Graphs

1 Introduction

There are six graphs above, we name these graphs $G_1, G_2, G_3, G_4, G_5, G_6$.

Definition. Graph is a set of several nodes, some of which are connected by the edges.

For example, graph G_1 above consist of 5 nodes A, B, C, D, E and 6 edges. We can give names to edges, or just denote each edge by the pair of nodes it connects. So we can say that graph G_1 has an edge (A, B) and does not have an edge (E, D).

Connection to real world Many real-life structures can be seen as a graph:

- Molecule as a graph: atoms are nodes, connections between atoms are edges
- Social network as a graph: users are nodes, friendship connections are edges
- Road system as a graph: crossroads are nodes, roads are edges

Drawing Usually we draw an edge as a straight line, but we can draw edge as any curve as long as it connects two nodes (see edge (A, C) in graph G_3). If for some reason two edges intersect outside of nodes, we pretend that nothing happened and do not count the intersection as a new node (see edges (A, C) and (B, E) in graph G_5). All that matters is what set of nodes graph has and which pairs of nodes are connected by edges, so for instance G_1 and G_4 is actually the same graph.

2 Definitions

Definition. Degree of a node is the number of edges connected to that node.

For instance, the degree of node C in graph G_2 is 3, and degree of node A in graph G_2 is 1.

Problem 1. Prove that in any graph the sum of degrees of all nodes is even (see the end of the next page for a hint)

Problem 2. Prove that in any graph the number of nodes with odd degrees is even. Does there exist a graph with 8 nodes whose degrees are 5, 4, 4, 4, 3, 2, 2, 1?

Definition. In graph G_1 the sequence of edges (A, B), (B, C), (C, D) forms a *path* from node A to node D. Give a formal definition of a *path*.

Definition. Graphs G_1, G_2, G_3, G_4, G_5 are called *connected* graphs, and graph G_6 is called *disconnected* graph (it consist of two separated parts). Give a formal definition of what does word *connected* mean (see the end of this page for a hint).

Definition. In graph G_5 the edges (A, B), (B, D), (D, E), (E, A) form a *cycle*. Give a formal definition of a *cycle*.

3 Trees

Definition. Connected graph without cycles is called a *tree*.

Of the six graphs in the picture on the first page only G_2 is a tree, since all other graphs either have cycles or are disconnected. There are three more trees in the picture below, check that they are indeed trees:

Problem 3. Is it true that any tree with at least two nodes has at least one node of degree 1? Such node is called a *leaf*.

Problem 4. What is the connection between number of nodes and number of edges in a tree? (see the end of this page for hints)

Problem 5. Prove that in any connected graph G we can delete some edges to get a tree. Such tree is called a *spanning tree*.

For example, in graph G_1 we can delete edges (A, E) and (B, D), and the graph which is left is a tree.

Suppose we have n nodes V_1, V_2, \ldots, V_n . What is the number of different trees that can be constructed on these nodes? The Cayley's formula answers this question, we formulate it below.

Theorem (Cayley's formula). For every positive integer n the number of trees on n nodes is n^{n-2} .

The proof of Cayley's formula will be the main result of session on November 9th. Check that the Cayley's formula is true for n = 2, 3, 4.

4 Hints

Hint for Problem 1 Suppose we delete an edge in a graph. How do degrees of nodes change? How does the sum of all degrees change?

Hint for definition of connected graph For each pair of nodes consider a path between them.

Hints for Problem 4 Find these numbers for several trees to guess the formula. Also result of Problem 3 about the leaves can be useful.