Layer-Resolved Electronic Structure of Oxide Heterostructures using High Energy Photoelectron Spectroscopy

D. D. Sarma

Solid State and Structural Chemistry Unit Indian Institute of Science, Bengaluru 560012, INDIA

Funding:

- **• Nanomission, SERB, DST, Government of India**
- **• Jamsetji Tata Trust**
- **• CSIR Bhatnagar Fellowship**

Plan of the talk: Plan of the talk:

1. Challenges 1.ChallengesA heterostructure is defined necessarily by the presence of an *interface*

- **2. The technique employed**
- **3. Our results on LaAlO₃-SrTiO₃**
- **4. Our results on SrTiO₃-LaTiO₃ interface**

LaAlO₃-SrTiO₃ (LAO-STO) **Sumanta Mukherjee et al., Phys Rev B 93, 245124 (2016) Cross-sectional TEM**

Difficulties in investigating interfaces

Need for a "microscopic" technique, i.e. with a spatial resolution Preferably non-invasive also!

High-energy Rhotoemission **with tunable surface sensitivity**

Plan of the talk:

1. Challenges

2. The technique employed

3. Our results on LAO-STO

4. Our results on SrTiO₃-LaTiO₃ interface

Plan of the talk:

1. Challenges

2. The technique employed

3. Our results on LAO-STO

4. Our results on SrTiO₃-LaTiO₃ interface

Phys. Rev. B 59, 7473 (1999); J. Phys. Chem. Lett. 1 (2010) 2149

Laboratory and soft x-ray source: Synchrotron based hard x-ray source: Phys. Rev. Lett. 80, 2885 (1998); J. Am. Chem. Soc. 131 (2009) 470;

PHOTO ELECTRON SPECTROSCOPIES

Energy Conservation:

 $h\nu = KE + BE$

SSCU, Indian Institute of Science, Bangalore

PHOTO ELECTRON SPECTROSCOPIES

SSCU, Indian Institute of Science, Bangalore

Technique used: Photoelectron spectroscopy

Photon-energy dependent photoelectron spectroscopy

Photon-energy dependent photoelectron spectroscopy

Phys. Rev. B 59, 7473 (1999); *Chem. Mater.* **J. Appl. Phys. 90, 2504 (2001). , 2013, 25 (8), pp 1222–1232 J. Am. Chem. Soc. 131 (2009) 470; Do spectra really change with changing probing depth?Do we have enough sensitivity?**

Sapra et al., J. Phys. Chem. B **110**, 15244 (2006).

Photon-energy dependent photoelectron spectroscopy

&

Ed. J. Woicik, 2016

on Magnetic Tunnel Junctions

Plan of the talk: Plan of the talk:

1. Challenges 1. Challenges

2. The technique employed 2. The technique employed

3. Our results on LaAlO₃-SrTiO₃

4. Our results on SrTiO3 -LaTiO3 interface 4. Our results on SrTiO3 -LaTiO3 interface

LaAlO₃-SrTiO₃ (LAO-STO)

Cross-sectional TEM

Magnetism

High mobility electron gas at the interface of two insulators

T(K) **A. Ohtomo** *et al***,** *Nature***, 427, 423, (2004)**

Introduction

A 2-D Electron Gas:

Polar discontinuity at the hetero-interface (of polar and non-polar material) results in two dimensional electron gas (2DEG) to avoid polar catastrophe.

1. N Nakagawa et al. Nature Materials 5, 204-209 (2006) 2. C. Cen et al. Nature Materials 7, 298-302 (2008)

Open issues:

- **1. Is polar catastrophe the complete story?**
- **2. Role of oxygen vacancies?**
- **3. Is there any atomic intermixing across STO-LAO interface?**
- **4. What is the thickness and the location of the electron gas?**
- **5. Origin of Magnetism and Superconductivity?**

Is polar catastrophe the complete story?

Origin:

 Tunable Carrier Concentration (1012 to 1017 cm-2) Polar break-down: \sim 3 x 10^{14} cm⁻²

Oxygen deficiency

Intermixing of La and Sr

 A. Brinkman *et al Adv. Mater.* **21**, 1665**(2009)** A. Fert *et al. Phys. Rev. Lett.* **98**, 216803 **(2007)** P. R. Willmott *et al*. *Phys. Rev. Lett*. **99**, 155502 (**2007**)

How 2-dimensional is 2DEG?

Tens of nm! Cannot be an interface.

Where is it?

