experiments

is definitely worth pursuing.
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A Conventions on the SGWB parameters

The spectral energy density parameter ⌦GW is related to the intensity I through

⌦GW =
4⇡2

f
3

3H2
0

I . (A.1)

Besides the GW energy density, another important quantity is the characteristic strain hc, which

we parametrise as a power law

hc(f) ⌘

p
2fI(f) = A

✓
f

fref

◆↵

. (A.2)

Note that for a background of supermassive black hole binaries, the expected parameters for the

characteristic strain are ↵ = �2/3 and A ⇡ 10�15. PTA collaborations typically report their

results in terms of the parameters A, � where

� ⌘ 3 � 2↵. (A.3)

20

The NG15 results for the amplitude A, when fixing ↵ = �2/3 and taking a reference frequency

of fref = 1/year are [1]

A = 2.4+0.7
�0.6 ⇥ 10�15 (at 90% C.L.) . (A.4)

For such a power law characteristic strain model, the spectral energy density can be expressed

as

⌦GW(f) =
2⇡2

f
2

3H2
0

A
2

✓
f

fref

◆2↵

= ⌦GW,0

✓
f

fref

◆n⌦

, (A.5)

where

⌦GW,0 ⌘
2⇡2

3H2
0

f
2
refA

2
, n⌦ ⌘ 2↵+ 2 . (A.6)

Similarly, for the intensity we have

I(f) =
A

2

2f

✓
f

fref

◆2↵

= I0

✓
f

fref

◆nI

, (A.7)

where

I0 ⌘
A

2

2fref
, nI ⌘ 2↵ � 1 . (A.8)

Plugging in the value of A measured by NANOGrav (A.4), we have

⌦GW,0 ⇡ 8.1 ⇥ 10�9
, I0 ⇡ 9.1 ⇥ 10�23[s] . (A.9)

If instead, we take as our reference frequency fref = 0.1/year we obtain,

⌦GW,0 ⇡ 5.6 ⇥ 10�10
, I0 ⇡ 6.3 ⇥ 10�21[s] . (A.10)

B Covariance matrix in the weak signal limit

We now provide arguments to explain why the covariance matrix in our likelihood is e↵ectively

diagonal in the weak signal limit – see the discussion after eq (3.5). Our arguments are not

specific to PTA experiments, but they are also applicable to ground based interferometers. Let

dI denote the data recorded by a given detector9 and NI denote its noise PSD. The data is the

sum of the signal and noise, i.e.

dI = sI + nI , hdIi = hsIi, hnIi = 0 . (B.1)

We write the likelihood as

�2 lnL =
X

IJ

(d̂I � sI)C
�1
IJ (d̂J � sJ)

T
, (B.2)

9This can be either the single detector ouput or the cross-correlated output in which case the subscript I
denotes either a pulsar or interferometer pair.
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4 The Hellings-Downs curve

I Why isn’t the HD angular correlation symmetric wrt ✓ = 90� ?

[Romano-Allen]

Because for some small angles light pulses partially swim with the current of the GW,

for some larger angles they swim against the current

I How do you actually compute HD? You do angular integrations, which need some

care...

– 5 –

4 The Hellings-Downs curve

I Why isn’t the HD angular correlation symmetric wrt ✓ = 90� ?

[Romano-Allen]

Because for some small angles light pulses partially swim with the current of the GW,

for some larger angles they swim against the current

I How do you actually compute HD? You do angular integrations, which need some

care...

– 5 –

D�
a (n̂)D

�0

b (n̂)
h
cos (2⇡f�t12) I(f, n̂)���0 + sin (2⇡f�t12)V (f, n̂)✏��0

i

=

Z
df sin (⇡ftA) sin (⇡ftB)

⇡ f2

⇥
⇥
Ī(f)�I

ab(f) cos (2⇡f�tAB) + V̄ (f)�V
ab(f) sin (2⇡f�tAB)

⇤
, (2.14)

where Ī(f) is the isotropic value of the intensity integrated over all directions, while V̄ (f) is its analog

for circular polarization.

The response functions of a pulsar pair to the GW intensity and circular polarization are obtained

integrating over n̂, and read

�I
ab(f) =

1

2⇡ Ī(f)

Z
d2n̂

⇣
D�

a (n̂)D
�0

b (n̂) ���0

⌘
I(f, n̂) , (2.15)

�V
ab(f) =

1

2⇡ V̄ (f)

Z
d2n̂

⇣
D�

a (n̂)D
�0

b (n̂) ✏��0

⌘
V (f, n̂) . (2.16)

These quantities depend on the relative position of the pulsars in the sky (given the dependence of the

quantities D�
a,b on the pulsar location) and on the properties of the SGWB. Hence, the response of a

PTA system to GW depends on the pulsar configuration. Notice that only correlators (2.14) evaluated at

di↵erent times tA and tB are sensitive to circular polarization. In actual measurements though, correlators

are weighted by suitable filters to better extract the signal. We discuss in Appendix B and section 5 the

relation between correlators as above and measurable GW signals, using a a match-filtering technique.

Our task 2 is to compute �I
ab(f) and �V

ab(f). The results depend also on the theory of gravity one

considers. For the case GW are carried by spin-2 fields, as in General Relativity, we can make use of eqs

(A.14) and (A.15). The quantities within parenthesis 3 in eqs (2.15) and (2.16) result:

D�
a (n̂)D

�0

b (n̂) ���0 =
(x̂a · n̂)2 + (x̂b · n̂)2 + (x̂a · n̂)2(x̂b · n̂)2 � 1

8(1 + x̂a · n̂)(1 + x̂b · n̂)

+
(x̂a · x̂b)2 � 2(x̂a · x̂b)(x̂a · n̂)(x̂b · n̂)

4(1 + x̂a · n̂)(1 + x̂b · n̂)
, (2.17)

and

D�
a (n̂)D

�0

b (n̂) ✏��0 =
[x̂a · x̂b � (x̂a · n̂)(x̂b · n̂)] [n̂ · (x̂a ⇥ x̂b)]

4(1 + x̂a · n̂)(1 + x̂b · n̂)
. (2.18)

where ⇥ denotes cross product among vectors. Plugging these results in eqs (2.15), (2.16), we are left with

angular integrals to carry on, which depend on I(f, n̂) and V (f, n̂). The computation gives quantities

depending on the GW frequency. We can already notice that, being the quantity in eq (2.18) an odd

function of the vector directions, the integral over all directions give zero, unless the circular polarization

function V (f, n̂) depend explicitly on the direction n̂. Hence we need an anisotropic signal to measure

circular polarization [80, 81], completely analogously to what happens for planar interferometers (see

e.g. [72]).

Starting from these basic formulas, in the next section we apply them to the specific case of spin-2 GW

(including circular polarization), and study anisotropies induced by the motion of our reference frame

with respect to the rest frame of the SGWB source.
2While in this section and the next we focus on spin-2 GW modes, the same procedure can be applied to study alternative

gravity models in which gravitation is mediated by a mixture of spin-2 and spin-0 or spin-1 fields. We examine this possibility
in section 4.

3Formulas similar to (2.17) have been used in [52, 53] to characterize scenarios with anisotropic GW intensity. See also
the treatment in [46]. As far as we are aware, our formulas for circular polarization are instead new in this context.
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section 5 we elaborate strategies of detection of the e↵ects listed above. Two Appendixes develop technical

tools needed in the main text.

2 Set-up

In this section we investigate the response of a PTA experiment to an anisotropic SGWB characterized

by the GW intensity and GW circular polarization. We will start appreciating how the PTA response to

GW depend on the pulsar configuration. In the next sections, the resulting formulas will then be applied

to the specific case of kinematic anisotropies.

