# * Characters of vanishing integral 

 and the thin point set $\equiv$Haruzo Hida<br>UCLA, Los Angeles, CA 90095-1555, U.S.A.

ICTS hybrid conference Bengaluru, August, 2022.
*Assume that $\mathcal{Q} \cong \Delta^{-}$with $\mathfrak{Q}$ split over $F$. We describe the set $\mathcal{Z}=\{\chi \in$ $\operatorname{Hom}\left(\Gamma, \mu_{\ell \infty}\right)$ with $\left.\int_{C l^{-}} \chi \psi d \varphi_{f}=0\right\}$ and relate it to the point set $\equiv \subset S h^{\mathcal{Q}}$. Recall $\int_{\Gamma_{n}} \chi d \varphi_{f_{\psi}^{\ell}}=\sum_{\mathfrak{Q}, \mathcal{A} \in \Gamma_{n}} \lambda \psi^{-1}(\mathfrak{Q}) \chi(\mathcal{A}) f\left(\left[\mathcal{A} \mathfrak{Q}^{-1}\right]_{n}[\mathfrak{Q}]_{\Gamma}\right)$. The action of $[\mathfrak{Q}]_{\Gamma}$ is transcendental and is incorporated into the embedding $C \hookrightarrow S h^{\mathcal{Q}}$. So we write down $f_{\psi}^{\mathcal{Q}}$ as a value of a single modular form $f_{\psi}:=\sum_{\mathfrak{Q} \in \mathcal{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f \mid\langle\mathfrak{Q}\rangle$ first for $f \mid\langle\mathfrak{Q}\rangle(x(\mathcal{A}))=f\left(x\left(\mathcal{A Q}^{-1}\right)\right)$.
§0. The idea when $O_{\mathfrak{l}}=\mathbb{Z}_{\ell}$. Descend $\mathfrak{Q} \in \mathcal{Q}$ to $\mathfrak{q}=\mathfrak{Q} \cap O$. Then $C_{\mathfrak{q}}:=\left(\varpi_{\mathfrak{q}}^{-1} \widehat{O} w_{1}+\widehat{O} w_{2}\right) / T X \subset X$ is a $O$-cyclic subgroup. Define for $\langle\mathfrak{Q}\rangle$ by the action of $\operatorname{diag}\left[\varpi_{\mathfrak{q}}^{-1}, 1\right]$ :
$f \mid\langle\mathfrak{Q}\rangle(X, \bar{\Lambda}, w, \omega):=f\left(X / C_{\mathfrak{q}}, \bar{\Lambda}_{\mathfrak{Q}},\langle\mathfrak{Q}\rangle w, \omega_{\mathfrak{Q}}\right)\left(f \mid\langle\mathfrak{Q}\rangle([\mathcal{A}])=f\left(\left[\mathcal{A} \mathfrak{Q}^{-1}\right]\right)\right)$,
where $\bar{\Lambda}_{\mathfrak{Q}}$ and $\omega_{\mathfrak{Q}}$ are the push-down of $\bar{\Lambda}$ and $\omega$ to the quotient $X / C_{\mathfrak{Q}}$. Define $f_{\psi}=\sum_{\mathfrak{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f \mid\langle\mathfrak{Q}\rangle$. Recall $v=v(\chi)$ such that $\chi\left(\left[\mathcal{A}_{u}\right]\right)=\zeta_{j}^{\operatorname{Tr}(v u)}$ identifying $\Gamma_{n}\left[{ }^{\mathfrak{j}}\right] \cong O / \mathfrak{k}^{j}$ by $x\left(\mathcal{A}_{u}\right)=$ $\alpha\left(u / \varpi_{\mathfrak{l}}^{j}\right)\left(x\left(R_{n}\right)\right)$. We regard $(f \mid\langle\mathfrak{Q}\rangle)_{\mathfrak{Q}}$ a modular form on $S h^{\mathcal{Q}}$ and evaluate it at $\equiv=\bar{E}_{\underline{n}, j}$ defined by the following sequence $\underline{n}$.
$\underline{n}:=\left\{n \mid \int_{C l_{n}^{-}} \chi \psi d \varphi_{f}=0\right.$ for $n>j$ with $\operatorname{cond}(\chi)=r^{n}$ and $\left.v(\chi)=v\right\}$.
Modifying further $f_{\psi}=\sum_{\mathfrak{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f_{v} \mid\langle\mathfrak{Q}\rangle$ with

