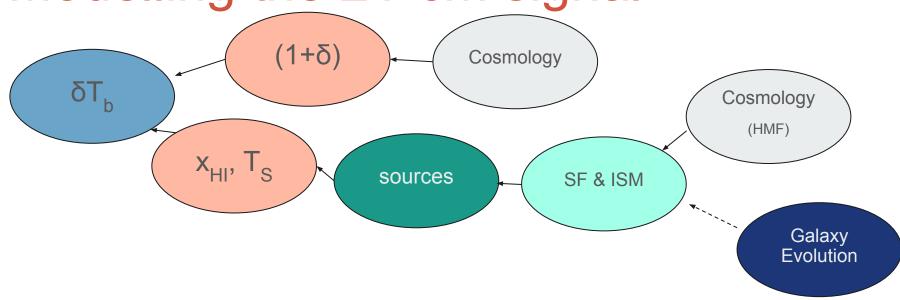
Intergalactic Medium Properties from 21-cm Observations

Garrelt Mellema

Department of Astronomy /
Oskar Klein Centre
Stockholm University

On behalf of the LOFAR EoR team


Thanks to

Raghu Ghara, Ivelin Georgiev, Sambit Giri, Benedetta Ciardi, Saleem Zaroubi

Content

- Redshifted 21-cm signal, connection to sources and IGM
- IGM framework for 21-cm power spectrum
- Physical interpretation of framework parameters
- Summary & conclusions

Modelling the 21-cm signal

- Model parameters: mainly SF & ISM recipes parameters.
- Different redshifts connected through assumed source model.
- Inference on parameters of SF & ISM recipes.

Inference on IGM parameters?

 Measured 21-cm signal depends on IGM properties, not on source properties.

 Philosophy used in Ghara et al. (2020) for single redshift (z=9.1); see also Mirocha et al. (2022).

- Two issues:
 - Choice of priors? (cf. HERA collaboration 2023)
 - How to handle multi-redshift data?

Inference on IGM parameters?

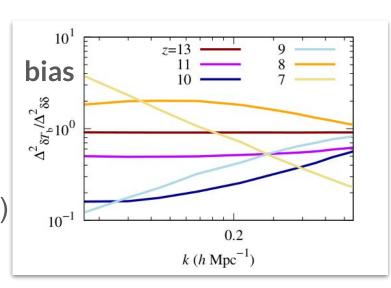
 Measured 21-cm signal depends on IGM properties, not source properties.

 Philosophy used in Ghara et al. (2020) for single redshift (z=9.1); see also Mirocha et al. (2022).

- Two issues:
 - Choice of priors? (cf. HERA collaboration 2023)
 - How to handle multi-redshift data?

Parametrization of Δ_{21} Evolution

• Ghara et al. (2024): 8 parameter universal model for $T_S \gg T_{CMB}$ case.


Derived from set of 24 GRIZZLY simulations.

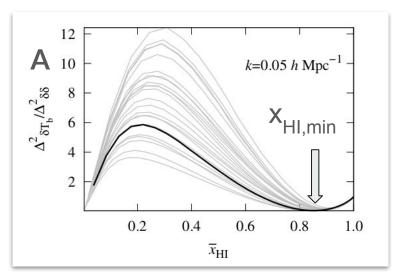
• Based on the 21-cm scale-dependent bias $b_{21}^2 = \frac{\Delta_{21}^2(k)}{\Delta_m^2(k)}$

21-cm Bias

- The 21-cm bias follows relatively simple shapes.
- Two regimes in x_{HI} :
 - > x_{HI.min} (single rising power law)
 - < x_{HI.min} (double falling power law)
- Allows for three parameter fit:

$$\Delta_{\delta T_{\rm b}}^2 = \begin{cases} \Delta_{\delta \delta}^2 A \frac{\left(\frac{k}{0.05}\right)^{\gamma}}{1 + \left(\frac{k}{0.3}\right)^{1.5}}, & \text{if } \overline{\mathbf{x}}_{\rm HI} \lesssim \overline{\mathbf{x}}_{\rm HI,min}.\\ \Delta_{\delta \delta}^2 A \left(\frac{k}{0.05}\right)^{\gamma}, & \text{otherwise.} \end{cases}$$

