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Motivation

Scalar fluctuations, non-minimally coupled to gravity, can be treated
as a potential source of secondary gravitational waves.

Significant post-inflationary long-wavelength(IR) instability of the
source field beyond a certain coupling strength, leaves a visible imprint
on secondary gravitational wave spectrum, which can be probed by
various future GW observatories.

Constraining non-minimal coupling through Planck bound on
tensor-to-scalar ratio and ∆Neff .
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Cosmic Evolution

▶ Cosmic evolution and dynamics of Hubble horizon through modified

expansion history.
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Why do we need reheating phase?

▶ At the end of early accelerated expansion(Inflation), universe was left
in a super cold state of vanishing entropy, and particle no. density.

▶ To achieve successful nucleosynthesis, universe must transit to a hot,
thermalized radiation-dominated phase.

▶ Inflaton−→ SM+BSM −→ hot thermal bath −→ reheating
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General set up of non-minimally coupled scalar
field(χ) system

▶ Lagrangian of the system:

L[ϕ,χ] = −
√
−g︸ ︷︷ ︸

a4(η)

(
1
2∂µϕ∂

µϕ+ V (ϕ) + 1
2∂µχ∂

µχ+ 1
2m

2
χχ

2 + 1
2ξRχ

2
)

a → scale factor; R → Ricci scalar; ξ → non-minimal coupling

▶ Fourier decomposition:
χ(η, x⃗) =

∫
d3k
(2π)3 χk(η) e

i k⃗.x⃗

▶ EoM of rescaled field mode(Xk = a(η)χk(η)):

X ′′
k +

[
k2 + a2m2

χ − a′′

a
(1 − 6ξ)

]
Xk = 0 (1)

R =
(
6a′′/a3)
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Dynamical equation and appearance of IR
instability(Tachyonic instability)

▶ Form of scale factor:

a(η) = aend

(
1+3wϕ

2|ηend|

) 2
1+3wϕ

(
η − ηend +

2|ηend|
1+3wϕ

) 2
1+3wϕ

; ηi < η ≤ η

▶ We are interested in IR modes (k < aendHend = kend) of very low
mass case, mχ ≈ 0

▶ Inflationary evolution: X ′′
k +

[
k2 − 2(1 − 6ξ)

η2

]
︸ ︷︷ ︸

ω2
k<0(Instability)→ for ξ<1/6

Xk = 0

▶ Post-inflationary evolution:

X ′′
k +

[
k2 −

2(1 − 3wϕ)(1 − 6ξ)

(1 + 3wϕ)2
(
η +

3(1+wϕ)
aendHend(1+3wϕ)

)2

]
︸ ︷︷ ︸
ω2
k<0→ for wϕ>1/3, ξ>1/6, for wϕ<1/3, ξ<1/6

Xk = 0

Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instability and secondary gravitational waves10th January 2025 7



Dynamical equation and appearance of IR
instability(Tachyonic instability)

▶ Form of scale factor:

a(η) = aend

(
1+3wϕ

2|ηend|

) 2
1+3wϕ

(
η − ηend +

2|ηend|
1+3wϕ

) 2
1+3wϕ

; ηi < η ≤ η

▶ We are interested in IR modes (k < aendHend = kend) of very low
mass case, mχ ≈ 0

▶ Inflationary evolution: X ′′
k +

[
k2 − 2(1 − 6ξ)

η2

]
︸ ︷︷ ︸

ω2
k<0(Instability)→ for ξ<1/6

Xk = 0

▶ Post-inflationary evolution:

X ′′
k +

[
k2 −

2(1 − 3wϕ)(1 − 6ξ)

(1 + 3wϕ)2
(
η +

3(1+wϕ)
aendHend(1+3wϕ)

)2

]
︸ ︷︷ ︸
ω2
k<0→ for wϕ>1/3, ξ>1/6, for wϕ<1/3, ξ<1/6

Xk = 0

Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instability and secondary gravitational waves10th January 2025 7



Dynamical equation and appearance of IR
instability(Tachyonic instability)

▶ Form of scale factor:

a(η) = aend

(
1+3wϕ

2|ηend|

) 2
1+3wϕ

(
η − ηend +

2|ηend|
1+3wϕ

) 2
1+3wϕ

; ηi < η ≤ η

▶ We are interested in IR modes (k < aendHend = kend) of very low
mass case, mχ ≈ 0

▶ Inflationary evolution: X ′′
k +

[
k2 − 2(1 − 6ξ)

η2

]
︸ ︷︷ ︸

ω2
k<0(Instability)→ for ξ<1/6

Xk = 0

▶ Post-inflationary evolution:

X ′′
k +

[
k2 −

2(1 − 3wϕ)(1 − 6ξ)

(1 + 3wϕ)2
(
η +

3(1+wϕ)
aendHend(1+3wϕ)