$$
f_{v}=\sum_{u \in O / / j} \zeta_{j}^{T r(v u)} f \mid \alpha\left(u / \varpi_{l}^{j}\right),
$$

we show $f_{v}([\mathcal{A}])=0$ for all $\mathrm{s}([\mathcal{A}]) \in \equiv$; so, $f_{v}=0$ if $\equiv$ is Zariski dense in $V^{\mathcal{Q}}$. Note $N(\mathfrak{l})^{j} a(\xi, f)=a\left(\xi, f_{v}\right)$ as long as $\xi \equiv-v$ $\bmod \mathfrak{l}^{j} O_{\mathfrak{l}}$. We suppose $j \geq r>0$ for $r$ with $\ell^{r} \|\left|\mathbb{F}_{p}\left[f, \lambda, \psi, \mu_{\ell}\right]^{\times}\right|$.
§1. Geometric modular forms.
Geometric modular forms classify quadruples ( $X, \bar{\Lambda}, w, \omega$ ) with $(X, \bar{\Lambda}, w)_{/ A} \in S h(A)$, where $\omega$ is a generator over $O \otimes_{\mathbb{Z}} A$ of $H^{0}\left(X, \Omega_{X / A}\right)$. A geometric modular form $f_{/ B}(B=W, \mathbb{F})$ is a functorial rule of assigning a value to triples $(X, \bar{\Lambda}, w, \omega)$ to satisfy the following three axioms:
(G1) For a $B$-algebra homomorphism $\phi: A \rightarrow A^{\prime}$, we have

$$
f\left((X, \bar{\Lambda}, w, \omega) \times_{A, \phi} A^{\prime}\right)=\phi(f(X, \bar{\Lambda}, w, \omega)) .
$$

(G2) $f$ is finite at all cusps, that is, the $q$-expansion of $f$ at every Tate test object does not have a pole at $q=0$.
(G3) $f(X, \bar{\Lambda}, w, \xi \omega)=\xi^{-k \Sigma} f(X, \bar{\Lambda}, w, \omega)$ for $\xi \in T(A)$ for $T=$ $\operatorname{Res}_{O / \mathbb{Z}}\left(\mathbb{G}_{m}\right)$.
Note $k \Sigma \in \operatorname{Hom}_{\text {alg. gp }}\left(T, \mathbb{G}_{m}\right)$ sending $\xi$ to $\xi^{k \Sigma}=\Pi_{\sigma \in \Sigma}\left(\xi^{\sigma}\right)^{k}$. Only important point about polarization is its ideal $\mathfrak{c}$ such that $\wedge: X \otimes \mathfrak{c} \cong \operatorname{Pic}^{0}(X)$, and $[c] \in C l_{F}^{+}$parameterizes geometrically irreducible components of $S h_{K}$ if $\operatorname{det}(K)=\hat{O}^{(p), \times}$. The differential operator $d^{\kappa}$ changes $k$ to $k \Sigma+\kappa(1-c)$. For simplicity, we assume $\kappa=0$.
§2. Choice of $\lambda$. For simplicity, assume that $f$ has trivial Neben types. Choose $\lambda$ so that $\lambda((\xi))=\xi^{-k \Sigma}$ and $\left.\lambda\right|_{F_{\mathbb{A}}^{\times}(\infty)}$ is the central character of $f$. Fix $\omega$ on $X(R)$. Then by the isogeny $\iota: X(R) \rightarrow X(\mathcal{A})$ induced by $\mathcal{A}=a R_{n}$ for $a \in M_{\mathbb{A}^{p l \infty}}^{\times}$, we have $\omega_{\mathcal{A}}=\iota_{*} \omega$ for all $\mathcal{A}$. Since $\xi: X(\mathcal{A}) \cong X(\xi \mathcal{A})$ for $\xi \in M^{\times} \cap R_{n, \mathfrak{l}}^{\times}$ induces $\omega \mapsto \xi_{*} \omega=\xi \omega$, we find

$$
f(x(\xi \mathcal{A}))=f\left(X(\xi \mathcal{A}), \xi w, \xi \omega_{\mathcal{A}}\right)=\xi^{-k \Sigma} f(x(\mathcal{A}))
$$