Ghara et al. (2024)


21-cm Bias Evolution

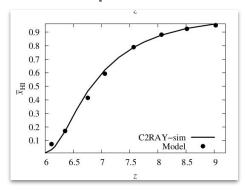
Ghara et al. (2024)

 Evolution of A and γ follow regular shapes as function of X_{HI}

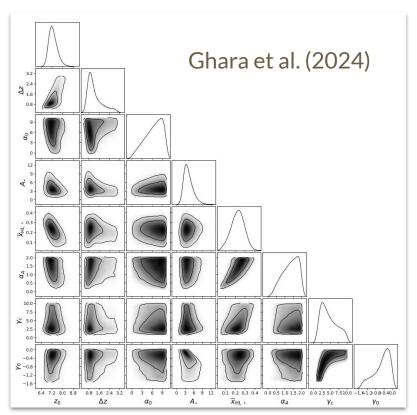
• Also need a parametrized reionization history $x_{HI}(z)$:

$$\begin{split} \overline{x}_{\rm HI}(z_0,\alpha_0,\Delta z,z) &= \frac{1}{2} \left[1 - \tanh \left\{ \frac{y(z_0) - y(z)}{\Delta y} \right\} \right], \\ \text{where} \qquad y(z) &= (1+z)^{\alpha_0}, \\ \text{and} \qquad \Delta y &= \alpha_0 (1+z)^{\alpha_0-1} \times \Delta z. \end{split}$$

Evolution of A and γ: 5 parameters


Reionization history: 3 parameters

Framework parameters

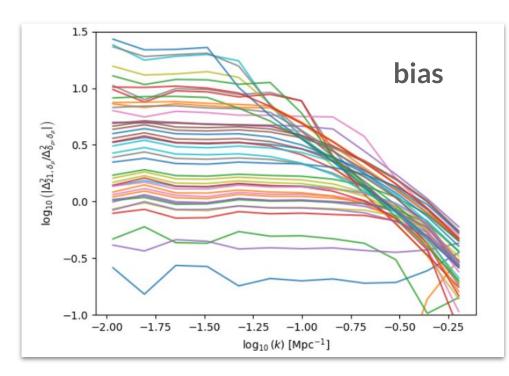

Parameters		Description
z_0 Δz		Redshift corresponding to $\overline{x}_{HI} = 0.5$.
	reionization histor	Y Redshift range of reionization in a tanh model.
α_0 A_{\star} $\overline{x}_{\rm HI,}$		Asymmetry parameter around $\overline{x}_{HI} = 0.5$ in the redshift evolution of \overline{x}_{HI} .
A_{\star}	21 cm bics	Maximum value of the bias at $k = 0.05 h \text{Mpc}^{-1}$.
\overline{x}_{HI}	21-cm bias	Mean neutral fraction at the redshift when the bias at $k = 0.05 h \mathrm{Mpc^{-1}}$ gets the maxima.
α_A	Power	-law index on \overline{x}_{HI} which accounts for the change of bias as a function of \overline{x}_{HI} at $k = 0.05 h \text{Mpc}^{-1}$.
γ_c		Account for the change in scale-dependence of bias with $\bar{x}_{\rm HI}$.
$rac{\gamma_c}{\gamma_0}$	Account for	the all-scale feature of bias in addition to small-scale feature $1/[1 + (k/0.3)^{1.5}]$ at stages with $\overline{x}_{\rm HI} \to 0$.

Testing the Bias Evolution Model

- Application to 8 outputs from a C²-Ray simulation shows how the framework could be used.
- The best fit parameters reproduce the reionization history and power spectra from the simulation.

Reionization history

What's next?


