

ICTS Condensed Matter Seminar

INTERNATIONAL

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Title	:	Quantum Hall ferromagnetism near charge neutrality in graphene
Speaker	:	Ganpathy Murthy (University of Kentucky, USA)
Date	:	Wednesday, 7th August 2024
Time	:	11:30 AM (IST)
Abstract	:	Quantum Hall systems with internal degrees of freedom such as spin and valley can manifest symmetry breaking of the internal degrees of freedom when they are in a gapped quantum Hall phase. In graphene near charge neutrality, this is still poorly understood. I will present an overview of what is known about the integer fillings near charge neutrality, and then talk about some very recent work on the symmetry-broken phases of fractional quantum Hall states in the n=0 and n=1 Landau level manifolds of graphene.
Venue	:	Emmy Noether Seminar Room
		Zoom Link: https://icts-res-in.zoom.us/j/94232144052?pwd=4oJmMzluYC7889NO0bWP8DyCbbSPGz.1 Meeting ID: 942 3214 4052 Passcode: 202030