The GW is expressed in terms of fluctuations of the Minkowski metric

ds2 = �dt2 + (�ij + hij(t, ~x)) dx
idxj . (2.1)

We decompose the GW in Fourier modes as

hij(t, ~x) =
X

�

Z
+1

�1
df

Z
d2n̂ e�2⇡if n̂~x e2⇡ift e�ij(n̂)h�(f, n̂) , (2.2)

imposing the condition

h�(�f, n̂) = h⇤
�(f, n̂) (2.3)

which ensures that hij(t, ~x) is real. We also assume that the polarization tensors e�ij are real quantities.

See Appendix A for more details on our conventions. The presence of a GW deforms the geodesics of

light, and produces a time delay �Ta(t) on the period of a pulsar. We denote with ⌧a the time travelled

from a pulsar to the Earth, setting from now on c = 1. The pulsar is situated at the position (from now

on, hat quantities correspond to unit vectors)

~xa = ⌧a x̂a (2.4)

with respect to the Earth, located at ~x = 0. The direction of the vector x̂a of the pulsar with respect to

the Earth plays an important role for our arguments.

The time delay of the light geodesics reads

za(t) =
�Ta(t)

Ta(t)
=

Z
+1

�1
df e2⇡ift za(f) (2.5)

=

Z
+1

�1
df e2⇡ift

 
X

�

Z
d2n̂Dij

a (n̂) e�ij(n̂)h�(f, n̂)

!
. (2.6)

Dij
a is the so-called detector tensor, controlling the connection between the light delay 1 and the GW:

Dij
a ⌘ x̂i

a x̂
j
a

2(1 + n̂ · x̂a)
. (2.7)

Starting from the time delay za(t), it is convenient to compute the time residual

Ra(t) ⌘
Z t

0

dt0za(t
0) , (2.8)

1In writing eq (2.6), we neglect as usual the ‘pulsar terms’ and focus on the ‘Earth terms’. We refer the reader to Chapter
23 of [92] and to the recent [93] for textbook discussions on the quantities we are introducing, their physical properties, and
more general information on how PTA respond to GW physics.
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which is easier to handle when Fourier transforming the signal. We assume that the correlators of Fourier

modes of GW fluctuations can be expressed as

hh�(f, n̂)h
⇤
�0(f 0, n̂0)i =

1

2
S��0(f, n̂) �(f � f 0)

�(2)(n̂� n̂0)

4⇡
, (2.9)

where the tensor S��0(f, n̂) defines the properties of the SGWB, and � is the polarization index (we adopt

a (+,⇥) basis for the polarization tensors, see Appendix A). The quantity S��0(f, n̂) can be decomposed

in intensity and circular polarization as

S��0(f, n̂) = I(f, n̂)���0 � iV (f, n̂) ✏��0 , (2.10)

where the 2⇥2 tensor ✏��0 is defined as ✏+⇥ = 1 = �✏⇥+, while ✏++ = 0 = ✏⇥⇥. The SGWB intensity

I(f, n̂) is real and positive, and the circular polarization V (f, n̂) is a real quantity. Both quantities can

depend on the GW frequency and direction, and behave as scalars under boosts. Our aim is to compute

the response of a PTA system to the presence of a SGWB, whose spectrum is characterized by (possibly

anisotropic) intensity I and circular polarization V parameters.

In order to do so, we compute the correlation among the time residuals of a pair of pulsars, denoted

respectively by the letters a and b, which is induced by the presence of GW. The correlations among

time-residuals is essential for detecting and characterizing the SGWB [94]. We introduce the short-hand

notation

D�
a (n̂) ⌘ Dij

a (n̂) e�ij(n̂) , ; �t12 = t1 � t2 , (2.11)

and compute the two-point correlators of the the two pulsar time delays (we sum over repeated polariza-

tion indexes):

hza(t1)zb(t2)i =

Z 1

�1
df df 0

Z
d2n̂ d2n̂0D�

a (n̂)D
�0

b (n̂0) e2⇡i(ft1+f 0t2)hh�(f, n̂)h�0(f 0, n̂0)i .

(2.12)

Making appropriate changes of variable, f ! �f and f 0 ! �f 0, we can use relation (2.3) to recast

the previous expression in a convenient form, which allows us to apply eq (2.9):

hza(t1)zb(t2)i =
1

2

Z
df df 0 d2n̂ d2n̂0D�

a (n̂)D
�0

b (n̂0)
⇣
e2⇡i(ft1�f 0t2)hh�(f, n̂)h

⇤
�0(f 0, n̂0)i+ e�2⇡i(ft1�f 0t2)hh⇤

�(f, n̂)h�0(f 0, n̂0)i
⌘
,

=
1

4

Z
df d2n̂D�

a (n̂)D
�0

b (n̂)
�
e2⇡if�t12 S��0(f, n̂) + e�2⇡if�t12 S⇤

��0(f, n̂)
�
,

=
1

4

Z
df d2n̂D�

a (n̂)D
�0

b (n̂)

[cos (2⇡f�t12) (S��0(f, n̂) + S⇤
��0(f, n̂)) + i sin (2⇡f�t12) (S��0(f, n̂)� S⇤

��0(f, n̂))] ,

=
1

2

Z
df d2n̂D�

a (n̂)D
�0

b (n̂) [cos (2⇡f�t12) I(f, n̂)���0 + sin (2⇡f�t12)V (f, n̂)✏��0 ] .

(2.13)

The previous result can be plugged in eq (2.8) to compute the two-point function of time residuals:

hRa(tA)Rb(tB)i =
1

2

Z tA

0

Z tB

0

dt1dt2

Z
df d2n̂

4

d ln V̄ (f)

d ln f
= nV (f) + 1 ,

f2 V̄ 00(f)

V̄ (f)
= ↵V (f) + nV (f) + n2

V (f) (3.7)

and the isotropic bar quantities Ī(f), V̄ (f) are defined after eq (2.14). In writing equations (3.4) and

(3.5) we expand the definition of D of eq (3.3) up to second order in the expansion parameter �, and

we assemble the results in a way that makes manifest how kinematic e↵ects give rise to dipolar and

quadrupolar anisotropies 4, as controlled by the size of �. As suggested by CMB results, we expect � to

be of order 10�3, making the detection of kinematic anisotropies a demanding (but certainly interesting!)

challenge for PTA experiments.

From now on, in this section we consider two pulsars a, b are located at positions ~xa = ⌧a x̂a and

~xb = ⌧b x̂b with respect to the Earth located at the origin. The corresponding pulsar response functions

�I,V
ab are analytically calculated plugging the expressions (3.4) and (3.5) into eqs (2.15) and (2.16), and

performing the angular integrals 5. The results are easier to handle introducing the combination

yab =
1� x̂ax̂b

2
=

1� cos ⇣

2
, (3.8)

which depends on the relative angle x̂a · x̂b = cos ⇣ of the pulsar positional vectors with respect to the

Earth (see eq (2.4)). We now analytically investigate how the integrals depend on the pulsar positions

with respect to the velocity vector v̂. We find exact results with a transparent geometrical interpretation,

which turns useful in developing strategies of detection in section 5.