- Include T_s fluctuations.
- Explore other fits (for reionization history or 21-cm bias)
- What do these parameters physically mean?

What's next?

- Include T_s fluctuations.
- Explore other fits (for reionization history or 21-cm bias)
- What do these parameters physically mean?

Understanding the 21-cm Bias

- For x_{HI} < x_{HI,min} the 21-cm bias has characteristic shape:
 - ~linear large scale bias(b₀)
 - power-law fall-off beyond k=k_{trans}.
 - transition can be smooth or sharp.

Karin Kjellgren (2023)

Theoretical understanding

- Furlanetto et al. (2004) developed analytical model for 21-cm power spectrum.
- Its 21-cm bias shapes consistent with simulation results for low k and high k, bump at intermediate k not seen in simulations.

 What about Paranjape & Choudhury (2014)? Furlanetto et al. (2004)

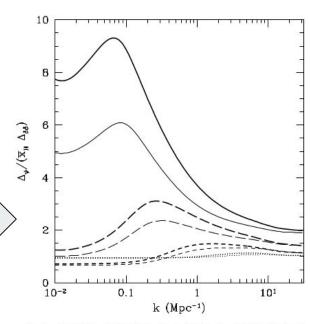
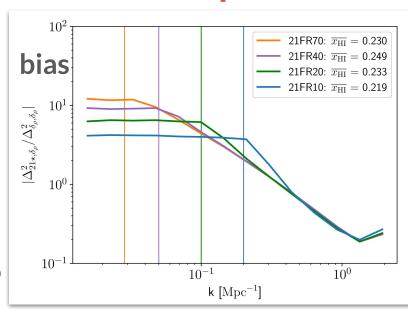
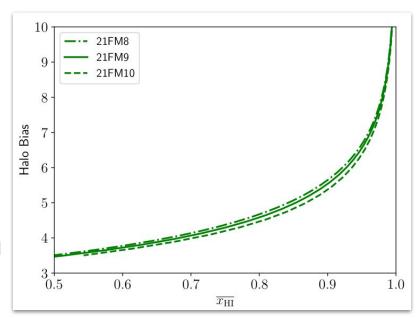
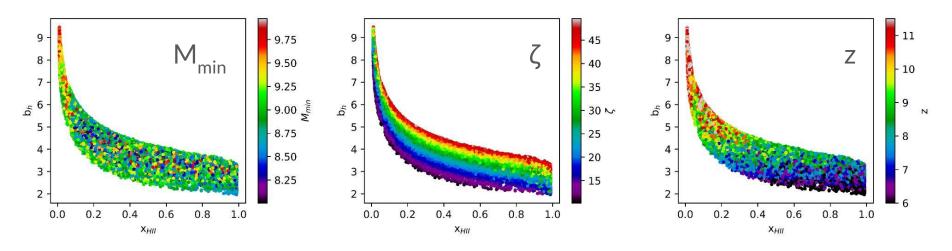



Fig. 9.—Redshift evolution of $\Delta_{\psi}/(\bar{x}_H \Delta_{\delta\delta})$ in the $\zeta=12$ (thin lines) and $\zeta=40$ (thick lines) models. The curves are for $\bar{x}_H=0.96$ (dotted), $\bar{x}_H=0.8$ (short-dashed), $\bar{x}_H=0.5$ (long-dashed), and $\bar{x}_H=0.26$ (solid). The redshifts in the two models differ. [See the electronic edition of the Journal for a color version of this figure.]

Transition scale ↔ Mean free path


- 21cmFAST models with hard barrier on extent of source influence (R_{max}) :
 - $k_{trans} \approx 2/R_{max}$ sharp (late)
 - \circ $k_{trans} > 2/R_{max}$ smooth (early)
- Suggests: k_{trans} set by effective λ_{mfp} of ionizing photons, initially set by size of ionized bubbles, later by value of R_{max} .

