Probing non-minimal coupling through super-horizon instability and secondary gravitational waves

Ayan Chakraborty

Department of Physics, IIT Guwahati, India

Hearing Beyond the Standard Model with Cosmic Sources of Gravitational Waves

Ayan Chakraborty (IITG) Prob

Probing non-minimal coupling through su

Motivation

2 Spectrum of non-minimally coupled scalar fluctuations

3 Generation of secondary gravitational waves by the scalar field source

Onstraining non-minimal coupling strength(ξ) based on observational bound

5 Important findings

• Scalar fluctuations, non-minimally coupled to gravity, can be treated as a potential source of secondary gravitational waves.

• Scalar fluctuations, non-minimally coupled to gravity, can be treated as a potential source of secondary gravitational waves.

 Significant post-inflationary long-wavelength(IR) instability of the source field beyond a certain coupling strength, leaves a visible imprint on secondary gravitational wave spectrum, which can be probed by various future GW observatories. • Scalar fluctuations, non-minimally coupled to gravity, can be treated as a potential source of secondary gravitational waves.

 Significant post-inflationary long-wavelength(IR) instability of the source field beyond a certain coupling strength, leaves a visible imprint on secondary gravitational wave spectrum, which can be probed by various future GW observatories.

• Constraining non-minimal coupling through *Planck* bound on tensor-to-scalar ratio and $\Delta N_{\rm eff}$.

Cosmic Evolution

Cosmic evolution and dynamics of Hubble horizon through modified expansion history.

Why do we need reheating phase?

- At the end of early accelerated expansion(Inflation), universe was left in a super cold state of vanishing entropy, and particle no. density.
- To achieve successful nucleosynthesis, universe must transit to a hot, thermalized radiation-dominated phase.

Why do we need reheating phase?

- At the end of early accelerated expansion(Inflation), universe was left in a super cold state of vanishing entropy, and particle no. density.
- To achieve successful nucleosynthesis, universe must transit to a hot, thermalized radiation-dominated phase.

Inflaton \rightarrow SM+BSM \rightarrow hot thermal bath \rightarrow reheating

General set up of non-minimally coupled scalar field(χ) system

Lagrangian of the system:

$$\mathcal{L}_{[\phi,\chi]} = -\underbrace{\sqrt{-g}}_{a^4(\eta)} \left(\frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\phi) + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi R \chi^2 \right)$$

a \rightarrow scale factor: $R \rightarrow$ Ricci scalar: $\xi \rightarrow$ non-minimal coupling

General set up of non-minimally coupled scalar field($\chi)$ system

Lagrangian of the system:

$$\mathcal{L}_{[\phi,\chi]} = -\underbrace{\sqrt{-g}}_{a^4(\eta)} \left(\frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\phi) + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi R \chi^2 \right)$$

 $a \rightarrow$ scale factor; $R \rightarrow$ Ricci scalar; $\xi \rightarrow$ non-minimal coupling

- Fourier decomposition: $\chi(\eta, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \chi_k(\eta) e^{i\vec{k}.\vec{x}}$
- EoM of rescaled field mode($X_k = a(\eta)\chi_k(\eta)$):

$$X_{k}^{\prime\prime} + \left[k^{2} + a^{2}m_{\chi}^{2} - \frac{a^{\prime\prime}}{a}(1 - 6\xi)\right]X_{k} = 0$$
 (1)

 $R = \left(6a''/a^3\right)$

Dynamical equation and appearance of IR instability(Tachyonic instability)

► Form of scale factor:

$$\boldsymbol{a}(\eta) = \boldsymbol{a}_{\mathrm{end}} \left(\frac{1+3w_{\phi}}{2|\eta_{\mathrm{end}}|}\right)^{\frac{2}{1+3w_{\phi}}} \left(\eta - \eta_{\mathsf{end}} + \frac{2|\eta_{\mathrm{end}}|}{1+3w_{\phi}}\right)^{\frac{2}{1+3w_{\phi}}}; \ \eta_i < \eta \leq \eta$$

Dynamical equation and appearance of IR instability(Tachyonic instability)

► Form of scale factor:

$$\boldsymbol{a}(\eta) = \boldsymbol{a}_{\mathrm{end}} \left(\frac{1+3w_{\phi}}{2|\eta_{\mathrm{end}}|} \right)^{\frac{2}{1+3w_{\phi}}} \left(\eta - \eta_{\mathsf{end}} + \frac{2|\eta_{\mathrm{end}}|}{1+3w_{\phi}} \right)^{\frac{2}{1+3w_{\phi}}}; \ \eta_i < \eta \leq \eta$$

