Probing Axion-U(1) Inflation: Gravitational Waves and Primordial Black Hole Formation

Ramkishor Sharma

Postdoctoral Fellow CEICO, Institute of Physics of the Czech Academy of Sciences, Prague

Outline

- **Introduction to key epochs in the early Universe**
- **Observational status of axion inflation**
- **Axion-U(1) inflation and results from the previous studies**
- **Results from the lattice simulations**
- **Summary**

A brief history of the Universe

LBNL Particle Data Group, 2014

Probes for Early Universe

- **via photons**
	- **CMB anisotropies, spectral distortions**
- **via neutrinos**
- **via gravitational waves**
	- **by direct detections of GWs**
	- **by constraints on extra degrees of freedom from CMB**

Hubble Horizon at key epochs

Gravitational waves

https://lisa.nasa.gov/

Gravitational waves from Binary mass system

$$
\Box h_{ij} = 16\pi G T_{ij}
$$

$$
h_{ij} = 2\frac{G}{d} \Lambda_{ij}^{kl} \ddot{I}_{kl}, \quad I_{kl} = \int d^3 y (y_k y_l - \frac{1}{3} y^2 \delta_{kl}) T_{00}
$$

Parameters

(1) Distance from the observer (d)

- (2) Masses $(M_1$ and $M_2)$
- **(3) Orbital frequency (**)
- **(4) Distance between the sources (r)**

$$
h_{ij} \sim \frac{G}{d} \mu r^2 \omega^2 \cos(2\omega t)
$$

$$
h_{ij} \sim 10^{-21} \left(\frac{M}{10M_\odot}\right)^{5/3} \left(\frac{\omega}{100Hz}\right)^{2/3} \frac{10 \text{Mpc}}{d}
$$

LIGO Scientific Collaboration and Virgo Collaboration Phys. Rev. Lett. 116, 061102

Gravitational waves in cosmology

$$
\Box h_{ij} = 16 \pi G T_{ij}
$$

$h_{ij} = 2\frac{G}{d}\Lambda_{ij}^{kl}\ddot{I}_{kl}, \quad I_{kl} = \int d^3y(y_ky_l - \frac{1}{3}y^2\delta_{kl})T_{00}$

Parameters

- **(1) Distance from the observer (d)**
- (2) Masses $(M_1$ and $M_2)$
- **(3) Orbital frequency (** ω **)**
- **(4) Distance between the sources (r)**

$$
h_{ij} \sim \frac{G}{d} \mu r^2 \omega^2 \cos(2\omega t)
$$

$$
h_{ij} \sim 10^{-21} \left(\frac{M}{10M_\odot}\right)^{5/3} \left(\frac{\omega}{100Hz}\right)^{2/3} \frac{10 \text{Mpc}}{d}
$$

Stochastic GW background

Sourced by anisotropic stress

$$
h_{ij}'' + \frac{2a'}{a}h_{ij}' + k^2h_{ij} = 16\pi Ga^2\overline{T}_{ij}
$$

$$
\Omega_{GW} \equiv \frac{\rho_{GW}}{\rho_c} = \frac{1}{32\pi G\rho_c} \frac{\langle h_{ij}'h^{\prime ij}\rangle}{a^2} = \frac{\Omega_r}{12H^2} \frac{\langle h_{ij}'h^{\prime ij}\rangle}{a^2}
$$

- **Relevant Parameters**
	- **energy budget of the source**
	- **peak of the source**
	- **Hubble scale**

$$
\Omega_{GW} \propto \Omega_r \left(\frac{\rho_s}{\rho_r}\right)^2 \left(\frac{H}{k_p}\right)^2
$$

 $f \sim \frac{H}{k_n} \frac{T}{10^5 GeV}$ mHz, $h \sim \frac{10^{-21}}{f \text{inmHz}} \sqrt{\Omega_{GW}}$