Distribution: Polar catastrophe model: 0.5 nm

 H. Hwang *et al. Science* **427**, 423 (2004) From superconductivity (~150 mK): 10 nm

Infra-red ellipsometry: 12 nm

N. Reyren *et al. Science* **317**, 1196 (2007)

 J. Mannhart *et al. Phys. Rev. Lett..* **104**, 156807 (2010) **CTAFM measurements: 7-25 nm**

M. Balestic *et al. Nature Mater* **7**, 621 (2008) **Calculation based on formation of oxygen defects: ≥ μm**

W. Siemons *et al*, *Phys. Rev. Lett*. **98**, 196802 (2007)

How 2-dimensional is 2DEG?

Distribution:

Color+symbol codes represent same types of experiments by different groups

Nature of the conducting carriers

Lift of degeneracy and different extent of confinements

With Carrier concentration $\sim 3 \times 10^{14}$ cm⁻²

Open issues:

Is polar catastrophe the complete story?

- **Carrier concentration ~10¹²-10¹⁷ cm⁻² as against ~3*10¹⁴ cm⁻²**
- **Role of oxygen vacancies? Intermixing across STO-LAO interface?**
- **The location, thickness and nature of the electron gas? At the interface (~0.5 nm thick)? Extension in to the substrate (~10 nm thick)?**
- **Multiple carrier types?**
- **Strongly/weakly correlated?**

First, we probed the core levels

Bengaluru:

Sumanta Mukherjee

Banabir Pal

Debraj Choudhury

Indranil Sarkar Wolfgang Drube (PETRA)

Mihaela Gorgoi (BESSY)

Olof Karis (Uppsala)

Hide Takagi (MPI, Stuttgart) Jobu Matsuno (Riken)

Sumanta Mukherjee et al., Phys Rev B 93, 245124 (2016)

Photon-energy dependent photoelectron spectroscopy

Increase the probing depth

Analysis of La/Sr photoemission intensities

With hv $\hat{\pi}$ **, La/Sr** ⇓**.**

Simulation of La/Sr ratio for different thickness of LAO layer

Simulation of La/Sr ratio for different thickness of LAO layer

Simulation of La/Sr ratio for different thickness of LAO layer

Fitting of La/Sr ratio for different thickness of LAO layer

Fitting of La/Sr ratio

Ti 2p photoemission from 4 samples Disclaimer: We can only probe LAO-STO in the relatively high charge carrier density (> 5 . 1013 cm-2) limit.

Binding Energy (eV)

Ti 2p photoemission from 4 samples Disclaimer: We can only probe LAO-STO in the relatively high charge carrier density (> 5 . 1013 cm-2) limit.

Binding Energy (eV)

Ti 2p spectra from low pressure (L) samples

4uc (L) 6uc (L)

Ti3+ is closer to the interface

Fitting of Ti 2p spectra (With one distribution of Ti3+) 6uc (L)

Does not fit the experimental ratio
Best Fit

What is the origin of the electron distributions?

Polar break-down, Band Bending, Doping??

What is the oxygen vacancy doing? Where is it?

O 1s spectra

O 1s spectra

O 1s spectra

The interface structure: 6uc (L)

The deeper distribution is related to oxygen vacancies

Transfer of electrons from surface oxygen 2p band and band bending at the interface is possibly the origin of the interface carriers

Bristowe et al., PRB **83, 205405 (2011)** Li et al., PRB **84, 245307 (2011)**

Electronic structure: LaAIO₃-SrTiO₃ Valence band

Bengaluru:

Sumanta Mukherjee

Banabir Pal

Sumanta Mukherjee et al., EPL 123, 47003 (2018).

Indranil Sarkar

Wolfgang Drube

Ambroise van Roekeghem

Silke Biermann

Hide Takagi

Jobu Matsuno

How correlated each of these electron distributions are? Valence Band Study

Shanthi and Sarma, PRB **57** (1998) 2153

Spectral function of lightly doped SrTiO₃ **calculated within screened exchange dynamical mean field theory**

- **(i) Correlation induced lower Hubbard signature X**
- **(ii) Plasmonic replica X**
- **(iii) Oxygen vacancy induced states Maybe (PRB 57 (1998) 2153)**
- **(iv) Polaronic feature Maybe**

A large fraction of the doped electrons are localized!

Hard X-ray Photoelectron Spectroscopy (HAXPES) Study of

LaTiO₃-SrTiO₃ interface **Mott insulator insulator Band**

LaAIO₃-SrTiO₃ interface **Band Band insulator insulator**

Bangalore:

Banabir Pal

Shyamashis Das,

Sumanta Mukherjee

Yanwei Cao,

M. Kareev,

Jak Chakhalian (U. of Arkansas)

Indranil Sarkar Wolfgang Drube (PETRA) Unpublished

Diversity of theoretical expectations

S. Okamoto and A. J. Millis, Phys. Rev. B **70**, 241104(R) (2004)

 $z=0$

F. Lechermann *et. al.* Phys. Rev. B **87** 241101 (2013)

FIG. 3. Position dependent local density of states along the 16site heterostructure for $U=20t$ and $\epsilon=3$.