3.1 Pulsar response to GW intensity

The response function (2.15) to the GW intensity, expanded up to order �2, results

�I
ab = �HD

ab + � nIF
(1)

ab + �2
�
↵I + n2

I � nI

�
F (2)

ab , (3.9)

with

�HD

ab =
1

3
� yab

6
+ yab ln yab (3.10)

F (1)

ab =

✓
1

12
+

yab
2

+
yab ln yab
2(1� yab)

◆
[v̂ · x̂a + v̂ · x̂b] , (3.11)

F (2)

ab =

✓
3� 13yab
20(yab � 1)

+
y2ab ln yab
2(1� yab)2

◆
[(v̂ · x̂a)(v̂ · x̂b)]

+

✓
1 + 2yab � 4y2ab + y3ab + 3yab ln yab

12(1� yab)2

◆ ⇥
(v̂ · x̂a)

2 + (v̂ · x̂b)
2
⇤
. (3.12)

The response function (3.9) includes a first part �HD

ab (independent from �) corresponding to the

classic Hellings Downs curve [94] which we collect in eq (3.10). A second part (first determined in [46]) is

weighted by the relative velocity �, and controls the dipolar kinematic anisotropy. As anticipated above,

it is proportional to the slope nI(f) of the SGWB profile, as defined in eq (3.6), making Doppler e↵ects

a probe of features of the SGWB frequency spectrum. Considering its geometrical properties, we notice

that eq (3.11) is symmetric under the interchange of pulsar positions a $ b, and it vanishes if the pulsar

directions are orthogonal to the direction of the relative velocity v̂ among frames. In fact, di↵erently

4They also give contributions of order �2 to the monopole, a small e↵ect that we neglect from now on.
5To carry on the integrals we found convenient to make use of complex integration methods and Cauchy theorem, as

explained in detail in [95].
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be of order 10�3, making the detection of kinematic anisotropies a demanding (but certainly interesting!)
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~xb = ⌧b x̂b with respect to the Earth located at the origin. The corresponding pulsar response functions

�I,V
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performing the angular integrals 5. The results are easier to handle introducing the combination

yab =
1� x̂ax̂b

2
=

1� cos ⇣

2
, (3.8)

which depends on the relative angle x̂a · x̂b = cos ⇣ of the pulsar positional vectors with respect to the

Earth (see eq (2.4)). We now analytically investigate how the integrals depend on the pulsar positions

with respect to the velocity vector v̂. We find exact results with a transparent geometrical interpretation,

which turns useful in developing strategies of detection in section 5.

3.1 Pulsar response to GW intensity

The response function (2.15) to the GW intensity, expanded up to order �2, results
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The response function (3.9) includes a first part �HD

ab (independent from �) corresponding to the

classic Hellings Downs curve [94] which we collect in eq (3.10). A second part (first determined in [46]) is

weighted by the relative velocity �, and controls the dipolar kinematic anisotropy. As anticipated above,

it is proportional to the slope nI(f) of the SGWB profile, as defined in eq (3.6), making Doppler e↵ects

a probe of features of the SGWB frequency spectrum. Considering its geometrical properties, we notice

that eq (3.11) is symmetric under the interchange of pulsar positions a $ b, and it vanishes if the pulsar

directions are orthogonal to the direction of the relative velocity v̂ among frames. In fact, di↵erently

4They also give contributions of order �2 to the monopole, a small e↵ect that we neglect from now on.
5To carry on the integrals we found convenient to make use of complex integration methods and Cauchy theorem, as

explained in detail in [95].
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2 Pulsar Timing Arrays and Gravitational Waves

I Convenient to express in terms of GW intensity

⌦GW =
4⇡ f

3

3H2
0

I

I Using conservation of graviton number in geometrical optics approx, one gets, from

an initially isotropic intensity:

I(f, n̂) = D Ī(D�1
f)

with

D =

p
1� �2

1� � n̂ · v̂

[Cusin, GT]

I Pulsars are rapidly rotating neutron stars:

extremely precise astrophysical clocks given their period is almost constant in time.

I The Time of Arrival of emitted light to earth is sensitive to deformations of space-

time between pulsar and earth.

A change in observed period of pulsar can be attributed to the presence of a grav-

itational wave. It is the same principle of terrestrial interferometers – but with as-

tronomically long arms! For this reason the frequency detected is in the nano-Hertz

band.

I To reduce noise and avoid spurious signals, it is necessary to monitor several pulsars

– 3 –



4 The Hellings-Downs curve

I Why isn’t the HD angular correlation symmetric wrt ✓ = 90� ?

[Romano-Allen]

Because for some small angles light pulses partially swim with the current of the GW,

for some larger angles they swim against the current

I How do you actually compute HD? You do angular integrations, which need some

care...
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Figure 8. The geometry for the pulsar-pair correlation analysis is the same as
in Figure 2, but with two Earth-pulsar baselines. The pulsars are labeled by a
and b and are at distances La and Lb and directions p̂a and p̂b as seen from
Earth. They are separated by angle � on the sky. As discussed in the text, we
assume that the Earth-pulsar distances La, Lb and the distance between the two
pulsars |Lap̂a �Lbp̂b| are much greater than the correlation length of the relevant
GWs. Consequently, the expression for the expected correlation only contains the
Earth-term response functions Fa(⌦̂) and Fb(⌦̂) for the two pulsars.

formulation (1a) for a single source, and define Fourier amplitudes h̃A(f) for the
source waveforms by

h̃A(f) ⌘
Z

dt e�i2⇡ft hA(t) , h̃(f) = h̃+(f) + ih̃⇥(f) , (43)

where we give both the linear and complex polarization forms. The redshift of pulsar
a may then be written as

Za(t) =

Z
df ei2⇡ft

X

A

h̃A(f)RA
a (f, ⌦̂) (44)

= <
Z

df ei2⇡fth̃(f)R⇤
a(f, ⌦̂)

�
.

The redshift of pulsar b is given by the same expression as in (44), with a ! b.
The right-hand side of (42) contains 16 terms, because each pulsar redshift has

contributions from two polarization components evaluated at both the Earth and
pulsar, so there are four terms per pulsar. All of these terms contribute to ⇢ab for a
fixed set of GW sources and a fixed pair of pulsars.

However, for calculating the mean correlation for a pair of distinct Earth-pulsar
baselines, only four terms survive, as described in detail in, e.g., [8, 9]. The argument
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Origin of PTA signal

Supermassive BH mergers predicted to 
produce amplitude  and spectral index

 [Phinney (2001), Sesana et al. (2008)+]

∼ 10−15

γ = 13/3
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SMBHB prediction

Strong contender!

1 Stochastic gravitational wave background

I Several astrophysical and cosmological phenomena predict the existence of a

stochastic background of gravitational waves

– Astro: Merging of compact binaries in various range masses . . .

– Cosmo: Cosmological inflation, cosmic strings, phase transitions . . .

I Tasks

– Detect it with su�ciently high significance

– Find methods for distinguishing among di↵erent sources

2 Pulsar Timing Arrays and Gravitational Waves

• Pulsars are rapidly rotating neutron stars: extremely precise astrophysical clocks

given their period is almost constant in time.

• The Time of Arrival of emitted light to earth is sensitive to deformations of space-

time between pulsar and earth.

• A change in observed period of pulsar can be attributed to the presence of a grav-

itational wave. It is the same principle of terrestrial interferometers – but with as-

tronomically long arms! For this reason the frequency detected is in the nano-Hertz

band.

• Recently, several PTA collaborations found relatively strong evidence for a signal

compatible with stochastic gravitational wave background.

E.g. NANOGrav monitored 67 pulsars for a 15 years period. They found the char-

acteristic angular correlation between signals detected with di↵erent pulsars, as pre-

dicted by General Relativity. This is called Hellings-Downs curve.

• The measured amplitude of the background is

⌦GW =
1

⇢c

d⇢GW

d ln k
' (5± 2)⇥ 10�9

The slope though is not well measured, but the central value is well higher than what

expected from a background emitted by a population of supermassive black holes.

