
Introduction

History

Darwin’s theory, combined with practical application, inspired biometry, which developed into 

quantitative genetics (Galton, Weldon, Pearson,…)
Rediscovery of Mendel’s work in 1900 led to fierce argument between the new Mendelian genetics 

and biometry, reconciled by population genetics in 1920s
Nevertheless, quantitative genetics developed largely independently through to the present

Alternative views of evolution

In QG, we see ubiquitous additive genetic (co)variance, Va or G; traits can always evolve to their 
optimum

- rates of trait evolution are determined by how selection changes through time

Under the ‘classical’ view of population genetics, there is one optimal genotype 

- variation is either neutral, due to deleterious mutation, or (rarely) to transient adaptation
- evolution consists of successive sweeps, variation within populations being uninteresting

In contrast, under the ‘balance’ view, variation is maintained by balancing selection, and allows 

rapid response to changing conditions

Difficulties

-  quantitative genetic variation  for very many traits implies loss of fitness
- under the classical view, there is little heritable fitness variance; how can sex and recombina-

tion be maintained?
- under the balance view, genetic variance should depend on idiosyncratic fluctuating selec-

tion - yet it seems ubiquitous

Outline

What is the relation between quantitative and population genetics? 

Directional selection

Infinitesimal model at phenotypic and genetic levels
Limits to the response to directional selection

Stabilising selection

Maintenance of variation by mutation 

Response to a sudden change in optimum



Directional selection

Infinitesimal model

Definition

See Galton (Nature, 1877), Barton, Etheridge & Veber (TPB, 2017).

'' I  was  certainly  astonished  to  find  the  family  variability  of  the  produce  of  the  little  

seeds  to  be  equal  to  that  of  the  big  ones, but  so  it  was, and  I  thankfully  accept  the  

fact, for  if  it  had  been  otherwise, I  cannot  imagine, from  theoretical  considerations, 
how  the  problem  could  be  solved''
(Galton, 1877)

Each individual has a breeding value, zi, defined as twice the deviation of the offspring mean, when 

crossed at random
Offspring from a cross between two parents, z1, z2, have breeding values distributed as a Gaus-
sian, with mean 

z1+z2
2
, and variance V0

Crucially, V0is independent of the parents’ values.

With random mating, a population tends towards a Gaussian with constant variance VA = 2 V0.

Extensions

The within-family variance, V0, is released by recombination.  
If the parents are related, then this variance is reduced to V0(1 - F), where F is the probability of 
identity by descent of the genes that are shuffled in meiosis.

In a population of effective size Ne, Vo decreases by a factor 1 - 1
2Ne

 per generation.

F is derived from the pedigree, and takes into account inbreeding, population structure...

VA increases by Vm in each generation due to mutation -> Vm ≈ 10-3 Ve; in a mutation-drift balance, 
VA  2Ne Vm

Allele frequencies

Assume two alleles per locus, labelled Xi = 0 or 1; allele frequency is pi = [Xi].
For an additive trait in diploids, define  z = ∑=1

n αi(Xi + Xi
*) + ϵ, where ϵ is a non-genetic (“environmen-

tal”) component with variance VE
The mean and the additive genetic are  z = ∑=1

n 2αi pi, VA =∑i2αi
2 pi qi

If there are very many loci (n >> 1), then for a given VA, αi~1 n .

What is the variance amongst offspring?  Variation is due to heterozygosity in the parents:

- probability 2×2 pq×(1 - 2 pq) that one locus is heterozygous  variance 
α2

4
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= probability (2 pq)2 that both are heterozygous  
α2

2

Overall, the expected variance in BV between offspring contributed by locus i  ~ α2 pq
Overall, ∑iαi

2 pi qi   = V0 = 
VA
2

 is released by segregation of heterozygous alleles in meiosis

Selection: change in mean Δ z = βVA

Suppose that there is a selection gradient β =
d log(W)

d z
, so that the selection coefficient on an allele 

with effect α is βα. 
Then Δpi = βαpi qi, and so Δ z = ∑i=1

n 2αi Δpi = ∑i=1
n 2βαi

2 pi qi = βVA 

The response to selection (i.e., Δ z) depends on allele frequencies and effects only through VA

Selection: change in VA is small

ΔVA = 2∑iαi
2Δ(pi qi) ≈  2∑iαi

2(qi - pi)Δpi =  2β ∑iαi
3(qi - pi) pi qi = β   where  is the third moment, 

or skew of the distribution of additive effects.

The skew, and hence ΔVA, is typically small: ΔVA ~ β VA *[αi (qi - pi)]  where *
 is an expec-

tation weighted by the genetic variance.