We are interested in IR modes (k < a_{end} H_{end} = k_{end}) of very low mass case, m_χ ≈ 0

Dynamical equation and appearance of IR instability(Tachyonic instability)

Form of scale factor:

$$m{a}(\eta) = m{a}_{ ext{end}} \Big(rac{1+3w_{\phi}}{2|\eta_{ ext{end}}|}\Big)^{rac{2}{1+3w_{\phi}}} \left(\eta - \eta_{ ext{end}} + rac{2|\eta_{ ext{end}}|}{1+3w_{\phi}}\Big)^{rac{2}{1+3w_{\phi}}}; \ \eta_i < \eta \leq \eta$$

We are interested in IR modes (k < a_{end} H_{end} = k_{end}) of very low mass case, m_χ ≈ 0

► Inflationary evolution:
$$X_k'' + \underbrace{\left[k^2 - \frac{2(1-6\xi)}{\eta^2}\right]}_{\omega_k^2 < 0 \text{(Instability)} \to \text{ for } \xi < 1/6} X_k = 0$$

► Post-inflationary evolution:

$$X_{k}'' + \left[k^{2} - \frac{2(1 - 3w_{\phi})(1 - 6\xi)}{(1 + 3w_{\phi})^{2} \left(\eta + \frac{3(1 + w_{\phi})}{a_{\text{end}}H_{\text{end}}(1 + 3w_{\phi})} \right)^{2}} \right] X_{k} = 0$$

$$\underbrace{X_{k}'' + \left[k^{2} - \frac{2(1 - 3w_{\phi})(1 - 6\xi)}{(1 + 3w_{\phi})^{2} \left(\eta + \frac{3(1 + w_{\phi})}{a_{\text{end}}H_{\text{end}}(1 + 3w_{\phi})} \right)^{2}} \right]}_{\omega_{k}^{2} < 0 \rightarrow \text{ for } w_{\phi} > 1/3, \ \xi > 1/6, \ \text{for } w_{\phi} < 1/3, \ \xi < 1/6}$$

Inflationary and post-inflationary vacuum solution

Adiabatic vacuum solution

Inflationary vacuum solution: $X_k^{(inf)} = \frac{\sqrt{\pi|\eta|}}{2} e^{i(\pi/4 + \pi\nu_1/2)} H_{\nu_1}^{(1)}(k|\eta|)$ Post-inflationary vacuum solution:

$$X_k^{(\mathrm{reh})} = \sqrt{rac{ar{\eta}}{\pi}} \exp\left[rac{3ik\mu}{a_{\mathrm{end}}H_{\mathrm{end}}} + rac{i\pi}{4}
ight] K_{
u_2}(ikar{\eta})$$

• EoS and ξ dependent indices: $\nu_1 = \sqrt{9 - 48\xi}/2; \ \mu = \frac{(1+w_{\phi})}{(1+3w_{\phi})};$

$$\nu_{2} = \frac{\sqrt{3(1+w_{\phi})} \left(3(1-w_{\phi})^{2} + 16\xi(3w_{\phi}-1) \right)}{2\sqrt{1+3w_{\phi}}\sqrt{1+4w_{\phi}+3w_{\phi}^{2}}}; \ \bar{\eta} = (\eta + 3\mu/a_{\mathrm{end}}H_{\mathrm{end}})$$

Introduction to Bogoliubov coefficients

Inflationary and post-inflationary vacuum solution

Adiabatic vacuum solution

Inflationary vacuum solution: $X_k^{(inf)} = \frac{\sqrt{\pi|\eta|}}{2} e^{i(\pi/4 + \pi\nu_1/2)} H_{\nu_1}^{(1)}(k|\eta|)$ Post-inflationary vacuum solution:

$$X_k^{(\mathrm{reh})} = \sqrt{rac{ar{\eta}}{\pi}} \exp\left[rac{3ik\mu}{a_{\mathrm{end}}H_{\mathrm{end}}} + rac{i\pi}{4}
ight] K_{
u_2}(ikar{\eta})$$

• EoS and ξ dependent indices: $\nu_1 = \sqrt{9 - 48\xi}/2; \ \mu = \frac{(1+w_{\phi})}{(1+3w_{\phi})};$

$$\nu_2 = \frac{\sqrt{3(1+w_{\phi})} \left(3(1-w_{\phi})^2 + 16\xi(3w_{\phi}-1) \right)}{2\sqrt{1+3w_{\phi}}\sqrt{1+4w_{\phi}+3w_{\phi}^2}}; \ \bar{\eta} = (\eta + 3\mu/a_{\mathrm{end}}H_{\mathrm{end}})$$