• Hence, the signal might have a cosmological origin.
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Origin of PTA signal

Or is it from the early universe?

arXiv: 2306.16219 Additional possibilities studied in 

[arXiv: 2306.16219, 2306.16227 + more]
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Inflation

Large density  
perturbations <—> PBH

Phase Transitions
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dicted by General Relativity. This is called Hellings-Downs curve.

• The measured amplitude of the background is

⌦GW =
1

⇢c

d⇢GW

d ln k
' (5± 2)⇥ 10�9

The slope though is not well measured, but the central value is well higher than what

expected from a background emitted by a population of supermassive black holes.

• Hence, the signal might have a cosmological origin.
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Fig. 1. Top: The energy density of the induced GWs for the power spectrum for a peak width, ∆ =
0.0, 1.0 × 10−3, 1.0 × 10−1, 1.0. Bottom: Energy density of scalar-induced GWs associated with PBH
formation together with current pulsar constraint (thick solid line segment) and sensitivity of various
GW detectors (convex curves). Solid wedged lines indicate the energy density with the parameters
(ΩPBHh2, MPBH) = (10−5, 102M") (left), (10−1, 1020g) (right) for sufficiently small ∆ (thick lines) and
∆ = 1.0 (thin lines).
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5 What next? Detect the anisotropies of the SGWB

I Both astro and cosmo SGWB, as detectable by PTA, are expected to have intrinsic

anisotropies, which depend on their sources.

For astro, they might be as large as �⌦GW
⌦̄GW

' O(10�2). For cosmo, �⌦GW
⌦̄GW

 O(10�5).

[Sato Polito-Kamionkowski], [Alba-Maldacena, Contaldi, Bartolo. . . GT]

No detection so far but with extra data and more time of observation a detection

might be forthcoming, in case of astro SGWB.

I For cosmo SGWB, we do expect a large Doppler anisotropy due to our relative

motion wrt SGWB source rest frame

very similar to CMB!

– 6 –

SGWB characterised in terms of:


Spectral shape 


Anisotropies  

non-Gaussianity  

Polarisation (circular/linear) 
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SGWB Characterisation
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Currently PTA data is consistent 
with isotropy

SGWB Anisotropies

15

NG15: Search for Anisotropy in the Gravitational Wave Background



Estimates vary, but SMBHB 
anisotropies are expected to be large

16

NANOGrav 15-year Anisotropic Gravitational-Wave Background

SMBHB Anisotropies

[Mingarelli et al. 2013; Taylor & Gair 2013; Mingarelli et al. 
2017), Sato-Polito & Kamionkowski (2023) + more]
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Cosmological SGWB anisotropies

CMB observations indicate large scale

 inhomogeneity at the  level10−5

See review by LISA CosWG (2022) 
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¸(
¸

+
1)
C
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CMB TT
GW

In general, cosmological SGWB anisotropies are 
expected to be small

https://arxiv.org/abs/2201.08782
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Kinematic dipole anisotropy

Dipole the largest anisotropy in the CMB 
and the first to be detected


Motion towards   with 
velocity  (galactic 
co-ordinates)

(l, b) = (264∘,48∘)
β = v/c = 1.23 × 10−3

2020

COBE dipole detection (1994)

̂v
SGWB Kinematic dipole

If SGWB is of early universe origin, then we can expect a kinematic dipole 
mirroring that of the CMB

0.9959 1.0041

̂v
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I(f, n̂) = Ī(f)
⇥
1 + (1� nI)�(n̂ · v̂) +O(�2)

⇤
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nI ⌘ d ln Ī

d ln f

[Cusin and Tasinato (2022)]

Kinematic dipole anisotropy

Dipole the largest anisotropy in the CMB 
and the first to be detected


Motion towards   with 
velocity  (galactic 
co-ordinates)

(l, b) = (264∘,48∘)
β = v/c = 1.23 × 10−3

2020

COBE dipole detection (1994)

̂v

Recent  tension between 
magnitude of CMB and LSS dipole, 
directions roughly consistent


Can SGWB observations help? 
Another test of the cosmological 
principle…

∼ 3 − 4σ

Image: Secrest et al. (2020)

Kinematic dipole anisotropy

22

6 Kinematic anisotropies of the SGWB with PTA

I Especially interesting as independent probe of intensity and direction of our speed

wrt SGWB rest frame

I PTA measurements of Doppler e↵ects are also sensitive to modified gravity (circular

polarization, extra scalar dofs) hence they provide additional tests of gravity
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2 Pulsar Timing Arrays and Gravitational Waves

I Convenient to express in terms of GW intensity

⌦GW =
4⇡ f

3

3H2
0

I

I Using conservation of graviton number in geometrical optics approx, one gets, from

an initially isotropic intensity:

I(f, n̂) = D Ī(D�1
f)

with

D =

p
1� �2

1� � n̂ · v̂

I Pulsars are rapidly rotating neutron stars:

extremely precise astrophysical clocks given their period is almost constant in time.

I The Time of Arrival of emitted light to earth is sensitive to deformations of space-

time between pulsar and earth.

A change in observed period of pulsar can be attributed to the presence of a grav-

itational wave. It is the same principle of terrestrial interferometers – but with as-

tronomically long arms! For this reason the frequency detected is in the nano-Hertz

band.

I To reduce noise and avoid spurious signals, it is necessary to monitor several pulsars
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I One can also get similar expressions for circular polarization, or intensity in extra

dofs, and make forecasts for detection with PTA
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A resonance 4 then produces a pronounced peak, occurring at frequency f/f? = 2/
p
3. It

then definitely drops and it vanishes at frequencies f/f? > 2, since, working at second order in

perturbations, momentum conservation does not allow to generate tensors whose momenta are

larger than twice the scalar momentum.
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Figure 2: Representation of the relative contributions to eq (2.15) for the system GW density parameter
represented in Fig 1. We choose the CMB value for � = 1.23⇥ 10�3. Blue is the monopole; Green is the
dipole divided by �; Red is the quadrupole divided by �

2. Below the grey line, for reference, we include
the shape profile of the original ⌦GW in arbitrary units. Notice that the dipole contribution, starting at
order �1, is much larger than the others, and can be up to two orders of magnitude larger than � within
the frequency range where features in the spectrum occur.

Let us assume that the primordial anisotropies in the rest-frame S
0 are negligible, so to

work in the set-up of section 2.2. Due to the large absolute values of the tilt parameters

n⌦, ↵⌦ we expect large induced kinematic anisotropies at least in the specific frequency rangep
2/3  f/f?  2. The amplitude of the kinematic contributions to the monopole, dipole,

and quadrupole of the SGWB amplitude in the moving frame S is controlled by the functions

M(f), D(f), Q(f) introduced in eq (2.15). In figure 2 we plot these quantities as a function of

frequency, showing that they are indeed enhanced in the expected frequency interval: the dipole

contribution is the dominant one since it is weighted by a single power �
1 of the expansion

parameter. In particular, a pronounced amplification of kinematic anisotropies occurs at the

position of the first dip of the spectrum, around f/f? =
p
2/3.

We should now reconsider footnote 3. Given that the spectral tilts become large where the

spectrum has features – see Fig 1 – we might ask whether the expansion in powers of � is

consistent in this context. In particular we want to check whether higher order contributions

to the kinematic anisotropies can turn larger than the ones we included, thus invalidating our

formulas truncated at second order in a � expansion. We discuss this issue in the technical

Appendix B, where we show that higher order corrections in a � expansion are hierarchically

smaller, hence the results plotted in Fig 2 are robust.