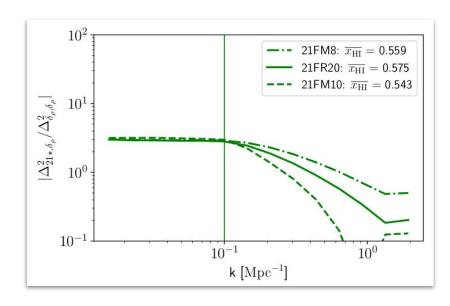
Georgiev, GM et al. (2022)


Role of source bias

- Previous work (Furlanetto et al. 2004; McQuinn & D'Aloisio 2018) suggests important role for source (halo) bias.
- Three 21cmFAST models with different minimum halo mass (M_{min}) show nearly identical b_h - x_{HI} relations.

Georgiev, GM et al. (2022)

The $b_h - x_{HI}$ relation


Larger sample of 21cmFAST models shows that $b_h - x_{HI}$ relation

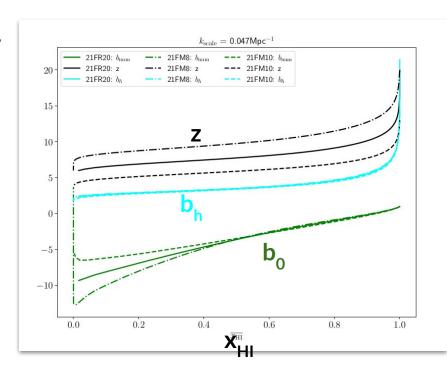
- o does not depend on M_{min}
- \circ does depend on source efficiency ζ .

Georgiev et al., in prep

Connection b_h to b₀

- Three 21cmFAST models which only differ in minimum halo mass (M_{min}) show the same b_0 at the same b_h and x_{HI} .
- Suggests a b₀ b_h relation...

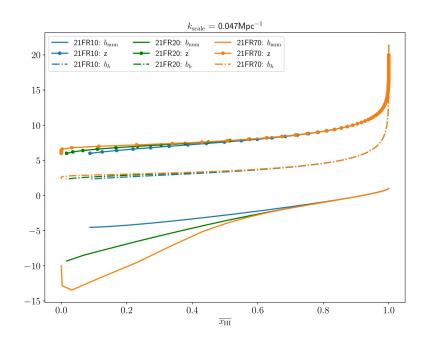
Georgiev, GM et al. (2022)


But it's not that simple...

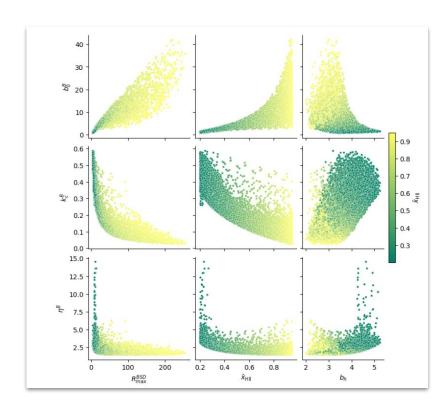
The same three models show that for $x_{HI} \lesssim 0.5$:

- b_h x_{HI} relation persists (----)
- b₀ values start to diverge (----)

Probably connected to level of overlap between ionized bubbles:


• More overlap increases amplitude of b_0 .

Mean free path and b₀


Three models which only differ in R_{max} show that

- For $x_{HI} > 0.7 b_0$ is the same in all models.
- For x_{HI} < 0.7 a larger mean free path boosts b_0 amplitude.
- Supports the correlation between overlap and b_0 .

Work in progress

 Building a large sample of reionization models, exploring multidimensional correlations with key quantities.

Summary

- Parameter inference can be done on source parameters or IGM parameters. Both are useful.
- Current methodology for IGM parameters cannot really use multi-redshift data.
- The 21-cm bias appears to yield a parameterizable evolution which can be used for IGM inference in the future.
- The shape of the 21-cm bias curves connect to key physics (λ_{mfp} , b_h , x_{HI}) but needs further investigation.