• General reheating field solution: $X_k(\eta) = \alpha_k X_k^{\text{(reh)}} + \beta_k X_k^{*\text{(reh)}}$ $\alpha_k, \ \beta_k \longrightarrow \text{Bogoliubov coefficients}$

Introduction to Bogoliubov coefficients

Time-evolution of long-wavelength(IR) modes of scalar fluctuations

¹ A.chakraborty, S.Maiti, and D.Maity [arxiv: 2408.07767]

Ayan Chakraborty (IITG)

Probing non-minimal coupling through su

9

Defining field power spectrum and energy-density spectrum

Field power spectrum: $\mathcal{P}_{\chi}(k,\eta) = \frac{k^3}{2\pi^2 a^2} |X_k|^2$

10

Defining field power spectrum and energy-density spectrum

- Field power spectrum: $\mathcal{P}_{\chi}(k,\eta) = \frac{k^3}{2\pi^2 a^2} |X_k|^2$
- Field energy-density spectrum:

 $\rho_{\chi_k}(\eta) = \frac{k^3}{4\pi^2 a^4} (|X'_k|^2 + k^2 |X_k|^2) = (k^2/a^2) \mathcal{P}_{\chi}(k,\eta)$

Energy spectrum of IR modes for $1/3 < w_{\phi} \leq 1$

$$\rho_{\chi_k}(\eta > \eta_{\rm end}) \propto \begin{cases} (k/k_{\rm end})^{2(2-\nu_1-\nu_2)} & \text{for } 0 \le \xi < 3/16\\ (k/k_{\rm end})^{2(2-\nu_2)} & \text{for } \xi = 3/16\\ (k/k_{\rm end})^{2(2-\nu_2)} & \text{for } \xi > 3/16 \end{cases}$$
(2)

Behavior of energy-density spectrum

$$w_{\phi} = 0
ightarrow \xi_{
m cri} pprox 5/48$$

 $w_{\phi} = 1/2
ightarrow \xi_{
m cri} pprox 4.073$

¹ A.chakraborty, S.Maiti, and D.Maity [arxiv: 2408.07767] Avan Chakraborty (IITG) Probing non-minimal coupling through su

Model independent definition of reheating parameters($N_{\rm re}$, $T_{\rm re}$)

Reheating point: $\rho_{\rm R}(a_{\rm re}) = \rho_{\phi}(a_{\rm re})$

Reheating e-folding number: $N_{\rm re} = \frac{1}{3(1+w_{\phi})} \ln \left(\frac{90H_{\rm end}^2 M_{pl}^2}{\pi^2 g_{\rm re} T_{\rm re}^4} \right)$

Defining
$$k_{\text{end}}$$
 and k_{re} :
 $(k_{\text{end}}/a_0) = \left(\frac{43}{11g_{\text{re}}}\right)^{1/3} \left(\frac{\pi^2 g_{\text{re}}}{90}\right)^{\alpha} \frac{H_{\text{end}}^{1-2\alpha} T_{\text{re}}^{4\alpha-1} T_0}{M_{pl}^{2\alpha}}, \quad (k_{\text{end}}/k_{\text{re}}) = \exp\left(\frac{N_{\text{re}}(1+3w_{\phi})}{2}\right), \quad \alpha = 1/3(1+w_{\phi}), \quad a_0 \rightarrow \text{present scale factor, and}$
 $T_0 = 2.725 \text{ K}$ is the present CMB temperature

¹ L. Dai, M. Kamionkowski and J. Wang, PRL. 113, 041302 (2014)
 ² J. L. Cook, et al. JCAP 04 (2015) 047
 Avan Chakraborty (IITG) Probing non-minimal coupling through su 10th Ja

Generation of secondary(induced) gravitational wave(SGW)

Perturbed FLRW metric:

 $ds^2 = a^2(\eta) \left[-d\eta^2 + (\delta_{ii} + h_{ii}) dx^i dx^j \right]$, transverse-traceless tensor $\rightarrow \partial^i h_{ii} = h_i^i = 0$