It would be interesting to explore whether a detection of kinematically induced anisotropies

is possible for these scenarios, and whether it can complement direct measurements of the slope

of the spectrum (see e.g. [50–52] for methods and forecasts). This possibility would allow one

4In realistic examples, we expect the sharp peak at the resonance position to be smoothed out [40], so we will
not consider the enhancement of kinematic e↵ects occurring precisely at the resonance frequency f/f? = 2/

p
3.
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12 Example: scalar induced GW

Amplification of primordial GW induced by a peak in the curvature perturbation spectrum.

Resonance

)

[Ananda et al, Baumann et al, Saito-Yokoyama,. . . ]

13 First task: develop theory

(for general anisotropies)

)

The size of kinematic anisotropies

depend on the scale
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7 Kinematic anisotropies of the SGWB with PTA

I First task: Develop the theory. Derive the PTA response functions to kinematic

anisotropies.

– Modification of HD correlations, due to extra e↵ects of our motion wrt SGWB.

– More complicated angular integrals to perform, but with some tricks can be

done analytically.

– Correlations now depend also on relative position of pulsars wrt v̂, not only

on angle between pulsars. They also depend on the (possible) presence of extra

GW polarizations.

[Anholm et al, Mingarelli et al, GT]
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consider the next-to-leading contribution of order �
2, associated with quadrupolar Doppler ef-

fects. For this reason, we develop our formulas up to order �2. Taylor expanding eq (2.18), we

find

I(f, n̂)

Ī(f)
=


1 �

�
2

6

�
1 � n

2
I � ↵I

��
+ � n̂ · v̂ (1 � nI)

+
�
2

2

✓
(n̂ · v̂)2 �

1

3

◆�
2 � 3nI + n

2
I + ↵I

�
+ O(�3) . (2.20)

The tilt parameters are defined as

nI =
d ln Ī

d ln f
, ↵I =

dnI

d ln f
. (2.21)

Notice that, in general, these quantities depend on frequency. Plugging expression (2.20) into eq

(2.10), we can straightforwardly perform the angular integrations [56], and obtain the following

expression

�ab(f) =


1 �

�
2

6

�
1 � n

2
I � ↵I

��
�(0)
ab + � (nI � 1)�(1)

ab

+
�
2

2

�
2 � 3nI + n

2
I + ↵I

�
�(2)
ab , (2.22)

for the PTA overlap function among a pulsar pair (ab). The quantities �(i)
ab are given by [56]

�(0)
ab =

1

3
�

yab

6
+ yab ln yab (2.23)

�(1)
ab =

✓
1

12
+

yab

2
+

yab ln yab
2(1 � yab)

◆
[v̂ · x̂a + v̂ · x̂b] , (2.24)

�(2)
ab =

✓
3 � 13yab
20(yab � 1)

+
y
2
ab ln yab

2(1 � yab)2

◆
[(v̂ · x̂a)(v̂ · x̂b)]

+

✓
1 + 2yab � 4y2ab + y

3
ab + 3yab ln yab

12(1 � yab)2

◆ ⇥
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(2.24) and (2.25). Hence, the magnitude of kinematic anisotropies depend on the geometric
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6 Kinematic anisotropies of the SGWB with PTA

I Especially interesting as independent probe of intensity and direction of our speed

wrt SGWB rest frame

I PTA measurements of Doppler e↵ects are also sensitive to modified gravity (circular

polarization, extra scalar dofs) hence they provide additional tests of gravity
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d ln f
, ↵I =

dnI

d ln f
. (2.21)

Notice that, in general, these quantities depend on frequency. Plugging expression (2.20) into eq

(2.10), we can straightforwardly perform the angular integrations [56], and obtain the following

expression

�ab(f) =


1 �

�
2

6

�
1 � n

2
I � ↵I

��
�(0)
ab + � (nI � 1)�(1)

ab

+
�
2

2

�
2 � 3nI + n

2
I + ↵I

�
�(2)
ab , (2.22)

for the PTA overlap function among a pulsar pair (ab). The quantities �(i)
ab are given by [56]

�(0)
ab =

1

3
�

yab

6
+ yab ln yab (2.23)

�(1)
ab =

✓
1

12
+

yab

2
+

yab ln yab
2(1 � yab)

◆
[v̂ · x̂a + v̂ · x̂b] , (2.24)

�(2)
ab =

✓
3 � 13yab
20(yab � 1)

+
y
2
ab ln yab

2(1 � yab)2

◆
[(v̂ · x̂a)(v̂ · x̂b)]

+

✓
1 + 2yab � 4y2ab + y

3
ab + 3yab ln yab

12(1 � yab)2

◆ ⇥
(v̂ · x̂a)

2 + (v̂ · x̂b)
2
⇤
, (2.25)

with

yab =
1 � x̂a · x̂b

2
=

1 � cos ⇣ab
2

, (2.26)

and ⇣ab the angle between the two pulsar vectors x̂a and x̂b.

The quantity �(0)
ab is the well-known Hellings Downs overlap function [78] (see also the recent

[79, 80] for nice discussions and new perspectives on its physical properties). Kinematic e↵ects
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Figure 1: Left: the magnitude of the PTA response function �(1)
ab to kinematic dipole

anisotropies, as defined in eq (2.24). We fix the velocity vector v̂ along the the direction measured
by the CMB (v̂ and �v̂ are denoted by red and yellow stars respectively). We plot the response
as a function of the positions of a pair of pulsars, for simplicity oriented in the same direction.
Right: the dipole response as a function of the angle between the pulsars, without including the
(v̂ · x̂a + v̂ · x̂b) factor in eq (2.24).

2. The e↵ect of anisotropies depend on the frequency profile of the GW intensity: if Ī(f) has

features in frequency which amplify the spectral tilts, anisotropy e↵ects can get enhanced

being multiplied by combinations of nI and ↵I . In fact, the study of Doppler anisotropies

provides additional tools for probing the frequency dependence of the GW intensity, besides

more direct reconstruction techniques (see e.g. [81] and references therein).

The formulas presented in this section constitute the theoretical background we need next for

analysing at what extent PTA experiments can probe kinematic anisotropies in the SGWB.

3 Kinematic anisotropies and present day PTA data

We are interested in measuring kinematic Doppler anisotropies in the SGWB with the present

generation of PTA measurements, starting from the theoretical formulas discussed in section 2.

For the case of astrophysics backgrounds, the size of the intrinsic anisotropies is larger

than the kinematic ones we are interested in. For cosmological SGWB, though, intrinsic

anisotropies are usually small in amplitude, and kinematic e↵ects provide the main contribution

to anisotropies. (See our discussion in section 1.) GW experiments, if able to detect kinematic

anisotropies, o↵er an independent tool to measure our relative motion relative to the cosmic

source of GW, possibly helping to address the current anomaly in the measurements of the size

of the relative velocity � among frames reviewed in section 1. Also, they can provide indepen-

dent tests for alternative theories of gravity [54, 56]. For this reason, it is worth exploring at

what extent Doppler e↵ects can be detected with PTA experiments.

In this section, we focus on current generation PTA experiments, which monitor a finite

number of pulsars (around one hundred), placed in specific positions in the sky. We consider

this kind of experimental set-up as ‘realistic’. So far, SGWB anisotropies have not been detected

with PTA data: only upper limits on their size have been placed. Using an approach based on
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Figure 5: We consider a random collection of pulsar pairs whose positional vectors x̂a and x̂b lie on the same
plane as the relative velocity v̂. Our aim is to represent how geometrical factors depending on v̂ a↵ect the response
functions, as a function of the angle ⇣ among pulsars. Left combination v̂ · x̂a + v̂ · x̂b for the random realization,
as a function of ⇣. Notice that the size of this quantity decreases as ⇣ ! ⇡. Right: Black curve: Hellings
Downs distribution. Red points: response function for our random realization of pulsars, including the intensity
kinematic dipole, with �nI = 1/10. Notice that, for small values of ⇣, the points are scattered with respect to the
black line.