and by $\lambda((\xi)) \xi^{k \Sigma}$ is the Neben character of $f$, we find

$$
f([\mathcal{A}]):=\lambda(\mathcal{A})^{-1} f(x(\mathcal{A}))
$$

only depends on the class $C l_{n}^{-}=M_{\mathbb{A}}^{\times} / \widehat{R}_{n}^{\times}\left(F_{\mathbb{A}}^{(\infty)}\right)^{\times} M^{\times} M_{\infty}^{\times}$.
The action $\langle\mathfrak{Q}\rangle=\operatorname{diag}\left[\varpi_{\mathfrak{q}}^{-1}, 1\right]$ is at the place $\mathfrak{q}=\mathfrak{Q} \cap O$ and the action $\alpha\left(u / \varpi_{\mathfrak{l}}^{r}\right)$ is at $\mathfrak{l} \neq \mathfrak{q}$; so, they commute. Thus
$f \mid\langle\mathfrak{Q}\rangle([\mathcal{A}])$ and $f_{v}([\mathcal{A}])$ are well defined for $[\mathcal{A}] \in C l_{n}^{-}$.

## §3. Shimura's reciprocity law.

Let $\left(M^{\prime}, \Sigma^{\prime}\right)$ be the reflex of $(M, \Sigma)$. We suppose that $f_{/ \mathbb{F}}$ is the reduction modulo $p$ of $f_{/ \mathcal{W}}$ and write $E$ over $M^{\prime}$ be the field of rationality of $\psi, f_{/ \mathcal{W}}$ and $\lambda$. Let $E_{f}$ be the field of rationality over $E\left[\mu_{\ell} \infty\right]$ of $x(\mathcal{A}) \in S h$ for all $[\mathcal{A}] \in C l^{\text {alg }}$. Then $E_{f}$ is an abelian extension over $E$. Then for an idele $b$ of $M_{\mathbb{A}}^{\prime \times}$, we have $b^{\Sigma^{\prime}}=\Pi_{\sigma^{\prime} \in \Sigma^{\prime}} b^{\sigma^{\prime}} \in M_{\mathbb{A}}^{\times}$, and hence we have an Artin symbol $\left[N(b)^{\Sigma^{\prime}}, E\right]$ acting on $E_{f}$ for the norm map $N:=N_{E / M^{\prime}}$, whose ideal version, we write as $\sigma=\sigma_{b}=\left[N(b)^{\Sigma^{\prime}}, E\right]$.

Here is a reciprocity law of Shimura:

$$
\begin{equation*}
f([\mathcal{A}])^{\sigma}=f\left(\left[N(b)^{-\Sigma^{\prime}} \mathcal{A}\right]\right), \tag{R}
\end{equation*}
$$

which implies

$$
\left(\int_{\Gamma_{n}} \chi d \varphi \varphi_{f_{\psi}}^{\mathcal{Q}}\right)^{\sigma}=\chi^{\sigma}\left(N(b)^{\Sigma}\right) \int_{\Gamma_{n}} \chi^{\sigma} d \varphi \varphi_{f_{\psi}}^{\mathcal{Q}}
$$

§4. Trace relation. Let $\mathbb{F}_{P}=\mathbb{F}_{p}\left[f_{/ \mathbb{F}}, \psi, \lambda_{/ \mathbb{F}}, \mu_{\ell}\right]$ (the field of rationality of $f_{/ \mathbb{F}}, \psi, \lambda_{/ \mathbb{F}}$ and $\left.\mu_{\ell}\right)$. Define $r>0$ by $\ell^{r} \|\left|\mathbb{F}_{P}^{\times}\right|$.

Lemma. For a generator $\zeta_{n} \in \mu_{\ell n}$, if $\mathbb{F}_{P}[\chi]=\mathbb{F}_{P}\left[\zeta_{n}\right]$ with $n>$ $j \geq r$, we have

$$
\operatorname{Tr}_{\mathbb{F}_{P}[\chi] / \mathbb{F}_{P}\left[\mu_{\ell j}\right]}\left(\zeta_{n}^{s}\right)= \begin{cases}{\left[\mathbb{F}_{P}\left[\zeta_{n}\right]: \mathbb{F}_{P}\left[\zeta_{j}\right]\right] \zeta_{n}^{s}} & \text { if } \zeta_{n}^{s} \in \mu_{\ell j} \\ 0 & \text { otherwise }\end{cases}
$$