- anisotropic stress tensor: $\prod_{ii} \sim (1-2\xi)\partial_i \chi \partial_i \chi 2\xi \chi \partial_i \partial_i \chi + \xi \chi^2 G_{ii}$
- Evolution equation: $h_{\mathbf{k}}^{\lambda^{\prime\prime}} + 2rac{a^{\prime}}{a}h_{\mathbf{k}}^{\lambda\prime} + k^{2}h_{\mathbf{k}}^{\lambda} = rac{2}{M_{\star\prime}^{2}}e_{\lambda}^{ij}(k)P_{ij}^{lm}(\hat{k})T_{lm}(k,\eta), \ \ P_{ij}^{lm}(\hat{k})
 ightarrow$

transverse-traceless projector

• outline of evolution Equation

Defining Gravitational wave(GW) energy spectrum

• GW energy spectrum: $\Omega_{gw}(k,\eta) = (\Omega_{gw}^{pri} + \Omega_{gw}^{sec}) = \frac{(1+k^2/k_{re}^2)}{24} (\mathcal{P}_{T}^{pri}(k,\eta_{re}) + \mathcal{P}_{T}^{sec}(k,\eta_{re}))$ • Energy spectrum for today: $\Omega_{gw}(k)h^2 \approx \left(\frac{g_{r,0}}{g_{r,eq}}\right)^{1/3} \Omega_R h^2 \Omega_{gw}(k,\eta), \quad \Omega_R h^2 = 4.3 \times 10^{-5}$ For $w_{\phi} > 1/3, \ \xi > 3/16$

$$\begin{aligned} \Omega_{\rm gw}^{\rm pri}(k < k_{\rm re})h^2 &\propto (k/k_{\rm re})^0 \end{aligned} (3) \\ \Omega_{\rm gw}^{\rm pri}(k > k_{\rm re})h^2 &\propto (k_{\rm end}/k_{\rm re})^{n_w} (k/k_{\rm end})^{n_w}; n_w = 2(3w_\phi - 1)/(1 + 3w_\phi) \end{aligned} (4) \\ \Omega_{\rm gw}^{\rm sec}(k < k_{\rm re})h^2 &\propto (k_{\rm end}/k_{\rm re})^{4-2\delta} (k/k_{\rm end})^{2(4-2\nu_2)}; \ \delta = 4/(1 + 3w_\phi) \end{aligned} (5) \\ \Omega_{\rm gw}^{\rm sec}(k > k_{\rm re})h^2 &\propto (k_{\rm end}/k_{\rm re})^{2-\delta} (k/k_{\rm end})^{6+\delta-4\nu_2} \end{aligned} (6)$$

14

Defining secondary tensor power spectrum

GW spectrum for varying ξ , $T_{\rm re}$ and inflationary energy scale($H_{\rm end}$)

Constraining ξ through tensor-to-scalar ratio($r_{0.05}$) and $\Delta N_{\rm eff}$ (for the scalar field)

For
$$w_{\phi} > 1/3$$
, in the regime $k < k_{\rm re}$; $r_{0.05} \propto \left(\frac{90H_{\rm end}^2M_{\rm pl}^2}{\pi^2 g_{\rm re}T_{\rm re}^4}\right)^{\frac{2(3w_{\phi}-1)}{3(1+w_{\phi})}} \left(\frac{k_*}{k_{\rm end}}\right)^{4(2-\nu_2)} \le 0.036$; $(k_*/a_0) = 0.05 \,\,{\rm Mpc}^{-1}$

Constraining ξ through tensor-to-scalar ratio($r_{0.05}$) and $\Delta N_{\rm eff}$ (for the scalar field)

► For
$$w_{\phi} > 1/3$$
, in the regime $k < k_{\rm re}$; $r_{0.05} \propto \left(\frac{90H_{\rm end}^2M_{\rm pl}^2}{\pi^2 g_{\rm re}T_{\rm re}^4}\right)^{\frac{2(3w_{\phi}-1)}{3(1+w_{\phi})}} \left(\frac{k_*}{k_{\rm end}}\right)^{4(2-\nu_2)} \le 0.036$; $(k_*/a_0) = 0.05 \,\,{\rm Mpc}^{-1}$

► This massless scalar, possible candidate for dark radiation, solely contributes to $\Delta N_{\rm eff} \rightarrow \left(\frac{g_{\rm r,0}}{g_{\rm r,eq}}\right)^{1/3} \Omega_{\rm R} h^2 \Omega_{\chi}(\eta_{\rm re}) \simeq 1.6 \times 10^{-6} \left(\frac{\Delta N_{\rm eff}}{0.284}\right)$