When plotting the quantity �I
ab as a function of ⇣ for each pulsar pair in a given set, data points

get scattered around the Hellings-Downs curve of eq (3.10) (see [47, 48]). In fact, data are modulated

by the quantity (v̂ · x̂a + v̂ · x̂b) in eq (5.2); we expect that point scattering around the Hellings-Downs

line is maximal for small values of ⇣, while it reduces for ⇣ ' ⇡, since in this limit the coe�cient of the

kinematic dipole contribution vanishes: (v̂ · x̂a + v̂ · x̂b) ' 0. We represent in Fig 5, left panel, the value

of the quantity (v̂ · x̂a+ v̂ · x̂b) as a function of ⇣, for a random set of pulsars whose positions are coplanar

with the velocity vector v̂. As anticipated, the size of this quantity reduces as we increase the angle ⇣.

The right panel of the same figure shows the resulting response function �I
ab as function of ⇣, which is

indeed scattered for small angular separations ⇣ with respect to the Hellings Downs curve. Hence, the

e↵ects of kinematic anisotropies relative to the GW intensity I are maximal for pulsar pairs lying in

the same plane as v̂, and with whose positional vectors form a small relative angle among themselves.

This represents an interesting di↵erence with respect to the GW circular polarization response that we

discussed in section 5.1.

As manifest from Fig 5, the kinematic e↵ects we are interested in are small. On the other hand, by

combining signals 6, we can form null tests for Doppler e↵ects associated to the intensity of the SGWB.

To find such combinations, we further exploit the results of section 3. Suppose that GW are characterized

by spin-2 polarization only, with no e↵ects of parity violation. Then, consider two pairs of pulsars. One

pair, ab, lies on a plane parallel to v̂: hence it feels the e↵ects of kinematic anisotropies, and the response

function up to the dipole is given by eq (5.2). The other pair, cd, lies on a plane orthogonal to v̂: hence

it is blind to Doppler e↵ects, and the pulsar response function is determined only by the Hellings Downs

curve of eq (3.10).

We then take the following combination of equal-time correlators for time residuals (recall their

6See the review [84] for a discussion of possibilities to combine GW signals to extract specific physical information from
them.
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Circular polarisation

Cosmological sources e.g. GW from axion-gauge fields [Unal et al. 2023 + more]


PTA blind to circular polarisation monopole — planar detector
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Figure 1: Left: the magnitude of the PTA response function G(1)
ab to kinematic dipole

anisotropies in circular polarization, see eq (2.22). We fix the velocity vector v̂ along the the
direction measured by the CMB (v̂ and �v̂ are denoted by red and yellow stars respectively). We
plot the response as a function of the positions of a pair of pulsars, with one pulsar fixed to a
direction perpendicular to v̂ (green star). Right: the dipole response as a function of the angle
between the pulsars, without including the v̂ · (x̂a ⇥ x̂b) factor in eq (2.22).

in frequency of PTA measurements 50 yr�1
⇠ 10�6 Hz. Hence, we typically work in a regime

where (ftA, ftB, f�tAB) ⇠ O(1). Consequently, the oscillating functions in the integrand of

eq (2.10) are expected to give order one factors, and will be neglected in the definition of the

two-point function passing from (2.10) to (2.15). See e.g. [79], chapter 23.

While so far our formulas are general, we now focus on kinematic anisotropies, following the

treatment of [30, 69]. Our motion with velocity ~v = �v̂ with respect to the SGWB rest frame,

induces kinematic anisotropies in intensity I and circular polarization V . They are expressed as

I(f, n̂)

Ī(f)
= D

Ī(D f)

Ī(f)
,

V (f, n̂)

V̄ (f)
= D

V̄ (D f)

V̄ (f)
, (2.16)

with

D =

p
1 � �2

1 � �n̂ · v̂
, (2.17)

where n̂ is the GW direction, and v̂ the relative velocity among frames. Since in this and the

next section we are assuming a cosmological origin for the SGWB, we expect � to be of the

same order of the value measured by cosmic microwave background: � = 1.2 ⇥ 10�3 [64–68].

With � being small, we can expand both quantities in (2.16) at first order in �, and plug the

resulting expressions in the response functions of eqs (2.13), (2.14). In this way, we determine

the PTA response to the kinematic dipole in intensity and in circular polarization. Defining

nI = d ln Ī(f)/d ln f , nV = d ln V̄ (f)/d ln f , we obtain

�I
ab = �(0)

ab + � (nI � 1) �(1)
ab , (2.18)

�V
ab = � (nV � 1) G(1)

ab , (2.19)

with

�(0)
ab =
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3
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yab
6

+ yab ln yab , (2.20)
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6 Kinematic anisotropies of the SGWB with PTA

I Especially interesting as independent probe of intensity and direction of our speed

wrt SGWB rest frame

I PTA measurements of Doppler e↵ects are also sensitive to modified gravity (circular

polarization, extra scalar dofs) hence they provide additional tests of gravity

– 7 –

12 Example: scalar induced GW

Amplification of primordial GW induced by a peak in the curvature perturbation spectrum.

Resonance

)

[Ananda et al, Baumann et al, Saito-Yokoyama,. . . ]

13 First task: develop theory

14 Second task: quantitative forecasts, and design new methods to

extract info from data
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8 Perspectives for Detecting Kinematic Anisotropies with PTA

I Take existing NANOGrav data, and model signal as power law

I(f) =
A2

2f

✓
f
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(8.1)

Use NANOGrav likelihood and methods in ENTERPRISE packages.

I Build our own likelihood, especially designed for kinematic e↵ects, and make corre-

sponding forecasts

I Do a step forward towards SKA era, assume we monitor a large number of pulsars

isotropically distributed on the sky.

(extra slide with log normal)
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What comes next?
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Large  identical pulsars distributed 
uniformly across the sky


N ≫ 100
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Idealised scenario with  identical pulsars distributed uniformly


We make several simplifying assumptions —> most optimistic estimate

N ≫ 100

Forecasts: SKA era

Galactic

[Keane et al. (2015), Janssen et al. (2015)]
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Assuming a Gaussian likelihood in the timing residual cross-spectra


 = pairs of pulsarsA, B

Forecasts: SKA era

 covariance matrixNpair × Npair
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Forecasts: SKA era
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Weak signal Fisher matrix 

We extend results of Haïmoud, Smith & Mingarelli (2020)
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dipole magnitude and direction
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~  degree localisation of dipole direction30∘

Forecasts: SKA era

≠60¶
≠30¶

0¶

+30¶
+60¶

0 1 2 3
— ◊ 103

— ◊ 103 = 1.23± 0.61

Challenging even with ~4000 pulsarsWeak signal results
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Strong signal regime

Forecasts: SKA era

0 1 2 3
— ◊ 103

— ◊ 103 = 1.23± 0.51

N ~ 1000 pulsars

See also Depta et al. (2024) for strong signal results 

Detection will be challenging even for 
futuristic experiments



Circular polarisation

0 1 2
‘V

‘V = 1.00± 0.49

Near maximal polarisation may be detected with SKA (  )Npsr ≳ 103
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Unconstrained by current data 
(again for cosmo SGWB)

ϵV =
V
I

Degree of circular polarisation

10�8

f [Hz]

10�2

10�1

C
�>
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NG15 estimate
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�max

0

5

10
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R V

Figure 9: Left: Estimate of SMBHB intensity anisotropy from NG15, taken from fig. 11 of [51],
the shaded region denotes the 68% C.L of the estimate. The C` are normalized to the monopole
of the intensity, C0. Right: the circular polarization SNR as a function of `max for ✏V = 1 and
Npsr = 150.

polarization will be detected in future datasets, working in the same idealized framework of

section 4. We assume that the angular power spectra of circular polarization CV
` (f) scale with

` and f in the same manner as the intensity, i.e.