So, selection hardly changes VA - both because α is small ~1 n , and because (q - p) averages 

~0

The distribution changes mainly because of linkage disequilibrium

Even under the infinitesimal model, selection can make large changes to the distribution. 
The figure shows the effects of disruptive selection (fitness W[x] given by the dashed line), fol-
lowed by random mating and reproduction:

The variance evolves as VA, t+1 =
1
2
VA,t + V0, which quickly converges to VA = 2 V0

These changes are due to linkage disequilibrium (LD), and are therefore transient.
LD is defined as Di, j = covXi, Xj = (Xi - pi) Xj - pj
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Defining ζi = Xi - pi, VA = ∑i, jαi(ζi + ζi
*)α jζ j + ζ j

*

Assuming random mating, and symmetry between the sexes, VA = 2∑i, jαi α j ζi ζ j 

This separates into the genic and the LD  components: VA = 2∑iαi
2 pi qi + 2∑i≠ jαi α j Di, j

Dominance and epistasis

The infinitesimal model is easiest to understand as the limit of an additive model, with a large # of 
loci.
However, the concept extends to allow dominance and epistasis, in which case we follow the 

evolution of additive and non-additive components of phenotype.
This gets complicated - but there is still an infinitesimal limit in which the variances within families 

are independent of the parent’s values.

The figure shows an example with 1000 loci, each with complete dominance; 
VA = 0.269, VD = 0.063, and inbreeding depression is =-0.531; 30 individuals evolve for 50 genera-
tions, with no selection.  The top row shows one replicate, and the bottom row, the mean of 300 

replicates.  Black, blue, red correspond to G, A, D; in the right column, solid lines show the total 
variance (including LD), and dashed lines, the genic components, which match predictions from 

the infinitesimal model.  The purple lines at right show cov(A, D). From Barton, Etheridge, Véber 
(Genetics, 2023).

Limits to selection

The infinitesimal model: Robertson (1960)

Random sampling from a population of 2N genes causes var(Δp) = pq
2N
, and reduces  expected 

heterozygosity by a factor 1 - 1
2Ne

.  
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Since the genetic variance is VA =2∑iαi
2 pi qi,  VA  decreases by a factor 1 - 1

2Ne
.  

With a selection gradient β, the change in mean in the initial generation (the response) is 

R0 = βVA,0, and the total change in mean is R∞ = βVA,0 ∑t=0
∞ 1 - 1

2Ne

t
= 2NeβVA,0.  

That is, the total change in mean due to selection is 2N times the change in the first generation. 

Robertson (1960) derived this result in an ingenious way. We start with alleles that have effect αi 
and initial frequency pi,0.  Ultimately, these alleles must be either lost or fixed, and so that 
∞[Δ z] = 2∑iαi(ui - pi,0), where ui is its chance of fixation. There is a simple formula for ui :

ui =
1 - -4 Ne si pi,0

1 - -4 Nesi
where si = βαi (1)

This shows u for p0 = 0.2, 0.5, 0.8.
Ou t [ ] =

-4 -2 2 4
Nes

0.2

0.4

0.6

0.8

1.0

u

For weak selection (Ns<< 1), ui - pi,0 ~ 2Nespi,0 qi,o = 2Ne β αi pi,0 qi,o. Therefore, 

R∞ = 2
i
αi(ui - pi,0) ~ 4Neβ

i
αi
2 pi,0 qi,0 = 2Ne βVA,0 (2)

which agrees with the simple quantitative genetic derivation. The underlying assumption is that 

selection is weak enough not to reduce genetic variance below the simple prediction VA,01 -
1
2Ne


t
, 

and that the change in mean is the cumulative effect of slight perturbations at very many loci.

The infinitesimal model predicts R50well (Weber & Diggins, Genetics, 1990)
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Extension to epistasis: Paixao & B (PNAS, 2016)

Robertson’s argument extends to include dominance and epistasis. First, consider haploids. The 

additive variance decays with (1 - Ft), but initial non-additive variance contributes to additive 

variance as (1 - Ft) kFt
k-1 VA(k),t:

[VA,t] = (1 - Ft) (VA,0 + 2 Ft VAA,0 + 3 Ft VAA,0 +…) = (1 - Ft) 
k=1

∞
kFt

k-1 VA (k),0 (3)

Summing over generations, with 1 - Ft = (1 - 1 /Ne)t:

[R∞] =

β
t=0

∞
[VA,t] = β

t=0

∞
(1 - Ft) 

k=1

∞
kFt

k-1 VA (k),0 = βNe k=1

∞
VA (k),0 = βNe VG,0

(4)

To the extent that VG,0 > VA,0, epistasis increases the ultimate response - but this effect is limited.

In diploids, the effect of epistasis is stronger:

[R∞]  βNe k=1

∞
2k-1 VA (k),0 > βNe VG,0 (5)

However, because the k’th order component is ~ (pq)k, and pq ≤
1
4
, higher-order epistasis is still 

likely to make a small contribution to the ultimate response.

It is quite unclear how Robertson’s (1960) argument from fixation probability would extend to 

include epistasis. 