Probing non-minimal coupling through su

16

Contribution of GWs to $\Delta N_{ m eff}$

• If GWs(PGW+SGW) solely contributes to ΔN_{eff} then $\Omega_{\text{gw}}h^2 \leq 1.6 \times 10^{-6} \left(\frac{\Delta N_{\text{eff}}}{0.284}\right), \ \Omega_{\text{gw}}h^2 = \int_{k_{\text{min}}}^{k_{\text{end}}} \frac{dk}{k} \Omega_{\text{gw}}(k)h^2$

¹ S. Maiti, D. Maity, and L. Sriramkumar, (2024)[arXiV:2401.01864[gr-qc]]

Ayan Chakraborty (IITG) Probing non-minimal coupling through su

Contribution of GWs to $\Delta N_{ m eff}$

- ► If GWs(PGW+SGW) solely contributes to ΔN_{eff} then $\Omega_{\text{gw}}h^2 \leq 1.6 \times 10^{-6} \left(\frac{\Delta N_{\text{eff}}}{0.284}\right), \quad \Omega_{\text{gw}}h^2 = \int_{k_{\text{min}}}^{k_{\text{end}}} \frac{dk}{k} \Omega_{\text{gw}}(k)h^2$
- Minimum bound on T_{re}(avoiding overproduction of extra degrees of freedom):

¹ S. Maiti, D. Maity, and L. Sriramkumar, (2024)[arXiV:2401.01864[gr-qc]]

Probing non-minimal coupling through su

17

Post-inflationary instability effect is dominant for higher EoS w_φ > 1/3. The longer the wavelength, the more the enhancement owing to prolonged instability for a larger coupling strength ξ.

Important outcomes

- Post-inflationary instability effect is dominant for higher EoS w_φ > 1/3. The longer the wavelength, the more the enhancement owing to prolonged instability for a larger coupling strength ξ.
- For $w_{\phi} > 1/3$, significant IR instability beyond a certain large ξ leaves a visible imprint on the SGW spectrum overcoming the PGW strength at the low and intermediate frequency ranges.

- Post-inflationary instability effect is dominant for higher EoS w_φ > 1/3. The longer the wavelength, the more the enhancement owing to prolonged instability for a larger coupling strength ξ.
- For $w_{\phi} > 1/3$, significant IR instability beyond a certain large ξ leaves a visible imprint on the SGW spectrum overcoming the PGW strength at the low and intermediate frequency ranges.
- Combining two strong observational bounds, $r_{0.05}$ and $\Delta N_{\rm eff}$, to prevent the overproduction of tensor fluctuations at the CMB scale and the overproduction of extra relativistic degrees of freedom, we have found a tight constraint on coupling strength. We find that $\xi_{\rm max} \lesssim 4$ for any $w_{\phi} \geq 1/2$ for a wide range of reheating temperatures. Unlike $w_{\phi} > 1/3$, for $w_{\phi} < 1/3$, we put lower bound on ξ . For $w_{\phi} = 0$, we find the lower bound $\xi_{\rm min} \gtrsim 0.02$.

Thank you!

Bogoliubov coefficients (α_k, β_k): Making the adiabatic vacuum solutions X^(inf)_k and X^(reh)_k, and their first derivatives continuous at the junction η = η_{end}, we compute the Bogoliubov coefficients as follows ¹:

$$\alpha_{k} = i \left(X_{k}^{(\inf)'}(\eta_{\text{end}}) X_{k}^{(\operatorname{reh})*}(\eta_{\text{end}}) - X_{k}^{(\inf)}(\eta_{\text{end}}) X_{k}^{(\operatorname{reh})*'}(\eta_{\text{end}}) \right)$$

$$\beta_{k} = -i \left(X_{k}^{(\inf)'}(\eta_{\text{end}}) X_{k}^{(\operatorname{reh})}(\eta_{\text{end}}) - X_{k}^{(\operatorname{reh})'}(\eta_{\text{end}}) X_{k}^{(\inf)}(\eta_{\text{end}}) \right)$$
(7)

where (') denotes the derivative with respect to conformal time.