)2

]
︸ ︷︷ ︸
ω2
k<0→ for wϕ>1/3, ξ>1/6, for wϕ<1/3, ξ<1/6

Xk = 0

Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instability and secondary gravitational waves10th January 2025 7



Inflationary and post-inflationary vacuum
solution

Adiabatic vacuum solution

Inflationary vacuum solution: X
(inf)
k =

√
π|η|
2 e i(π/4+πν1/2)H

(1)
ν1 (k |η|)

Post-inflationary vacuum solution:

X
(reh)
k =

√
η̄
π exp

[
3ikµ

aendHend
+ iπ

4

]
Kν2(ik η̄)

▶ EoS and ξ dependent indices: ν1 =
√

9 − 48ξ/2; µ =
(1+wϕ)
(1+3wϕ)

;

ν2 =

√
3(1+wϕ)

(
3(1−wϕ)2+16ξ(3wϕ−1)

)
2
√

1+3wϕ

√
1+4wϕ+3w2

ϕ

; η̄ = (η + 3µ/aendHend)

▶ General reheating field solution: Xk(η) = αkX
(reh)
k + βkX

∗(reh)
k

αk , βk −→ Bogoliubov coefficients

Introduction to Bogoliubov coefficients
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Time-evolution of long-wavelength(IR) modes of
scalar fluctuations
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Defining field power spectrum and
energy-density spectrum

▶ Field power spectrum: Pχ(k , η) =
k3

2π2a2 |Xk |2

▶ Field energy-density spectrum:

ρχk
(η) = k3

4π2a4 (|X ′
k |2 + k2|Xk |2

)
=

(
k2/a2)Pχ(k , η)

Energy spectrum of IR modes for 1/3 < wϕ ≤ 1

ρχk
(η > ηend) ∝


(k/kend)

2(2−ν1−ν2) for 0 ≤ ξ < 3/16
(k/kend)

2(2−ν2) for ξ = 3/16
(k/kend)

2(2−ν2) for ξ > 3/16

(2)
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Behavior of energy-density spectrum
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▶ wϕ = 0 → ξcri ≈ 5/48

wϕ = 1/2 → ξcri ≈ 4.073

1 A.chakraborty, S.Maiti, and D.Maity [arxiv: 2408.07767]
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Model independent definition of reheating
parameters(Nre,Tre)

Reheating point: ρR(are) = ρϕ(are)

Reheating e-folding number: Nre =
1

3(1+wϕ)
ln

(
90H2

endM
2
pl

π2greT 4
re

)
Defining kend and kre:

(kend/a0) =
(

43
11gre

)1/3 (
π2gre

90

)α H1−2α
end T 4α−1

re T0

M2α
pl

, (kend/kre) =

exp
(
Nre(1+3wϕ)

2

)
, α = 1/3(1 + wϕ), a0 → present scale factor, and

T0 = 2.725 K is the present CMB temperature

1 L. Dai, M. Kamionkowski and J. Wang, PRL. 113, 041302 (2014)
2 J. L. Cook, et al. JCAP 04 (2015) 047
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Generation of secondary(induced) gravitational
wave(SGW)

▶ Perturbed FLRW metric:
ds2 = a2(η)

[
−dη2 + (δij + hij)dx

idx j
]
, transverse-traceless tensor

→ ∂ihij = hii = 0

▶ anisotropic stress tensor: Πij ∼ (1−2ξ)∂iχ∂jχ−2ξχ∂i∂jχ+ ξχ2Gij

▶ Evolution equation:
hλ

′′

k + 2a′

a h
λ
k
′ + k2hλk = 2

M2
pl
e ijλ (k)P

lm
ij (k̂)Tlm(k , η), P lm

ij (k̂) →
transverse-traceless projector

outline of evolution Equation
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Defining Gravitational wave(GW) energy spectrum

▶ GW energy spectrum:
Ωgw(k , η) = (Ωpri

gw +Ωsec
gw) =

(1+k2/k2
re)

24 (Ppri
T (k , ηre) + Psec

T (k , ηre))

▶ Energy spectrum for today:

Ωgw(k)h
2 ≈

(
gr,0
gr,eq

)1/3
ΩRh

2Ωgw(k , η), ΩRh
2 = 4.3 × 10−5

For wϕ > 1/3, ξ > 3/16

Ωpri
gw(k < kre)h

2 ∝ (k/kre)
0 (3)

Ωpri
gw(k > kre)h

2 ∝ (kend/kre)
nw (k/kend)

nw ; nw = 2(3wϕ − 1)/(1 + 3wϕ)

(4)

Ωsec
gw(k < kre)h

2 ∝ (kend/kre)
4−2δ (k/kend)

2(4−2ν2) ; δ = 4/(1 + 3wϕ) (5)

Ωsec
gw(k > kre)h

2 ∝ (kend/kre)
2−δ (k/kend)

6+δ−4ν2 (6)

Defining secondary tensor power spectrum

Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instability and secondary gravitational waves10th January 2025 14