Limits with strong selection (Ne s >> 1)

What happens when selection is so strong that the infinitesimal model no longer holds - i.e. Ne s  
large ?
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We can predict the outcome by supposing that as alleles pass from low to high frequency (0.1 to 

0.9, say), epistasis causes previously deleterious alleles to be favoured, and increase.   Random 

pairwise epistasis can then increase the response (relative to the additive model), but not by 

much.

The figure shows simulations for n=50 loci (squares) or 1000 loci (circles); the additive model is in 

grey, and a model of pairwise epistasis in black  σai = 0.1, σϵi, j = 0.5.  The dashed line at left is the 

prediction from the infinitesimal model, and on the right, from the strong selection limit. From 

Paixao and Barton (PNAS 2016)

Accumulation of information (Hledik et al., PNAS 2023)

Natural selection concentrates populations around fit genotypes, and in this sense accumulates 

information (Kimura, 1961; Hledik et al., 2022):

D = log
ψ

ψneutral
 (6)

For example, weak selection (Ne s = 2) biases allele frequencies towards the fitter allele:
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There is a general bound on the rate of accumulation of information:

ΔD ≤
2

log[2]
N var

W

W
 (7)

At least for this simple example, selection is most efficient when alleles have infinitesimal effects. 

Measuring the additive variance in fitness

If adaptation is due to weakly selected alleles (Ne s~1), how can we detect it ? 

Robertson (1961) argued that heritable variance in fitness would inflate the rate of random drift. 
Santiago and Caballero (1995) showed that the rate of increase in allele frequency variance is:

pq

2 N

1

2
+
var[W}

4
+

Va

2 c2
(8)

where var(W) is the non-heritable variance in individual fitness, and Va is the additive genetic 
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variance in individual fitness.

Buffalo and Coop (2020) analyse data from Barghi et al. (2019), showing how cov(Δpt, Δpt+τ) 
decreases over time (A), and thereby estimating the fraction of variance in allele frequency change 

due to linked selection. 

Exercises

1.  Suppose that mutation increases the additive genetic variance by Vm = 0.001 VE per generation.  
i) What heritability would be maintained at equilibrium, in a population of Ne = 1000 diploid 

individuals, assuming no selection?
ii) Is it plausible that heritability is maintained by a balance between mutation and random 

drift?
iii) If instead, heritability is maintained by a balance between selection and mutation, roughly 

what selection coefficient must act on the underlying alleles?
iv) Suppose that we select on a population that is initially completely inbred; we select the 

top 35% of individuals, so that with a normal distribution, the selection differential is 0.5 pheno-
typic standard deviations.    How much does the population mean change after 50 generations 

(i.e., what is the response to selection?)

2. In Weber and Diggins’ (1990) experiment, the 20% of mated females with the highest ethanol 
resistance were selected to found the next generation. 
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i) Assuming that the trait is normally distributed, what is the mean of the selected females, in 

standard deviations ? 

ii) If the initial heritability of ethanol resistance was 50%, what would be the predicted 

change in mean resistance after 65 generations, in a very large population?
iii)  By how much would this be reduced in a smaller population, with effective size Ne = 50 

individuals ?
iv) If a mutation arose, which increased ethanol resistance by 0.05 standard deviations, what 

would its ultimate probability of fixation be? What is its expected contribution to the response?  

What determines the relative contribution of large vs small effect mutations?

Note:  Weber and Diggins (1990) give detailed explanations of their experimental design, and its 

effect on genetic variation.  Here, you  can make simpler arguments, but give your assumptions.

Stabilising selection

Observations

Organisms are described by an enormous number of traits, which typically follow a normal distribu-
tion.  These traits together determine fitness, and a substantial fraction of their  variance is  

genetic - as witnessed by resemblance between relatives, and rapid response to artificial selec-
tion. Direct evidence for stabilising selection is sparse: traits typically show strong associations 

with fitness, but this may not be stabilising, selection may not act via the measured trait, and 

there is publication bias (Kingsolver et al., 2001). Yet, since organisms retain the same form over 
long times, traits must be under stabilising selection, keeping them close to some optimum.  This 

raises a paradox: if stabilising selection reduces  variance,  how is heritability maintained?

It is widely held that genetic variance is maintained by a balance between mutation and stabilising 

selection.  This has the attraction that it is a universal explanation that involves (more or less) 
measurable parameters.  However, even the equilibrium depends on genetic details which are 

hard to measure: specifically, on the distribution of effects of alleles on multiple traits and on 

fitness.  The equilibrium theory is reasonably well understood, but how it relates to reality remains 

obscure.  

This is surprising, given that infinitesimal model gives a robust and accurate understanding of the 

short term changes in trait means, and in that part of the variance due to linkage disequilibrium.  
However, the genic variance (i.e., the component due to diversity within loci) remains essentially 

unpredictable.

