

(Not just) **Cosmology with pulsar timing arrays.**

STITUTO NAZIONAL

Golam Shaifullah

i do not know what it is about you that closes and opens; only something in me understands the voice of your eyes is deeper than all roses -- E. E. Cummings

It's not a bird, it's not a plane, definitely not LGM 2/48

Pulsars are giant flywheels in space, their compact masses give rise to **incredibly stable rotation**.

On each rotation, the pulsar beam produces a *'pulse'* at Earth, and the photons in that pulse can be assigned a **time-of-arrival (TOA).**

TOAs can be predicted using a model with the following (sets of) parameters:

- **astrometric**,
- **pulsar rotation** and
- **binary** (when applicable).

Apart from these pulsar emission is affected by:

- **Dispersive delays due to the intervening** *ionised plasma*
- **● Red noise (low frequency) processes**

 $3/48$

/ 48 **Pulsar timing**

However, once we have estimates of those parameters, we can predict *very precisely* when the next pulse will arrive. Or the one after 20 million rotations.

When pulses are averaged this precision quickly tends to tens of microseconds to hundreds of nanoseconds.

/ 48 **Millisecond pulsars as stable clocks**

See Shannon et al (2016), Lam et al (2018) & others

/ 48 **All of the light we cannot see**

Curylo et al (2023), Bromm & Loeb 2003, Cole et al 2000, Benson (2012)

/ 48 **Pulsar timing arrays**

- GWs are expected to induce timing residuals on the order of a few tens of nanoseconds.
- TOA stability scales with number of rotations averaged - use **millisecond pulsars (MSPs)!**

● Single pulsars are 'jittery' and affected by noise, use an **array of MSPs**

What is the signal PTAs are looking for?

FreqBayesTM pulsar timing:

Figure from Verbiest & Shaifullah, 2018, CQG

 $9/48$

- Observe a pulsar
- De-disperse
- **Stack**
- **Average**
- Make a template
- Cross-correlate
- Line up your TOAs
- Repeat for another 20 - 100 sources
- Sprinkle post-docs for flavour
- Bake for \sim 30 years, turning it over once or twice a decade.

● Figure adapted from Verbiest & Shaifullah, 2018, CQG

GW Science

- plot shows part of fig. 33 from Colpi & Sesana, 2017

The detection statistic and search algorithm

● We assume that noise is Gaussian: the likelihood function (likelihood of the signal with given parameters) is

$P(\delta t, \theta) = \{1/\sqrt{(2\pi)^n \det(C)}\} \exp(-\frac{1}{2}(\delta t - \vec{s})^T C^{-1}(\delta t - \vec{s}))$

- *● δt* concatenated residuals from all pulsars in the array: total size *n*
- *● s* is a model of deterministic signals (e.g. GW signals from individually resolvable SMBHBs)
- *C* is the noise variance-covariance matrix (size $n \times n$);

$$
C_{ai, \beta j} = C^{WN} \delta_{\alpha\beta} \delta_{ij} + C^{RN}_{ij} \delta_{\alpha\beta} + C^{DM}_{ij} \delta_{\alpha\beta} + C^{GW}_{ij} \delta_{\alpha\beta} + ...
$$

white
noise
pulsar
index
index
index

Noise models \mathcal{E} their validity 13/48

EPTA DR2 - Paper II A&A , 2023, doi: 10.1051/0004-6361/202346842

PTAs inching up to the GWB 14/48

On June 29, 2023 4 PTAs announced evidence for an HD correlated process in their data.

The significance ranges from **~2 to 4.6 σ**; below the **5σ** detection threshold.

Further this amplitude is **loud** $(*2-3 \times 10^{-15})$ and the spectrum is **flat** (~3).

The International Pulsar Timing Array checklist for the detection of nanohertz gravitational waves

Bruce Allen,¹ Sanjeev Dhurandhar,² Yashwant Gupta,³ Maura McLaughlin,⁴ . Priyamvada Natarajan, 5,6 Ryan M. Shannon, 7,8 Eric Thrane, 9,10 and Alberto Vecchio¹¹

1 Max Planck Institute for Gravitational Physics, Leibniz Universitat Hannover, Callinstrasse 38, D-30167 Hannover, Germany 2 Inter University Centre for Astronomy & Astrophysics, Ganeshkhind, Pune - 411 007, India 3 National Centre for Radio Astrophysics, Pune University Campus, Pune 411007, India 4 West Virginia University Department of Physics and Astronomy, Morgantown, WV, 26501, USA 5 Department of Astronomy, 52 Hillhouse Avenue, New Haven, CT 06511 6 Black Hole Initiative, 20 Garden Street, Cambridge, MA 02138 7 Centre for Astrophyics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia 8 OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery 9 School of Physics and Astronomy, Monash University, Clayton VIC 3800, Australia 10 OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton VIC 3800, Australia 11 School of Physics and Astronomy & Institute for Gravitational Wave Astronomy, University of Birmingham, Birmingham, B15 2TT

"At the present time none of the PTAs have a detection claim."