Note $\left[\mathbb{F}_{P}\left[\zeta_{n}\right]: \mathbb{F}_{P}\left[\zeta_{j}\right]\right]=\ell^{n-j} \neq 0$ in $\mathbb{F}$.
Proof. By our assumption, $j>0$. Then the minimal equation of $\mathbb{F}_{P}[\chi]$ of $\zeta_{n}^{s}$ over $\mathbb{F}_{P}\left[\mu_{\ell j}\right]$ is, if $\zeta_{n}^{s} \notin \mu_{\ell j}$, for $m=n-j$

$$
\begin{aligned}
X^{\ell^{m}(\ell-1)}+ & X^{\ell^{m}(\ell-2)}+\cdots+1 \\
& =X^{\ell^{m}(\ell-1)}-\operatorname{Tr}_{\mathbb{F}_{P}\left[\zeta_{n}^{s}\right] / \mathbb{F}_{P}\left[\mu_{\ell j}\right]}\left(\zeta_{n}^{s}\right) X^{\ell^{m}(\ell-1)-1}+\cdots .
\end{aligned}
$$

So, we get the above formula.
§5. $f_{\psi}$ to $f_{v}$. Recall
$\left(\int_{\Gamma_{n}[\mathcal{B}]} \chi([\mathcal{A}]) d \varphi_{f_{\mathcal{\psi}} \mathcal{Q}}([\mathcal{A}][\mathcal{B}])\right)^{\sigma}=\chi^{\sigma}\left(\left[N(b)^{\Sigma^{\prime}}\right]\right) \int_{\Gamma_{n}} \chi([\mathcal{A}]) d \varphi_{f_{\mathcal{W}} \mathcal{Q}}[[\mathcal{A}][\mathcal{B}])$ by Shimura's reciprocity law $(R)$, and $\left.\int_{\Gamma_{n}} \chi([\mathcal{A}]) d \varphi_{f_{\psi}^{\mathcal{Q}}} \mathcal{C}[\mathcal{A}][\mathcal{B}]\right)=0 \Leftrightarrow \int_{\Gamma_{n}} \sigma(\chi([\mathcal{A}])) d \varphi_{f_{\psi}^{\mathcal{Q}}}([\mathcal{A}][\mathcal{B}])=0$.
Thus for $n \in \underline{n}$ and any $[\mathcal{B}] \in \Gamma_{n}$, we find for $\operatorname{Tr}:=\operatorname{Tr}_{\mathbb{F}_{P}[\chi] / \mathbb{F}_{P}\left[\mu_{\ell j}\right]}$,

$$
\begin{aligned}
0= & \sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{P}[\chi] / \mathbb{F}_{P}\left[\mu_{\ell j}\right]\right)} \sum_{\mathcal{A} \in \Gamma_{n}} \sum_{\mathfrak{Q} \in \mathcal{Q}} \lambda \psi^{-1}(\mathfrak{Q}) \chi^{\sigma}(\mathcal{A}) f \mid\langle\mathfrak{Q}\rangle\left([\mathcal{A B}][\mathfrak{Q}]_{\Gamma}\right) \\
& =\sum_{\mathcal{A}} \sum_{\mathfrak{Q}} \lambda \psi^{-1}(\mathfrak{Q}) \operatorname{Tr}(\chi(\mathcal{A})) f \mid\langle\mathfrak{Q}\rangle\left([\mathcal{A B}][\mathfrak{Q}]_{\Gamma}\right)
\end{aligned}
$$



## §6. Conclusion.

Let $\tilde{f}:=\sum_{\mathfrak{Q} \in \mathcal{Q}} 1 \otimes \cdots \otimes \lambda \psi^{-1}(\mathfrak{Q}) f_{v} \mid\langle\mathfrak{Q}\rangle \otimes \cdots \otimes 1$ as a function on $V^{\mathcal{Q}}$. Then for the embedding $\mathrm{s}: C \cap V^{\mathcal{Q}} \rightarrow V^{\mathcal{Q}}$ given by $\mathrm{s}(x(\mathcal{A}))=\mathrm{s}(\mathcal{A})=\left(x\left(\mathcal{A}\left[\mathfrak{Q}_{\Gamma}\right]\right)\right)_{\mathfrak{Q} \in \mathcal{Q}}$,

$$
\sum_{\mathfrak{Q} \in \mathcal{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f_{v} \mid\langle\mathfrak{Q}\rangle\left([\mathcal{B}][\mathfrak{Q}]_{\Gamma}\right)=\lambda(\mathcal{B})^{-1} \tilde{f}(\mathbf{s}(\mathcal{B})) .
$$

Thus if $\equiv$ is Zariski-dense in $V^{\mathcal{Q}}$, we conclude $f_{v}=0$. By computation, $a(\xi, f) \neq 0$ for $\xi \in-v$ is equivalent to $a\left(\xi, f_{v}\right) \neq 0$, a contradiction.