CV
` (f) = ✏2V C`(f) , (5.1)

with |✏V | = (AV /AI)2 < 1. We assume that the C` are independent of `, as found in [20, 51].

We calculate the minimum amplitude |✏V | allowing for a detection of circular polarization, for

which we assume a SNR threshold SNRV = 5. The SNR (at a given frequency) can be expressed

as [58]

[SNRV
f ]2 = V (f, n̂) · Ff (n̂, n̂0) · V (f, n̂0) . (5.2)

Expanding the the polarization map and the Fisher matrix in spherical harmonics,

V (f, n̂) =
X

`m

v`mY`m(n̂), hv`mv⇤`0m0i ⌘ CV
` (f)�``0�mm0 , (5.3)

the expected value of the SNR2 becomes

[SNRV
f ]2 =

2T�f

(4⇡f�)4
Npair

`maxX

`>0

(2` + 1)CV
` (f)

F
V
`

4⇡
. (5.4)

The total SNR is obtained by summing over frequencies

[SNRV
tot]

2 =
X

f

[SNRV
f ]2 . (5.5)

Our results are summarized in Fig. 9, where we plot the SNR of eq. (5.5) as a function

of the maximum multipole `max, for ✏V = 1. In this case of maximal circular polarization of

the AGWB anisotropies, we find that even 150 pulsars with the selected noise properties may

be enough to detect the astrophysical SGWB circular polarization. The much smaller number

20

12 Example: scalar induced GW

Amplification of primordial GW induced by a peak in the curvature perturbation spectrum.

Resonance

)

[Ananda et al, Baumann et al, Saito-Yokoyama,. . . ]

13 First task: develop theory

(for general anisotropies)
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Astrometry and SGWB

Precision astrometry with a large 
number of stars as a SGWB detector

Gaia has  observed over 10 years with  precision. Already used to put 
constraints on low-frequency SGWB [Darling et al. 2018; Aoyama et al. 2021; Jaraba et al. (2023) ]

N ∼ 109 𝒪(mas)

[see Book, Flanagan (2010) for a review] 
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The angular deflections and timing residuals induced by the SGWB are correlated 

Astrometry x PTA
Cross-correlations
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Pulsar direction Star direction

Can cross-correlating Astrometry with PTA help?
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Astrometry x PTA
Power-law

°14.8 °14.6 °14.4

log10 AGW

4

5

∞

4 5

∞

PTA, 100 pulsars

+Astrometry, 106 stars

~10 % improvement over 
current PTA constraints
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Astrometry x PTA
Dipole anisotropy

°14.8 °14.6 °14.4

log10 AGW

0.1

0.2
Ø

4

5

∞

4 5

∞

0.1 0.2 0.3

Ø

PTA, 100 pulsars

+Astrometry, 106 stars

Dipole level

Minimum detectable dipole 
anisotropy relative to 

monopole ~ 0.05. 


Current PTA level ~ 0.1
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9 Conclusions

I If the SGWB is cosmological, it will present kinematic anisotropies with an amplitude

much larger than intrinsic ones (like CMB)

I We theoretically characterized the PTA response to such anisotropies, and made

initial forecasts for their detection

I More work to better characterize the prospects of detection, with more refined noise

characterization, and with more systematic analysis of how the measurements depend

on SGWB properties
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Kinematic dipole anisotropy

Dipole the largest anisotropy in the CMB 
and the first to be detected


Motion towards   with 
velocity  (galactic 
co-ordinates)

(l, b) = (264∘,48∘)
β = v/c = 1.23 × 10−3

2020

COBE dipole detection (1994)

̂v

SGWB Kinematic dipole

If SGWB is of early universe origin, then we can expect a kinematic dipole 
mirroring that of the CMB

0.9959 1.0041

̂v
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PTA response to SGWB

SGWB induced timing residual
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consider the next-to-leading contribution of order �
2, associated with quadrupolar Doppler ef-

fects. For this reason, we develop our formulas up to order �2. Taylor expanding eq (2.18), we

find
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The tilt parameters are defined as

nI =
d ln Ī

d ln f
, ↵I =

dnI
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. (2.21)

Notice that, in general, these quantities depend on frequency. Plugging expression (2.20) into eq

(2.10), we can straightforwardly perform the angular integrations [56], and obtain the following

expression
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for the PTA overlap function among a pulsar pair (ab). The quantities �(i)
ab are given by [56]
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with
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1 � x̂a · x̂b
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=

1 � cos ⇣ab
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, (2.26)

and ⇣ab the angle between the two pulsar vectors x̂a and x̂b.

The quantity �(0)
ab is the well-known Hellings Downs overlap function [78] (see also the recent

[79, 80] for nice discussions and new perspectives on its physical properties). Kinematic e↵ects

modulate the Hellings Downs curve through a frequency-dependent coe�cient, starting at order

�
2 in our expansion. Moreover, they add new dipolar (at order �) and quadrupolar (at order

�
2) contributions to the PTA response function. See e.g. Fig 1 for a graphical representation of

the quantity �(1)
ab .

We stress two important properties of the results reviewed so far

1. The quantities �(1,2)
ab vanish for pulsars with vectors orthogonal to the velocity: see eqs

(2.24) and (2.25). Hence, the magnitude of kinematic anisotropies depend on the geometric

configuration of the pulsar set: pulsars located along the direction of the velocity vector v̂

are more sensitive to kinematic e↵ects.
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d ln f
= nV (f) + 1 ,

f2 V̄ 00(f)

V̄ (f)
= ↵V (f) + nV (f) + n2

V (f) (3.7)

and the isotropic bar quantities Ī(f), V̄ (f) are defined after eq (2.14). In writing equations (3.4) and

(3.5) we expand the definition of D of eq (3.3) up to second order in the expansion parameter �, and

we assemble the results in a way that makes manifest how kinematic e↵ects give rise to dipolar and

quadrupolar anisotropies 4, as controlled by the size of �. As suggested by CMB results, we expect � to

be of order 10�3, making the detection of kinematic anisotropies a demanding (but certainly interesting!)

challenge for PTA experiments.

From now on, in this section we consider two pulsars a, b are located at positions ~xa = ⌧a x̂a and

~xb = ⌧b x̂b with respect to the Earth located at the origin. The corresponding pulsar response functions

�I,V
ab are analytically calculated plugging the expressions (3.4) and (3.5) into eqs (2.15) and (2.16), and

performing the angular integrals 5. The results are easier to handle introducing the combination

yab =
1� x̂ax̂b

2
=

1� cos ⇣

2
, (3.8)

which depends on the relative angle x̂a · x̂b = cos ⇣ of the pulsar positional vectors with respect to the

Earth (see eq (2.4)). We now analytically investigate how the integrals depend on the pulsar positions

with respect to the velocity vector v̂. We find exact results with a transparent geometrical interpretation,

which turns useful in developing strategies of detection in section 5.