What do we know, and how do we know it?

VA /Ve : Genetic variance is largely additive, and typically is a substantial fraction of phenotypic 

variance: in other words, narrow sense heritability is high.   Morphological traits tend to have high 

heritability (eg height in humans, >70%), whilst fitness components have lower heritability (25%, 
say) (Mousseau & Roff, 1987); these low values reflect higher environmental variance, not lower 
genetic variance (Houle, 2002). 

Vs : The prevalence of stabilising selection is mainly attested by the long-term stability of traits 

that can hardly be neutral.  Direct measurements are made by quadratic regression of fitness 
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components on traits, and typically give large values (Kingsolver et al., 2001). However, these 

values often indicate disruptive selection. Moreover, it is impossible for strong stabilising selection 

to act on more than a limited number of traits.    Most likely, there is strong stabilising selection on 

a limited number of traits, and weaker stabilising selection on very many more.  In the theoretical 
literature, tracing back to Lande, there is a tradition of setting Vs = 20 Ve, implying a load due to 

genetic variance of ~1/40 if Vg = Ve.  However, this is arbitrary.

Replicability: In artificial selection experiments, it is striking that (at least, in reasonably large 

populations) response is highly replicable - implying a large # of genes (Barton & Keightley, 2002).  
Also, there is often no return of the mean towards the original value (e.g. Weber, 1996), as one 

might expect if the causal alleles had deleterious side-effects.

Vm : The rate of increase of additive variance can be measured relatively easily, either by asking 

how quickly genetic variance increases, or measuring selection response, starting with a homoge-
neous population.  Remarkably, this is ~10-3 to 10-2 Ve for a range of traits and organisms (Halli-
gan & Keightley, 2009; also reviewed in Lynch & Walsh, 1998).

U = 2∑μ : The total deleterious mutation rate per diploid genome  is very well known now, from 

direct sequencing of parents & offspring - ~60 for humans, say.  The fraction of this that affects 

fitness (almost all for the worse) is fairly well known, by counting the fraction of sequence that 
evolves more slowly than the neutral baseline: ~2 for humans, say.   The total rate of mutations 

affecting traits that affect fitness must be less than this, depending on  pleiotropy.   Some esti-
mates can be found in Turelli (1984), but these are unreliable.

DFE: Many studies have estimated the distribution of effects of deleterious mutations, based on 

the distribution of allele frequencies at synonymous vs non-synonymous sites.  Charlesworth 

(2015) reviews these, and compares them with quantitative genetic estimates of fitness variance; 
he concludes that there is  a broad range, but Ne s>>1 typically.  Separately, there are estimates of 
the fraction of amino-acid substitutions that are adaptive, based on the McDonald-Kreitman 

(1991)  test; see e.g. Keightley et al., 2016). There are more ambitious studies (e.g. Elyashiv et al., 
2016) that make joint estimates of both deleterious mutations and positive selective sweeps; it is 

not clear whether such studies will converge on reliable estimates.  Finally, Buffalo & Coop (2019) 
estimate the heritable variance in fitness from correlations in allele frequency change, based on 

an idea from Robertson (1961). To what extent is the net selection estimated here mediated via 

“traits”  under stabilising selection?

Us: The rate of decline of fitness due to deleterious mutation has been measured in Drosophila by 

Shabalina et al. (1997) in a “middle class neighbourhood” experiment, as ~ 0.2 to 2% under benign 

and harsh conditions, respectively.

n :  The number of traits that are kept near their optimum by stabilising selection is presumably 

very large, but it is hard to know how even to define this number.

How all these observations together constrain the models is discussed in a series of reviews, from 

Turelli (1984), through Johnson & Barton (2005) to Walsh and Lynch (2018, Ch. 28).
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Stabilising selection alone

Throughout, we will ignore the non-genetic “environmental” variance, Ve; we can imagine that we 

directly observe the genetic value, which indeed is possible in principle if we can produce large 

numbers of identical genotypes.

The infinitesimal model: reduction in Vg due to LD

In the classic model, suppose that initially there is a Gaussian distribution in the population as a 

whole, with variance Vg. With random mating, the variance in mid-parental values is Vg 2, and so 

after this is replenished by recombination, Vg
* =

Vg
2
+ V0. Thus, the population rapidly equilibrates at 

Vg = 2 V0.  

Remarkably, Galton (1877) calculated the equilibrium between the reduction in variance due to 

stabilising selection, and its replenishment by recombination.  Suppose we have Vg amongst 

offspring, before selection. Assume that fitness has a Gaussian form, W[z] = exp-(z - zopt)2 (2 Vs), 

where 1 /Vs is a measure of the strength of selection.  The distribution after selection is a product 
of two Gaussians: ψ*[z] =ψ[z]×W[z] /W . This has variance Vg

* = Vs Vg Vs + Vg.  Therefore, at equilib-

rium, Vg before selection is given by:

Vg =
Vs Vg

2 (Vs + Vg)
+ V0 hence Vg ≈ 2 V0 1 - 2

V0

Vs
+ O

V0

Vs

2

 (9)

In terms of the underlying genes, the difference between Vg and 2 V0 is due to linkage disequilibria, 

which dissipate by 1/2 per generation. The constant component 2 V0 is the genic variance, and is 

the sum of contributions from heterozygosity at individual loci; this remains constant under the 

infinitesimal model.  