¹ M. R. de Garcia Maia Phys. Rev. D 48, 647 (1993)

Probing non-minimal coupling through su

Bogoliubov coefficients (α_k, β_k): Making the adiabatic vacuum solutions X^(inf)_k and X^(reh)_k, and their first derivatives continuous at the junction η = η_{end}, we compute the Bogoliubov coefficients as follows ²:

$$\alpha_{k} = i \left(X_{k}^{(\inf)'}(\eta_{\text{end}}) X_{k}^{(\operatorname{reh})^{*}}(\eta_{\text{end}}) - X_{k}^{(\inf)}(\eta_{\text{end}}) X_{k}^{(\operatorname{reh})^{*}'}(\eta_{\text{end}}) \right)$$

$$\beta_{k} = -i \left(X_{k}^{(\inf)'}(\eta_{\text{end}}) X_{k}^{(\operatorname{reh})}(\eta_{\text{end}}) - X_{k}^{(\operatorname{reh})'}(\eta_{\text{end}}) X_{k}^{(\inf)}(\eta_{\text{end}}) \right)$$
(8)

where (') denotes the derivative with respect to conformal time.

² M. R. de Garcia Maia Phys. Rev. D 48, 647 (1993)

Probing non-minimal coupling through su

Action with anisotropic stress: S_{GW} = ∫ dx⁴√-g [-g^{μν}/_{64πG}∂_μh_{ij}∂_νh^{ij} + ½Π^{ij}h_{ij}] Fourier decomposition: h_{ij}(η, x) = ∑_{λ=(+,×)} ∫ d^{3k}/((2π)^{3/2}) e^j_{ij}(k)h^λ_k(η)e^{ik·x}, e^λ_{ij}(k) → polarization tensor

Defining secondary tensor power spectrum

▲ Back

► Tensor power spectrum: $\mathcal{P}_{\mathrm{T}}(k,\eta) = 4\frac{k^3}{2\pi^2}|h_{\mathbf{k}}(\eta)|^2$, $h_{\mathbf{k}}(\eta) = h_{\mathbf{k}}^{\mathrm{vac}} + \frac{2e^{ij}(\mathbf{k})}{M_{\rho l}^2} \int d\eta_1 \mathcal{G}_k(\eta,\eta_1) \Pi_{ij}^{\mathrm{TT}}(\mathbf{k},\eta_1)$

Defining secondary tensor power spectrum

▲ Back

- ► Tensor power spectrum: $\mathcal{P}_{\mathrm{T}}(k,\eta) = 4\frac{k^3}{2\pi^2}|h_{\mathbf{k}}(\eta)|^2$, $h_{\mathbf{k}}(\eta) = h_{\mathbf{k}}^{\mathrm{vac}} + \frac{2e^{ij}(\mathbf{k})}{M_{ol}^2} \int d\eta_1 \mathcal{G}_k(\eta,\eta_1) \Pi_{ij}^{\mathrm{TT}}(\mathbf{k},\eta_1)$
- ► Secondary tensor power spectrum: $\mathcal{P}_{\mathrm{T}}^{\mathrm{sec}}(k,\eta_{\mathrm{re}}) \propto \frac{1}{M_{\mathrm{pl}}^{4}} \left(\int_{x_{\mathrm{e}}}^{x_{\mathrm{re}}} dx_{1} \frac{\mathcal{G}_{k}^{\mathrm{re}}(x_{\mathrm{re}},x_{1})}{a^{2}(x_{1})} \right)^{2} \times \int_{k_{\mathrm{min}}}^{k_{\mathrm{end}}} \frac{dq}{k} \int_{-1}^{1} d\gamma (1-\gamma^{2})^{2} \times \frac{(q/k)^{3} \mathcal{P}_{X}(q,\eta_{1}) \mathcal{P}_{X}(|\mathbf{k}-\mathbf{q}|\eta_{1})}{|1-q/k|^{3}}, \quad x = k\eta, \quad \cos\gamma = \hat{k}.\hat{q}$

For $w_{\phi} > 1/3$, $\xi > 3/16$

$$\mathcal{P}_{\mathrm{T}}^{\mathrm{sec}}(k < k_{\mathrm{re}}, \eta_{\mathrm{re}}) \propto \left(\frac{k_{\mathrm{end}}}{k_{\mathrm{re}}}\right)^{4-2\delta} \left(\frac{k}{k_{\mathrm{end}}}\right)^{4(2-\nu_2)}; \delta = 4/(1+3w_{\phi}) \quad (9)$$
$$\mathcal{P}_{\mathrm{T}}^{\mathrm{sec}}(k > k_{\mathrm{re}}, \eta_{\mathrm{re}}) \propto \left(\frac{k_{\mathrm{re}}}{k_{\mathrm{end}}}\right)^{\delta} \left(\frac{k}{k_{\mathrm{end}}}\right)^{4+\delta-4\nu_2} \quad (10)$$

Ayan Chakraborty (IITG)