GW spectrum for varying ξ, Tre and inflationary
energy scale(Hend)
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Constraining ξ through tensor-to-scalar
ratio(r0.05) and ∆Neff(for the scalar field)

▶ For wϕ > 1/3, in the regime k < kre; r0.05 ∝(
90H2

endM
2
pl

π2greT 4
re

) 2(3wϕ−1)
3(1+wϕ) (

k∗
kend

)4(2−ν2)
≤ 0.036; (k∗/a0) = 0.05 Mpc−1

▶ This massless scalar, possible candidate for dark radiation, solely
contributes to ∆Neff →(

gr,0
gr,eq

)1/3
ΩRh

2 Ωχ(ηre) ≃ 1.6 × 10−6
(
∆Neff
0.284

)
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1 N. Aghanim et al. (Planck)[arXiv: 1807.06209[astro-ph.CO]]
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Contribution of GWs to ∆Neff

▶ If GWs(PGW+SGW) solely contributes to ∆Neff then
Ωgwh

2 ≤ 1.6 × 10−6
(
∆Neff
0.284

)
, Ωgwh

2 =
∫ kend
kmin

dk
k Ωgw(k)h

2

▶ Minimum bound on Tre( avoiding overproduction of extra
degrees of freedom):

Tmin
re ≥

(
90H2

endM
2
pl

π2gre

)1/4

β
3(1+wϕ)

4(3wϕ−1)
(

0.284
∆Neff

) 3(1+wϕ)

4(3wϕ−1) , β →(
1.43 × 10−11/nw

)
(Hend/10−5Mpl)

2
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1 S. Maiti, D. Maity, and L. Sriramkumar, (2024)[arXiV:2401.01864[gr-qc]]
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Important outcomes

Post-inflationary instability effect is dominant for higher EoS
wϕ > 1/3. The longer the wavelength, the more the enhancement
owing to prolonged instability for a larger coupling strength ξ.

For wϕ > 1/3, significant IR instability beyond a certain large ξ leaves
a visible imprint on the SGW spectrum overcoming the PGW strength
at the low and intermediate frequency ranges.

Combining two strong observational bounds, r0.05 and ∆Neff , to
prevent the overproduction of tensor fluctuations at the CMB scale
and the overproduction of extra relativistic degrees of freedom, we
have found a tight constraint on coupling strength. We find that
ξmax ≲ 4 for any wϕ ≥ 1/2 for a wide range of reheating
temperatures. Unlike wϕ > 1/3, for wϕ < 1/3, we put lower bound on
ξ. For wϕ = 0, we find the lower bound ξmin ≳ 0.02.
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Thank you!
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Introduction to Bogoliubov coefficients

Back

▶ Bogoliubov coefficients (αk , βk): Making the adiabatic vacuum
solutions X

(inf)
k and X

(reh)
k , and their first derivatives continuous at

the junction η = ηend, we compute the Bogoliubov coefficients as
follows 1:

αk = i
(
X

(inf)
k

′
(ηend)X

(reh)
k

∗
(ηend)− X

(inf)
k (ηend)X

(reh)
k

∗′
(ηend)

)
βk = −i

(
X

(inf)
k

′
(ηend)X

(reh)
k (ηend)− X

(reh)
k

′
(ηend)X

(inf)
k (ηend)

)
(7)

where (′) denotes the derivative with respect to conformal time.

1 M. R. de Garcia Maia Phys. Rev. D 48, 647 (1993)
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outline of evolution Equation

Back

▶ Action with anisotropic stress:
SGW =

∫
dx4√−g

[
− gµν

64πG ∂µhij∂νh
ij + 1

2Π
ijhij

]
▶ Fourier decomposition:

hij(η, x) =
∑

λ=(+,×)

∫
d3k

(2π)3/2 e
λ
ij (k)h

λ
k(η)e

ik·x, eλij (k) → polarization
tensor
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Defining secondary tensor power spectrum

Back

▶ Tensor power spectrum: PT(k , η) = 4 k3

2π2 |hk(η)|2, hk(η) =

hvac
k + 2e ij (k)

M2
pl

∫
dη1Gk(η, η1)Π

TT
ij (k, η1)

▶ Secondary tensor power spectrum:

Psec
T (k, ηre) ∝ 1

M4
pl

(∫ xre
xe

dx1
Gre
k (xre,x1)

a2(x1)

)2
×
∫ kend
kmin

dq
k

∫ 1
−1 dγ(1 − γ2)2 ×

(q/k)3PX (q,η1)PX (|k−q|η1)
|1−q/k|3 , x = kη, cosγ = k̂.q̂

For wϕ > 1/3, ξ > 3/16

Psec
T (k < kre, ηre) ∝

(
kend

kre

)4−2δ ( k

kend

)4(2−ν2)

; δ = 4/(1 + 3wϕ) (9)

Psec
T (k > kre, ηre) ∝

(
kre

kend

)δ ( k

kend

)4+δ−4ν2

(10)
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