This model does not predict the genic variance: as we shall see, that evolves slowly, in a way that 
depends on the underlying genetic details.

Continuum of alleles: reduction in Vg due to selection

Now, consider the distribution of effects of a single locus.  Although we are used to the simple-
minded population genetic tradition of assuming two alleles, in general, there will be a continuous 

distribution of effects.  This may be the typical case, if diverse regulatory sequences determine 

gene expression (say). 

We can describe the distribution as ψ[z]; provided that alleles segregate independently (i.e., there 

is linkage equilibrium), the effect of stabilising selection on the distribution of effects of a single 

gene is the same as on the phenotype: ψ*[z] =ψ[z]×W[z] /W .   Assuming weak selection, and setting 

the mean and the optimum to zero,  W~ 1 - z2 (2 Vs). Then, the new variance will be:
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v*
=
1

W
 1 -

z2

2 Vs
z2 ψ[z] z =

1

W
v -

M4

2 Vs

W = 1 -
v

2 Vs
for v << Vs and so v*

≈ v -
M4 - v2

2 Vs

(10)

where M4 is the fourth moment of the distribution of allelic effects of a single gene.  

If the distribution is Gaussian, M4 = 3 v2, and so v* ~v - v2 Vs for v << Vs; this is consistent with the 

exact formula for the product of two Gaussians, Vg
* = Vg 1 + Vg Vs, given above.  Summing over 

loci, we find that stabilising selection reduces the total genic variance by:

Vg
*
=

Vg -
2

Vs


i
vi
2

= Vg -

Vg
2

2 neff Vs
where Vg = 2

i
vi and

1

neff
=

∑i vi
2

(∑i vi)
2

(11)

However, if the distribution is leptokurtic, stabilising selection reduces the variance by much more 

than this. Below, we will see that this has important consequences.

Two alleles: reduction in Vg due to selection

In population genetics, it is traditional to assume two alleles per locus.  Suppose that alleles have 

additive effects αi in diploids, so that individual phenotype is:

z = 
i
αi (Xi + Xi

*
) (12)

where the states of the two genes are labelled Xi, Xi
*, with values 0 or 1; subtracting 1 from their 

sum is an arbitrary choice, which ensures that z  lies between 0 and 2∑iαi. We ignore the random 

non-genetic component, to keep the analysis simple: we imagine that we can directly observe the 

genetic component of phenotype. 

The mean and variance (entirely additive and genetic) are:

z = 2
i
αi pi Vg = 2

i
αi
2 pi qi + 2

i≠j
αi αj Dij (13)

The formula for the variance includes a component due to linkage disequilibrium (LD); in the 

following, we ignore this, and only follow allele frequencies. This will be accurate if selection is 

weak relative to recombination.

The effect of selection on allele frequencies can be found using Wright’s selection gradient, and 

using that the mean fitness is a function only of the mean and variance:

log (W) ~ -
(z - zopt)2

2 Vs
-

Vg

2 Vs

Δpi =
pi qi

2

∂log (W)

∂pi
=
pi qi

2

∂log (W)

∂z

∂z

∂pi
+
∂log (W)

∂Vg

∂Vg

∂pi
=

pi qi -
(z - zopt)

Vs
αi +

αi
2

2 Vs
(pi - qi)

(14)

since ∂p (pq) = -(p - q).  The selection coefficient has two components: the first, 

(z - zopt) αi / Vs, due  to directional selection, and the second, αi
2(pi - qi)(2 Vs), due to stabilis-
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ing selection, which is equivalent to selection against heterozygotes.  If (as will typically be the 

case) loci are near fixation, then stabilising selection dominates when the deviation from the 

optimum, Δ = z - zopt, is smaller than half the allelic effect, αi /2.

If the mean is at the optimum (Δ = 0), this equation suggests that we can fix any genotype: if Δ = 0, 
then selection acts solely to reduce variance, and the only stable equilibria are at pi = 0 or 1. 
However,the value of the fixed genotype will in general deviate from the optimum, so the outcome 

is not obvious. 

Equilibrium between stabilising selection on a single trait and mutation

The equilibrium between stabilising selection and mutation is sensitive to the distribution of 
allelic effects - which are hard to observe directly.  Therefore, whether a mutation/stabilising 

selection balance explains observed heritability remains obscure.