The sequence

$$
\underline{n}:=\left\{n \mid \operatorname{cond}(\chi)=\mathfrak{l}^{n} \text { and } \chi \in \mathcal{Z}\right\}
$$

defines $\equiv=\left\{\mathrm{s}(\mathcal{A}) \mid[\mathcal{A}] \in \sqcup_{n \in \underline{n}} \operatorname{Ker}\left(\Gamma_{n} \rightarrow \Gamma_{j}\right)\right\}$ as we took the trace to $\mathbb{F}_{P}\left[\mu_{\ell j}\right]$. Therefore if $\underline{n}$ contains an arithmetic progression, then $f_{v}=0$ by the density theorem.
$\S$ 7. Rigidity of torus. On the contrary to the assertion of the non-vanishing theorem, we assume that

$$
\mathcal{X}:=\left\{\chi \in \operatorname{Hom}\left(\Gamma, \mu_{\ell} \infty\right) \mid \int_{C l_{n}^{-}} \chi \psi d \varphi_{f} \neq 0, v(\chi)=v\right\}
$$

has Zariski closure $\overline{\mathcal{X}}$ with $\operatorname{dim} \overline{\mathcal{X}}<d$. Since $\mathcal{X}$ is stable by $p$ Frobenius $t \mapsto t^{P}$ for a $p$-power $P, \overline{\mathcal{X}}$ is stable under $t \mapsto t^{P^{m}}$ for all $m$. Let $W_{\ell}$ be a discrete valuation ring finite flat over $W\left(\overline{\mathbb{F}}_{\ell}\right)$. We apply to the formal completion $\widehat{\mathcal{X}}$ of $\overline{\mathcal{X}}$ the following

Rigidity Theorem. Let $X=\operatorname{Spf}(\mathcal{T})$ be a closed formal subscheme of $\widehat{G}=\widehat{\mathbb{G}}_{m / W_{\ell}}^{n}$ flat geometrically irreducible over $W_{\ell}$ (i.e., $\mathcal{T} \cap \overline{\mathbb{Q}}_{\ell}=W_{\ell}$ ). Suppose there exists an open subgroup $U$ of $\mathbb{Z}_{\ell}^{\times}$ such that $X$ is stable under the action $\widehat{G} \ni t \mapsto t^{u} \in \widehat{G}$ for all $u \in U$. If $X$ contains a Zariski dense subset $\Omega \subset X\left(\mathbb{C}_{\ell}\right) \cap \mu_{\ell \infty}^{n}\left(\mathbb{C}_{\ell}\right)$, then there exist $\omega \in \Omega$ and a formal subtorus $T$ such that $X=T \omega$.

## §8. The strategy.

A key point is the use of a rigidity theorem asserting a formal subscheme of $\widehat{\mathbb{G}}_{m / W_{\ell}}$ stable under $t \mapsto t^{P}$ for a $p$-power $P$ is a union of formal subtorus up to making finite quotient. Define $\mathcal{X}:=\left\{\chi \in \operatorname{Hom}\left(\Gamma, \mu_{\ell} \infty\right) \mid \int_{C l_{\infty}^{-}} \chi \psi d \varphi_{f} \neq 0\right\}$, and regard $\mathcal{Z}$ and $\mathcal{X}$ as a subset of $\widehat{\mathbb{G}}_{m / W_{\ell}}$ for a sufficiently large $W_{\ell}$. Stability of $\widehat{\mathcal{X}} \subset \widehat{\mathbb{G}}_{m}^{d}$ under a suitable power of $p$-Frobenius implies stability of $\widehat{\mathcal{X}}$ under an open subgroup $U \subset \mathbb{Z}_{\ell}^{\times}$generated by $P$. Assume $\operatorname{dim} \widehat{\mathcal{X}}<d$ for $d=[F: \mathbb{Q}]$. By the rigidity theorem applied to $\widehat{\mathcal{X}}$, we find an arithmetic progression $\underline{n}$ such that $\chi$ with conductor $\left[^{n}\right.$ for all $n \in \underline{n}$ is in $\mathbb{G}_{m}^{d}-\widehat{\mathcal{X}}$ to conclude $f_{v}=0$, a contradiction against $a\left(\xi, f_{v}\right)=N(\mathfrak{l})^{j} a(\xi, f) \neq 0$ for $\xi \in-v$. Thus the non-vanishing theorem follows. The details will be discussed in the last lecture.