3.1 Pulsar response to GW intensity

The response function (2.15) to the GW intensity, expanded up to order �2, results
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The response function (3.9) includes a first part �HD

ab (independent from �) corresponding to the

classic Hellings Downs curve [94] which we collect in eq (3.10). A second part (first determined in [46]) is

weighted by the relative velocity �, and controls the dipolar kinematic anisotropy. As anticipated above,

it is proportional to the slope nI(f) of the SGWB profile, as defined in eq (3.6), making Doppler e↵ects

a probe of features of the SGWB frequency spectrum. Considering its geometrical properties, we notice

that eq (3.11) is symmetric under the interchange of pulsar positions a $ b, and it vanishes if the pulsar

directions are orthogonal to the direction of the relative velocity v̂ among frames. In fact, di↵erently

4They also give contributions of order �2 to the monopole, a small e↵ect that we neglect from now on.
5To carry on the integrals we found convenient to make use of complex integration methods and Cauchy theorem, as

explained in detail in [95].
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Figure 1: Left: the magnitude of the PTA response function �(1)
ab to kinematic dipole

anisotropies, as defined in eq (2.24). We fix the velocity vector v̂ along the the direction measured
by the CMB (v̂ and �v̂ are denoted by red and yellow stars respectively). We plot the response
as a function of the positions of a pair of pulsars, for simplicity oriented in the same direction.
Right: the dipole response as a function of the angle between the pulsars, without including the
(v̂ · x̂a + v̂ · x̂b) factor in eq (2.24).

2. The e↵ect of anisotropies depend on the frequency profile of the GW intensity: if Ī(f) has

features in frequency which amplify the spectral tilts, anisotropy e↵ects can get enhanced

being multiplied by combinations of nI and ↵I . In fact, the study of Doppler anisotropies

provides additional tools for probing the frequency dependence of the GW intensity, besides

more direct reconstruction techniques (see e.g. [81] and references therein).

The formulas presented in this section constitute the theoretical background we need next for

analysing at what extent PTA experiments can probe kinematic anisotropies in the SGWB.

3 Kinematic anisotropies and present day PTA data

We are interested in measuring kinematic Doppler anisotropies in the SGWB with the present

generation of PTA measurements, starting from the theoretical formulas discussed in section 2.

For the case of astrophysics backgrounds, the size of the intrinsic anisotropies is larger

than the kinematic ones we are interested in. For cosmological SGWB, though, intrinsic

anisotropies are usually small in amplitude, and kinematic e↵ects provide the main contribution

to anisotropies. (See our discussion in section 1.) GW experiments, if able to detect kinematic

anisotropies, o↵er an independent tool to measure our relative motion relative to the cosmic

source of GW, possibly helping to address the current anomaly in the measurements of the size

of the relative velocity � among frames reviewed in section 1. Also, they can provide indepen-

dent tests for alternative theories of gravity [54, 56]. For this reason, it is worth exploring at

what extent Doppler e↵ects can be detected with PTA experiments.

In this section, we focus on current generation PTA experiments, which monitor a finite

number of pulsars (around one hundred), placed in specific positions in the sky. We consider

this kind of experimental set-up as ‘realistic’. So far, SGWB anisotropies have not been detected

with PTA data: only upper limits on their size have been placed. Using an approach based on

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

ζ

Γ

Figure 4: We consider a random collection of pulsar pairs whose positional vectors x̂a and x̂b lie on the
a plane orthogonal to the relative velocity v̂. Our aim is to represent how geometrical factors depending
on v̂ a↵ect the response functions for circular polarization, as a function of the angle ⇣ among pulsars.
Left combination v̂ · (x̂a ⇥ x̂b) for the random realization, as a function of ⇣. Notice that the size of
this quantity decreases for ⇣ ! 0 and ⇣ ! ⇡. Right: Black curve: Hellings Downs distribution. Blue points:
response function for our random realization of pulsars, including the circular polarization kinematic dipole, with
�nI = 1/10. Notice that, for intermediate values of ⇣, the points are scattered with respect to the black line.

= 2⇡ T 1/2 �

(
X

ab

Z
df

V̄ 2(f)n2

V (f)

S(n)
a (f)S(n)

b (f)

✓
1

3
+

yab ln yab
4(1� yab)

◆2

[v̂ · (x̂a ⇥ x̂b)]
2

)1/2

(5.1)

where the sum is limited to pulsar pairs orthogonal to v̂, as described above, and S(n) is the noise spectral

density function (see Appendix B for more details). The general form for the circular polarization response

�V
ab is given in eq (3.13), and in the second line of eq (5.1) we write its contributions up to the dipole.

Besides being proportional to �, it also depends on the slope of the quantity V̄ (f), and might be enhanced

if V̄ (f) is a steep function of frequency. In fact, the study of kinematic anisotropies – given their unique

dependence on the slope of the spectrum, see comments between eqs (3.7) and (3.8) – might represent the

only way to probe the frequency-dependence of quantities associated with circular polarization. In the

most conservative cases, in case V̄ ' Ī with no pronounced features, in order to detect parity violating

e↵ects we would need a factor 1/� ' one thousand more in sensitivity with respect to current experiments.

5.2 Kinematic anisotropies and SGWB intensity

Suppose we are interested in extracting from the kinematic anisotropy contributions associated with the

GW intensity Ī(f) as introduced in section 3.1. The corresponding response function �I
ab of a pulsar pair

(a, b) to intensity Doppler e↵ects is given by eq (3.9), which we rewrite here up to the dipole contributions:

�I
ab =

✓
1

3
� yab

6
+ yab ln yab

◆
+ � nI

✓
1

12
+

yab
2

+
yab ln yab
2(1� yab)

◆
[v̂ · x̂a + v̂ · x̂b] , (5.2)

Recall the definition of the parameter yab = (1� cos ⇣)/2 is expressed in terms of the angle x̂a · x̂b = cos ⇣

between the unit vectors indicating the pulsar positions with respect to the Earth. The function (5.2)

depends on ⇣ through the first contribution between parenthesis, which corresponds to the Hellings Downs

curve �HD

ab as defined in eq (3.10). But eq (5.2) also depends on the angle that each pulsar vector forms

with the relative frame velocity v̂. As explained in section 3, only pulsars whose vector components lie

along v̂ are sensitive to kinematic anisotropies relative to the GW intensity.
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Figure 3: Representation of the sky position of the monitored NANOGrav pulsars (yellow), and
the directions (positive and negative) of the velocity vector v̂ among frames (red and dark blue
stars). Light blue stars and white star (over the blue one) IZ: white points? [AM: would be
best to remove the white points and just say that the pulsars are at -v.] are the representations
of random orthogonal and parallel pulsars directions to the velocity vector respectivelly. [AM: re
presentation: make the plot and markers larger and remove the title text.] [M: Done.]

the individual frequency bins

Fij =
X

f

Fij(f) . (3.22)

For our fiducial model, we assume 6 the following parameter reference values (see (A.8))[AM:

log10A = �14.6 and � = 13/3.] [M: Should I run all the codes again with this values instead of

I0 and �? or it is fine just to rescale the samples and the plots with the results that I already

have? (the last thing is what I did with the new plots using (A.8))]: [AM: will need to rerun if

gamma was di↵erent]

I0 = 9.9 ⇥ 10�23
, f? = 1/year, (3.23)

� = 13/3 () nI = �7/3, (3.24)

and

� = 1.23 ⇥ 10�3
, v̂ = (l, b) = (264�, 48�) (3.25)

for the frame velocity amplitude and direction (the latter being expressed in galactic coordi-

nates). The results using the NANOGrav pulsar positions and their noise properties are repre-

sented in Fig 4. Even in the optimal case discussed within our Fisher analysis, these findings

demonstrate that the sensitivity to GW in the current data lead to large error bars, of order

6These correspond to the the amplitude observed by NANOGrav [1] at the chosen reference frequency for a
fixed � = 13/3 and the dipole parameters are the ones measured from the CMB [95].
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What comes next?
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