Do the PTAs agree? 16/48

The astrophysical implications 17/48

- The EPTA + InPTA result a loud background
- **SMBHB** generated backgrounds
- Comparisons with Semi-Analytical Models
- **Stellar hardening?**
- Biased by cosmic variance?
- **Inflationary GWB**
- Cosmic Strings
- Cosmic turbulence
- **Curvature perturbations**
- Challenging the ultralight dark matter paradigm

The astrophysical implications 18/48

- The EPTA + InPTA result a loud background
- **SMBHB** generated backgrounds
- Comparisons with Semi-Analytical Models
- Stellar hardening?
- **Biased by cosmic variance?**
- **Inflationary GWB**
- Cosmic Strings
- **Cosmic turbulence**
- **Curvature perturbations**
- Challenging the ultralight dark matter paradigm

The astrophysical implications 19/48

- The EPTA + InPTA result a loud background
- **SMBHB** generated backgrounds
- Comparisons with Semi-Analytical Models
- **Stellar hardening?**
- **Biased by cosmic variance?**
- **Inflationary GWB**
- **Cosmic Strings**
- **Cosmic turbulence**
- **Curvature perturbations**
- Challenging the ultralight dark matter paradigm

The astrophysical implications 20/48

- \bullet The EPTA + InPTA result a loud background
- SMBHB generated backgrounds
- Comparisons with Semi-Analytical Models
- Stellar hardening?
- Biased by cosmic variance?
- Inflationary GWB
- Cosmic Strings
- Cosmic turbulence
- Curvature perturbations
- Challenging the ultralight dark matter paradigm

A GWB generated by stellar hardening-affected SMBHB does NOT explain the PTA result…

The astrophysical implications 21/48

- The EPTA + InPTA result a loud background
- **SMBHB** generated backgrounds
- Comparisons with Semi-Analytical Models
- **Stellar hardening?**
- **Biased by cosmic variance?**
Inflationary GWB
- **Inflationary GWB**
- Cosmic Strings
- Cosmic turbulence
- **Curvature perturbations**
- Challenging the ultralight dark matter paradigm

The cosmological implications 22/48

- \bullet The EPTA + InPTA result a loud background
- SMBHB generated backgrounds
- Comparisons with Semi-Analytical Models
- Stellar hardening?
- Biased by cosmic variance?
- Inflationary GWB
- Cosmic Strings
- Cosmic turbulence
- Curvature perturbations
- Challenging the ultralight dark matter paradigm and all the quelquejay Leclere, Perrodin, Caprini et al

The cosmological implications 23/48

- The EPTA + InPTA result a loud background
- **SMBHB** generated backgrounds
- Comparisons with Semi-Analytical Models
- Stellar hardening?
- **Biased by cosmic variance?**
- **Inflationary GWB**
- **Cosmic Strings**
- **Cosmic turbulence**
- Curvature perturbations
- Challenging the ultralight dark matter paradigm

The cosmological implications 24/48

- \bullet The EPTA + InPTA result a loud background
- SMBHB generated backgrounds
- Comparisons with Semi-Analytical Models
- Stellar hardening?
- Biased by cosmic variance?
- Inflationary GWB
- Cosmic Strings
- Cosmic turbulence
- Curvature perturbations
- Challenging the ultralight dark matter paradigm dark and all and α

Just listen Alberto's talk instead!

The cosmological implications 25/48

- The EPTA + InPTA result a loud background
- **SMBHB** generated backgrounds
- Comparisons with Semi-Analytical Models
- Stellar hardening?
- **Biased by cosmic variance?**
- **Inflationary GWB**
- **Cosmic Strings**
- **Cosmic turbulence**
- **Curvature perturbations**
- Challenging the ultralight dark matter paradigm

Can we talk about something fun please?

I. ULDM probes through timing data

$$
R(t)=r(x_E,t_E)-r(x_p,t_p),\quad r(x_E,t_E)=\frac{\Psi(x_E)}{2\pi f}\kappa(x_E)\sin(2\pi f t_E+\alpha(x_E))
$$

Ultra-light axion dark matter:

- 1. **Very light axions** with masses ranging between 10^{-23} and 10^{-20} eV
- 2. **Solve some of the issues of CDM** associated with overproduction of structures at galactic and sub-Galactic scales
- 3. **Perturb the space-time**, so that the regular flow of pulses deviate from their regular flow

The astrophysical implications 28/48

- The EPTA + InPTA result a loud background
- **SMBHB** generated backgrounds
- Comparisons with Semi-Analytical Models
- Stellar hardening?
- Biased by cosmic variance?
- Cosmic Strings
- **Curvature perturbations**
- Challenging the ultralight dark matter paradigm