Continuum of alleles: Gaussian models

Continuum-of-alleles models have hardly been studied in population genetics, since they are 

mathematically much more challenging.  Kimura (1965) introduced the model, applying it to 

understand the balance between mutation and stabilising selection, and it was developed further 
by Lande (1976).  It then became prominent in the argument over the genetic basis of trait varia-
tion, following Turelli (1984).   There is a separate and more recent literature, which uses contin-
uum of alleles models to understand asexual adaptation - both elimination of deleterious muta-
tions, and establishment of beneficial mutations; Hallatschek, Brunet, Desai and Rouzine have 

contributed. Here, random fluctuations in the numbers of the fittest class are crucial; stochastic 

continuum-of-alleles models are challenging.  

Kimura (1965) considered mutations that have small effects relative to the standing variation. In 

this case, a diffusion approximation can be used, which has a Gaussian solution. We can then use 

the result already derived at the phenotypic level, and simply add the input due to mutation :

Δvg = vm -
v2

Vs
for v << Vs (15)

where v, vm are the variances due to a single gene. At equilibrium, v = vm Vs . Assuming n loci with 

equal mutational variance, so that  Vm = 2 n vm, we find:

Vg = 2 n Vm Vs (16)

If we set Vs = 20 Ve (a traditional choice), and Vm~0.001 Ve, we find that n = 25 loci are enough to 

maintain Vg = Ve. 

Latter (1970) studied the model further, but Lande brought it to prominence. Lande (1976a)
extended Kimura’s model to multiple loci, by assuming a multivariate continuum of alleles; this 

showed that linkage does not alter the genetic variance, because although negative LD reduces 

the variance, this is compensated by a relaxation of selection that allows an increase in genic 

variance.  He applied the Gaussian model to study varied problems, including sexual selection, 
clines, speciation, and pleiotropy (1980, 1981, 1982).
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Two alleles

 Latter (1960) and Bulmer (1972) added mutation to Wright’s (1935) model, and derived the equilib-
rium, assuming that the mean matches the optimum. Barton (1986) showed that there are typi-
cally very many alternative “adaptive peaks”, corresponding to near-fixation of different geno-
types. These genotypes may deviate substantially from the optimum , but allele frequencies 

adjust, bringing the mean closer to the optimum.  Nevertheless, these “suboptimal” equilibria 

may have substantially inflated variance, which increases the load.  Barton (1989) included the 

effect of drift, finding the rates at which populations move between peaks.  This can be seen as a 

model of Wright’s (1932) “shifting balance” theory of adaptation, which motivates both his analy-
sis of stabilising selection and of allele frequency distributions (see the review and quantitative 

model in Coyne et al., 1997).

Barton (1986, 1989) assumed equal effects of loci, which is misleading: when effects are drawn 

from a distribution, there are still many equilibria, but they have more similar properties, and 

deviate less from the optimum (Vladar and Barton, 2014).  Nevertheless, populations under the 

same selection will diverge, and eventually can become strongly reproductively isolated. How-
ever, this process has not been analysed for unequal allelic effects.

With two alleles, the equilibrium can easily be found:

Δpi = pi qi -
(z - zopt)

Vs
αi +

αi
2

2 Vs
(pi - qi) + μi (qi - pi) (17)

If the mean is at the optimum, we find two equilibria:

pi qi =
2 μiVs

αi
2

if αi
2
> 8 μVs

pi =
1

2
if αi

2
< 8 μiVs

(18)

Therefore, the genetic variance is:

Vg = 2
i
αi
2 pi qi = 2 U* Vs +

1

2


i
μi αi

2
< 2 U Vs (19)

Here, U*
 is the total mutation rate to alleles with effects larger than the threshold, αi > 8μVs ; the 

additional term is due to alleles of smaller effect, whose frequency is dominated by mutation.  One 

can easily extend this to include drift, using Wright’s formula: then, the genetic variance is 

reduced, and converges to 2Ne Vm as drift dominates over selection.

This formula is remarkably simple, and independent of the allelic effects (above some threshold): 
large effect alleles are rarer, and so make the same contribution to the variance as small effect 
alleles.  This is a manifestation of the mutation load, which is here a loss of fitness Vg (2 Vs) = U.

Continuum of alleles: the “House of Cards

We have qualitatively different predictions from the Gaussian continuum of alleles approximation, 
and the two-allele models.  Turelli (1984) showed that the differences are not due to the number 
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of alleles, but rather, to the distribution of mutational effects.  He developed the “House of Cards” 

approximation (introduced by Kingman, 1978) to show that if mutations have large effects (rela-
tive to the per-locus standing variation), then a continuum-of-alleles model gives the same predic-
tions as Latter’s (1960) two allele model.

