

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

Addressing Individual Layers in Artificial 2D Heterostructures

Dr. Golam Haider

Institute for Metallic Materials Leibniz Institute for Solid State and Materials Research Dresden

Acknowledgment

Dr. O. Frank

Dr. A. Rodriguez

Dr. M. Kalbac

Prof. J. Vejpravová

Dr. J. Varillas

Charles University and Academy of Sciences of the Czech Republic

Dr. V. Varade

Superpuddles Lab

Twisted 2D Materials

Institute for Metallic Materials Leibniz IFW Dresden

Van der Waals heteroepitaxy

Van der Waals heteroepitaxy

Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions.

Correlated electrons in twisted graphene heterostructure

- Twisted bilayer graphene displays various correlated electronic phases associated with forming ultra-flat electronic bands near an interlayer 'magic angle' of 1.1°.
- The band structures of moiré materials are fragile and easily manipulated by small structural deformations in the superlattice.

Cao Y. et al, Nature, 2018

Moiré-trapped excitons in MoSe₂/WSe₂ heterobilayers

Seyler K.L. et al, Nature, 2018

MoSe₂/MoS₂ moiré superlattices

Rodríguez A. and G.H. et al. ACS Nano, 2023

Strain-shear coupling in bilayer MoS₂

Lee J.U. et al. Nature Communication, 2017

Complex strain scapes in MoSe₂/MoS₂ moiré superlattices

Reconstructed MoSe,/MoS, moiré superlattices

Reconstructed MoSe₂/MoS₂ moiré superlattices

Can we optically probe lattice reconstructed moiré homostructures?

Probing isotopically marked layers

Isotopically marked heterostructures

Stacking of 2D layers under ultra-high vacuum conditions

MoSe₂/MoS₂ HBL

Anneal

Ultra-high vacuum exfoliation system

Combine metal- and dielectric-assisted exfoliation

Scalable van der Waals heterostructure

Large-area exfoliation and heterostructure design

Haider G. et al., ACS Applied Electronic Materials, 2024

Summary

- Our study reveals that small twist angles (between 0 and 2°) give rise to considerable atomic reconstructions, large moiré periodicities, and high levels of local strain (with an average value of ~1%).
- The formation of moiré superlattices leads to a complex strain distribution characterized by a combined deformation state of uniaxial, biaxial, and shear components.
- Larger twist angles (>10°) hinder lattice reconstruction and produce moiré patterns of small periodicity and negligible strains.
- **Isotopically marked 2D layers** provide another possibility to investigate constituent layers in 2D heterostructures **optically**.
- Careful manipulation of 2D layers under UHV conditions may address the scalability and reproducibility issues of functionalities produced in 2D composites.