[arXiv:2405.01633](https://ui.adsabs.harvard.edu/link_gateway/2024PhRvD.110d3033S/arxiv:2405.01633) : Smarra et al, PRD (2024)

II. ULDM with pulsar polarimetry

Ultra-light axions in the Milky Way:

1. **Very light axions** with masses ranging between 10^{-23} and 10^{-20} eV

 2. When interacting weakly with photons, **rotate the plane** of linearly polarised pulsar light

 3. Plane of linear polarisation **oscillates with periods of several years** due to varying pressure

Credit: NASA/JPL-Caltech

I. ULDM probes through timing data

$$
R(t)=r(x_E,t_E)-r(x_p,t_p),\quad r(x_E,t_E)=\frac{\Psi(x_E)}{2\pi f}\kappa(x_E)\sin(2\pi ft_E+\alpha(x_E))
$$

II. ULDM with pulsar polarimetry

If we assume non-renormolizable interaction **axions axions** between fuzzy DM particles and photons:

$$
\mathcal{L} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \left(\partial_{\mu} a \partial^{\mu} a - m_a^2 a^2 \right)
$$

$$
(\Box + m_a^2) a + \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} = 0
$$

Polarization properties of light are altered

$$
\omega_{\pm} = k\sqrt{1 \pm g_{a\gamma}\frac{\partial_0 a}{k}} \simeq k \pm \frac{1}{2}g_{a\gamma}\partial_0 a
$$

$$
\Delta (\textrm{PA}(t))=\frac{g_{a\gamma}}{\sqrt{2}m}[\textrm{p}(t_E,x_E)-\textrm{p}(t_p,x_p)],\quad p(t_E,x_E)=\sqrt{\rho_{\textrm{DM}}}\kappa_E\cos(mt+\phi(x_E))
$$

See: Ivanov et al 2018, Castillo et al 2022

I. ULDM probes through timing data

$$
R(t)=r(x_E,t_E)-r(x_p,t_p),\quad r(x_E,t_E)=\frac{\Psi(x_E)}{2\pi f}\kappa(x_E)\sin(2\pi f t_E+\alpha(x_E))
$$

II. ULDM with pulsar polarimetry**: data processing**

II. ULDM with pulsar polarimetry**: systematics**

RMextract from Maaijke Mevius: https://github.com/lofar-astron/RMextract /tree/master/RMextract

i) Ionospheric TEC maps (uqrg) + ii) Geomagnetic field model (WMM) + iii)Thin screen approximation $RM_{\text{iono}} = \int n_e B_{\text{LOS}} dr$ $RM_{\text{iono}} \sim \text{STEC} \times \mathbf{B}_{\text{IPP}}$

II. ULDM with pulsar polarimetry: challenges

II. ULDM with pulsar polarimetry: challenges

II. ULDM with pulsar polarimetry: dataset

II. ULDM with pulsar polarimetry: dataset

II. ULDM with pulsar polarimetry**: back to the ionosphere**

II. ULDM with pulsar polarimetry**: back to the ionosphere**

200

180

160 $^{160}_{140}$ $^{26}_{02}$
 $^{160}_{-6}$ $^{160}_{-6}$

 $-120¹$

 $\frac{1}{100}$ $\frac{1}{1}$

80

60

ட்ட

Factorised upper limits and BFs

III. ULDM with pulsar polarimetry: first results

Ultra-light axions in the Milky Way:

 3. The **effect is achromatic**, so can be distinguished from chromatic Faraday rotation

 4. **Terrestrial ionosphere** is the main source of noise, when searching for ultra-light axions in pulsar polarimetry

 5. We plan to incorporate **low-frequency data** from LOFAR(2.0) to independently mitigate ionospheric Faraday rotation

Porayko et al. (submitted) : arxiv2412.02232

/ 48 **The true picture & a wider landscape**

So we are tantalisingly close to *detecting* **the GWB, but what is the true nature of this signal?**

IPTA DR3 dimensions

The IPTA DR3

- Add data from 5+ PTAs:
	- \circ EPTA (+ LOFAR, NENUFAR)
	- \circ NANOGrav (+ CHIME)
	- PPTA
	- InPTA
	- MPTA (MeerKAT)
- **●** 2+ independent data combination pipelines
- **●** 121 pulsars, down to <100 ns for a few pulsars
- Greater sky coverage!
- More pulsar pairs for angular correlation searches.
- **● Lots of TOAs**
- **● Loads of compute**
- **July,2024 "Early Data Release" (eDR3), which includes the 20 best/longest-timed pulsars**
- Dec, 2024 ~80 pulsars have been combined, first **noise runs too!**

IPTA DR3 dimensions

- In total **121** pulsars in full DR3;
	- The biggest / most sensitive PTA dataset ever made !!

Gravitational-Wave Early Career Scientists

Elisa Maggio

Miquel Miravet

Huy-Tunng Can

 \sim

Graeme McGhee

Martina Murator

Stefano Rinaldi

Michael Katz

https://gwecs.org/