Let the distribution of effects at a single locus be ψ[z].  We can imagine all kinds of mutation 

models.  New mutations might add a random value to the current state; if this has small variance, 
we have Kimura’s (1965) diffusion approximation, with a Gaussian solution.  Alternatively, new 

mutations might have a value independent of the current state, with distribution Φ; the new 

mutation knocks down the existing “House of Cards” .  If the distribution of mutational effects is 

has high variance, relative to the current distribution, then the “House of Cards” is a good approxi-
mation to the stepwise model.

Assuming the optimum is at z = 0, the equilibrium is given by:

ψ[z] = (1 - μ)
W[z]

W
ψ[z] + μ Φ[z] = (1 - μ)

1 - z2  (2 Vs)

1 - v / (2 Vs)
ψ[z] + μ Φ[z] (20)

Hence, if z2 << Vs:

ψ[z] =
μ Φ[z]

μ +
1

2 Vs
z2 - v

(21)

Necessarily, v < 2μ Vs.  Now, we must have ∫ψ z = 1, so we seek the solution:

1 = 
-∞

∞ μ Φ[z]

μ +
1

2 Vs
z2 - v

z
(22)

Note that if this is satisfied, then necessarily, v = ∫-∞
∞ z2ψ[z] z. 

If we assume Φ is Gaussian, with variance σ2, then 

1 =
π

β - v  2 σ2

β-v2 σ2

β Erfc β - v  2 σ
2
  (23)

where β = μVs σ2.  For β << 1 has the solution v~2μVs. Thus, if the variance of mutational effects, 

σ2, is much larger than the standing variance, then we recover the HoC solution, v~2μVs.

Which regime?

The Gaussian continuum-of-alleles model can maintain variation more readily than when causal 
alleles are rare (i.e., in the House of Cards regime). However, this requires that the effect of muta-

tions is small relative to the standing variation at a single locus (i.e., α2 < v= vm Vs ).  Since 

vm = μα2, we have the condition that α2 < μVs. Setting μ = 10-5, Vs = 20 Ve, we have α < 0.014 Ve .  

However, we also know that Vm = 2 nμα2~0.001 Ve, so n > 3600, which implies far too much genetic 

variance.  A more direct way to see this problem is to see that if Vg = 2 nVm Vs , n~25 loci suffice 

for high heritability. However, Vm = 2 nμα2, so with low per-locus mutation rates μ = 10-5, α2 has 

to be above the threshold magnitude to maintain the observed Vm.  The Gaussian regime seems 
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feasible only if the responsible loci have exceptionally high mutation rates.

If we take the traditional Vs = 20 Ve, then we require U* ~0.025 to maintain Vg~Ve.  The total  rate of 

deleterious mutation is  ~2 for mammals, estimated from the extent of regions that evolve more 

slowly than the neutral rate.  GWAS show that very large numbers of SNP are associated with 

complex traits, and so this explanation seems feasible. However, there are clearly far more than
~100 “traits” which are kept near their optimum by stabilising selection, making it impossible that 
>100 separate sets of loci could each have U* ~0.025.  More plausibly, all functional regions of 
genome affect all traits: the “omnigenic” model (Boyle et al., 2017). Then, as we shall see in the 

following, the variance maintained for each of n traits is ~ 2UVs /n.  It seems impossible for large 

numbers of traits to be maintained by strong stabilising selection. Possibly, only a few traits are 

strongly selected, whilst the remainder are maintained by much weaker selection (i.e., large Vs).  
Perhaps then, there might be enough mutation to maintain heritability in large numbers of traits.

Anticipating the following section, note that the continuum of alleles model becomes highly 

implausible when one considers multiple traits: there must be enough alleles segregating to 

sustain a smooth multivariate distribution (Turelli, 1985, Barton, 1990) 

Pleiotropy and multiple traits: mutation/selection balance

Joint distribution of {α, s} 

Mackay (1987) made random transposable element insertions into D. melanogaster, and mea-
sured their joint effect on viability and on bristle number (the classic trait in Drosophila).  This 

suggested pleiotropic models, where mutations affect fitness and also the trait. Keightley and Hill 
developed such models, using Wright’s stationary distribution to include selection, mutation and 

drift (Keightley & Hill, 1998; Zhang & Hill, 2005).

Consider the simplest case, where mutations have equal additive effects, changing the trait by ±α, 
and reducing fitness of heterozygotes by s. Allele frequency is μ/s, and so the genetic variance is:

Vg = 
i
2 α

2 pi qi ≈ 
i
2

μi

s
α
2

≈
Vm

s
(24)

There is simply a balance between the input of variance by mutation, Vm, and the elimination of 
mutations at rate s.  If there is a distribution of α, s then the genetic variance is proportional to 

α2 s; if there are many alleles that affect the trait, but do not much affect fitness, then  trait 

variance will be high.  One can think of s in the above formula as a harmonic mean, weighted by 

α2.  This obviously breaks down as s0: then, we must include drift.