S. S. Kancharla and E. Dagotto Phys. Rev. B **74**, 195427 (2006)

Increasing **Number** Increasingly **incoherent** correlated **peak**

S. Okamoto and A. J. Millis, Phys. Rev. B 70, 241104(R) (2004)

S. Okamoto and A. J. Millis, Phys. Rev. B 70, 241104(R) (2004)

Thank you

Why are we interested in the interface?

One illustration

Quantum dots

Sucheta Sengupta *et al*., Adv. Mater. **23**, 1998 (2011).

Band-edge engineering for optical tuning

Important applications in $\frac{1}{100001}$ become, 2000 **the particle sizes. The absorption spectra of new low energy** $\frac{1}{2}$ **is shown that if new low energy** $\frac{1}{2}$ **is shown to the set of new low energy** $\frac{1}{2}$ **is shown to the set of new low energy** $\frac{1}{2}$ **is shown to Important applications in**

- PL without self-absorption spectra of ZnSe (black and ZnSe (black \bullet PL without self-absorption **c** α **curve** and **coupled dots (blue curve)** and α strong band at 390 α 390
- Photovoltaic **1996 Photovoltaic**

dots respectively. Sucheta Sengupta *et al.***, Adv. Mater. 23, 1998 (2011). range of 480-640 nm corresponding to neither ZnSe nor CdS precursor dots is evident from**

N. Pradhan et al., JACS (2010)

How correlated each of these electron distributions are? Valence Band Study

How weak is this "weak" peak?

Electron states do not significantly change with the depth!

DMFT results from Ambroise van Roekeghem and Silke Biermann on doped STO:

Expected weights of the QP peak and LHB:

Electron number Weight of QP peak (Z0) LHB (1-Z0) $n = 0.05$ 1 0 $n = 0.1$ 0.99 0.01 $n = 0.2$ **0.96 0.04** $n = 0.3$ **0.92 0.08**

Simulation of the Sr 3d core level spectra to find possible plasmonic effects

FIG. S3. (color online) (a) to (d) shows the simulation of Sr 3*d* spectra of 6uc sample recorded with photon energy of 3500 eV. See text for details. 1 and 1' in each panel mark the position of the main Sr $3d_{5/2}$, Sr $3d_{3/2}$ spectra, respectively, while 2 and 2' mark the position of the corresponding plasmonic replicas, shifted by 1 eV from the main peaks.

How correlated each of these electron distributions are? Valence Band Study

Electron states do not significantly change with the depth!

Ambroise van Roekeghem, a former student of mine, now a permanent researcher at the CEA in Grenoble and first author of the EPL paper I sent you, has revived the machinery of that paper.

The result reads as follows:

Electron number \Rightarrow Weight of QP peak $n = 0.05 \Rightarrow Z_0 = 1$. $n = 0.1 \Rightarrow Z_0 = 0.99$ $n = 0.2 \rightarrow Z_0 = 0.96$ $n = 0.3 \Rightarrow Z_0 = 0.92$

The Hubbard band would have weight 1-Z0. The model is really for the SrTiO3 case, calculated within Screened Exchange + DDMFT (see your birthday issue of J. Spec and Rel. Phen. :-)
Conclusions:

- **1. La/Sr mixing minimal across the layer.**
- **2. Clearly two different distributions of charges in the system:**

(i) 2DEG at the interface with a thickness (~1-2 nm) compatible with the interface thickness. Appears to be controlled by oxygen vacancies at the LAO surface.

(ii) A broader distribution of electron gas is found to reside throughout the bulk of STO. Appears to be controlled by oxygen vacancies in the bulk of STO.

3. Charge carriers are weakly correlated.

4. The additional VB feature is possibly due to oxygen vacancies.

Plan of the talk:

1. Motivation

2. The technique employed

3. Our results on LAO-STO

4. Our results on SrTiO₃-LaTiO₃ interface

 Banabir Pal et al., Unpublished.

- RHEED pattern confirms high quality epitaxial growth of LaTiO_3 (LTO) and SrTiO_3 (STO).
- Sheet resistance suggests metallic nature of the heterostructure

Can we determine

the layer-resolved electronic structure experimentally?

Layer-resolved one-particle spectral function

No change in the relative intensity of the spectra with energy. Weakly correlated independent of depth

Dependence of Charge distribution on dielectric constant

S. S. Kancharla and E. Dagotto Phys. Rev. B **74**, 195427 (2006)