Axion-U(1) Inflation

- **Flatness of the potential is protected due to shift symmetry**
- **First model suggested by the name Natural Inflation**

K. Freese, J. A. Frieman and A. V. Olinto, PRL 1990

$$
V(\phi) = \Lambda^4 \left(1 + \cos \left(\frac{\phi}{f} \right) \right)
$$

● **Various scenarios has been suggested to make it compatible with the CMB observations**

$$
S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{16\pi} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\alpha}{4f} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \right]
$$

Planck results 2018

Anber and Sorbo 2009

Axion-U(1) Inflation : dynamics

By neglecting the inhomogeneity of axion

$$
\left(\partial_{\eta}^{2} + k^{2} \mp 2\xi(\mathcal{H}\eta)\frac{k}{\eta}\right)A_{k}^{\pm} = 0, \quad \text{where} \quad \xi = -\frac{\alpha}{2f} \frac{\phi'}{\mathcal{H}}
$$

$$
A_k^+ \simeq \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi\xi - 2\sqrt{2\xi k/(aH)}},
$$

Axion-U(1) Inflation : dynamics

K. Alam, K. Dutta and N. Jamana 2024

Axion-U(1) Inflation : Phenomenology

Constraints on High frequency GWs from radio telescopes

 $\Omega_{GW} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{eff} \Omega_{\gamma}$ $\Omega_{GW} h^2 < 1.2 \times 10^{-6}$

V. Domcke, C. G. Cely, PRL 2021

Constraints on the coupling between axion and gauge field

Lattice simulations of Axion-U(1) Inflation

● We use pencil code to solve the axion-U(1) setup. Equations are begin solved

$$
\phi'' + 2\mathcal{H}\phi' - \nabla^2\phi + a^2\frac{dV}{d\phi} = \frac{\alpha}{f}\frac{1}{a^2}\mathbf{E}\cdot\mathbf{B},
$$

$$
\mathbf{A}'' - \nabla A'_0 - \nabla^2\mathbf{A} + \nabla(\nabla\cdot\mathbf{A}) - \frac{\alpha}{f}(\phi'\mathbf{B} + \nabla\phi \times \mathbf{E}) = 0,
$$

Along with the FLRW background.

Axion-U(1) Inflation : dynamics from lattice simulations

RS, AB, KS, AV, Arxiv 2411.04854

AB - Axel Brandenburg KS – Kandaswamy Subramanian AV - Alex Vikman

D. G. Figueroa, J. Lizarraga, A. Urio and J. Urrestilla, PRL 2023

Energy budget of gauge field and produced GWs

RS, AB, KS, AV, Arxiv 2411.04854

PDF of the axion fluctuations

RS, AB, KS, AV, Arxiv 2411.04854

A. Caravano, E. Komatsu, K. D. Lozanov and J. Weller, PRD 2022

Extended duration of inflation due to backreaction

D. G. Figueroa, J. Lizarraga, Nicolas Loayza, A. Urio and J. Urrestilla, Arxiv: 2411.16368

Summary

- **● Axion-U(1) inflation exhibits rich phenomenology and this can be used to constrain the coupling between axion and gauge field.**
- **● In the backreaction dominated regime, the PDF of axion fluctuations have less tails compared to the one considered in the analytical study. Hence the bounds obtained from PBH evaporation will be relaxed.**
- **● The bounds obtained from constraints High frequency gravitational may also be relaxed.**
- **● Need to Address: the effect of charged fields**

Summary

- Axion-U(1) inflation exhibit rich phenomenology and this can be used to constrain **the coupling between axion and gauge field.**
- **● In the backreaction dominated regime, the PDF of axion fluctuations have less tails compared to the one considered in the analytical study. Hence the bounds obtained from PBH evaporation will be relaxed.**
- **● The bounds obtained from constraints High frequency gravitational may also be relaxed.**
- **● Need to Address: the effect of charged fields**

Thank you