Keightley and Hill (1998) assume a distribution of allele frequencies, and of {α, s}.  Using Wright’s 

formula, assuming deleterious allele frequency p<< 1,  total mutation rate U = 2∑iμ  and μ equal 
across loci:

Vg ≈ 
i
2 α

2 pi qi ≈ U 
0

1
2 α

2 p p4 Nμ-1 -4 Ne sp p  
0

1
p4 Nμ-1 -4 Ne sp p (25)

where the expectation is over the joint distribution of {α, s}.  For Ne s >> 1, this converges to Vm /s, 
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and for Ne s small, to a mutation-drift balance, 2Ne Vm.

Suppose that we include the effect of stabilising selection, as well as the pleiotropic effect of the 

mutation. For rare alleles, the net selection is now -s - α2

2 Vs
.  Thus, in the simplest case of equal 

±α, s :

Vg = 
i
2 α

2 pi qi ≈ 
i
2

μi

α2  (2 Vs) + s
α
2

(26)

If s >> α2 (2 Vs), then Vg~ Vm s, whereas if s<< α2 (2 Vs), Vg~2UVs, as we saw before.  Under this 

combined model, Vg must be smaller than either of these estimates.  Note that we have good 

estimates that Vm Vg~ 0.001 - 0.01, implying that the net “effective” selection is 0.1% - 1%, 

regardless of the causes of that selection. (Assuming that we are in the rare allele/House of Cards 

regime).

Apparent stabilising selection

Even if the trait does not affect fitness, it may appear to: individuals carrying more deleterious 

mutations will tend have more extreme trait values, and so mean fitness will decline with devia-
tions from the average (Barton, 1990; Kondrashov and Turelli, 1992).  The strength of the apparent 
Vs is such that the apparent load due to stabilising selection is roughly Vg (2 Vs)~s2, though this 

depends strongly on the distribution of {α, s}.  This implies that observations of strong stabilising 

selection on traits are unlikely to be due to this effect.  

Multiple traits

Another way of modelling pleiotropy is to suppose that there are  a very large number of traits, 
each under stabilising selection.  At a mutation-selection balance, this is equivalent to assuming 

that the pleiotropic s in the above models is due to deviations from the optimum of a myriad of 
cryptic traits. However, the models are not completely equivalent: if mutations are uncondition-
ally deleterious, they will accumulate unless Ne s is large, and the population will collapse. In 

contrast, under the stabilising selection model, populations will wander around the optimum, but 
will reach a quasi-steady state in which mutations can compensate each other.

Using the simple model above, and assuming Vs is the same for all of the n traits (which we can 

make true by definition), we have:

Vg,1 = 
i
2

μi

α1
2  (2 Vs) +∑k=2

n αk
2  (2 Vs)

α1
2

= 2 UVs
α1
2

α1
2 +∑k=2

n αk
2 (27)

We see that the single trait HoC prediction 2UVs is reduced by a factor ~n, if mutations that affect 
the focal trait k = 1 also affect n - 1 other traits.  If we imagine “universal pleiotropy”, then U is the 

total rate of mutations that have any effect on fitness; with U = 2, Vs = 20 Ve, we require n~80 to al-
low high heritability.  To see this another way, the total load, summing Vg (2 Vs) over all traits, is 

necessarily U.  Therefore, there cannot be very many strongly selected traits.

An intriguing consequence of pleiotropic models is that increasing stabilising selection on one 

trait reduces the frequency of all alleles that affect that trait, and therefore, reduces genetic 
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variance overall. Therefore, we do not expect to see a close relation between the strength of 
stabilising selection and  the corresponding genetic variance.  It is not clear how strong this 

relation is empirically, or how far epistatic modifiers can shape the genetic variance (see recent 
work by Houle).

Predictions from Fisher’s Geometric model: Simons et al. (2018)

Simons et al. (2018) analyse stabilising selection on very many traits (a.k.a. Fisher’s Geometric 

Model).  They find that in the limit of large n, there is a robust joint distribution of allele frequen-
cies and effects, which can be tested against GWAS data; they estimate s~0.001, consistent with 

the simple Vm Vg argument.  The key assumption here is that mutations have a vector of effects, 

with magnitude drawn from some distribution, and random direction.

This issue is closely related to the question of how a high mutation load (U~2) can be sustained.  
Kimura and Maruyama (1966) showed that with sexual reproduction and negative epistasis, 
deleterious mutations can be eliminated more efficiently, so that mean fitness can be much higher 
than -U; Kondrashov (1988) developed this as an argument for how sexual reproduction can be 

maintained, despite its costs. If we imagine deleterious effects as being due to deviations from an 

optimum, then we require that the log fitness declines more steeply than quadratically with 

distance from the optimum.  There has been a good deal of empirical work, trying to detect 
negative epistasis, but results are equivocal. It is not clear how this would affect the amount of 
variance maintained, or why this special kind of epistasis should have evolved.  Again, an interest-
ing open question...
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