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The passing away of Professor 
Narasimhan is a great loss 

to mathematics, to the country 
and, of course, to the numerous 
people close to him. Narasimhan 
was a towering figure in 

contemporary mathematics. He is one of a small 
number of mathematicians who have made 
profound, beautiful and lasting contributions in 
several different (mathematical) fields: algebraic 
geometry, differential geometry, representation 
theory, analysis and mathematical physics. In this 
versatility he has no near rivals from our country. 
He remained active as a mathematician right 

The article is based on a lecture at a special session in memory of 
Narasimhan and Seshadri at the ICTS program QFT-GRT-21. The 
program was devoted to the geometric Langlands correspondence 
so in my lecture I made particular note of connections of the work of 
Narasimhan and Seshadri with that subject.

It was an honor to be invited 
to lecture in memory of M.S. 

Narasimhan and C. S. Seshadri and to 
write this article. At first I was not sure 
if I should accept, since I realized that 
my point of view would be somewhat 
limited. But I decided I could try to 

give a perspective on how parts of their work have 
influenced theoretical physics, including my own work. 

The Narasimhan-Seshadri theorem, of which the first 
version was proved in 1964, is a comparison between 
flat vector bundles and holomorphic vector bundles 
over a Riemann surface Σ. Any flat bundle has a natural 
holomorphic structure. Narasimhan and Seshadri would 
have explained this as follows. Let 𝐻 be the universal 
cover of Σ and let 𝐻 × ℂ𝑁 be a trivial rank 𝑁 complex 
bundle over 𝐻. As a trivial bundle, it is a flat bundle 
over 𝐻 and also a holomorphic bundle. Any flat bundle 
𝐸 → Σ is a quotient 𝐸 = (𝐻 ×  ℂ𝑁 )/π1(Σ), with π1(Σ) 
acting on 𝐻 in the natural way and on ℂ𝑁 via some 
homomorphism 𝜌 : π1(Σ) → 𝐺𝐿(𝑁). The quotient 𝐸 = 
(𝐻 × ℂ𝑁 )/π1(Σ)  comes with an obvious holomorphic 
structure: a local section 𝑠 of 𝐸 is holomorphic if 
it pulls back to a holomorphic section of the trivial 
holomorphic bundle 𝐻 × ℂ𝑁 . In a gauge theory 
language that in this context was introduced later by M. 
F. Atiyah and R. Bott, one would say the following: a flat 
bundle 𝐸 has a flat connection 𝐴; the corresponding 
gauge-covariant exterior derivative d𝐴 has a (0, 1) part 
𝜕𝐴̄ which defines a holomorphic structure of 𝐸. 

The recent passing away of M.S. 
Narasimhan, known to friends 

as MSN, is a great loss to the 
mathematical world in general and 
to India in particular. His interests 
in mathematics were very broad. He 

was also generous with his ideas, which explains his 
proclivity to collaborate with many people, some of 
whom were top mathematicians and others young 
students.

I met Professor M. S. Narasimhan 
just a few times spread over a 

couple of decades. These were 
chance encounters. I worked at 
TIFR for around a decade, after I 
finished my PhD from Caltech and 

UCLA in 1995, and came back to India with the goal of 
working there, and establishing myself as a research 
mathematician. 

I first saw him at a banquet at a summer school I 
attended in Nice (probably around 1992-1993). I 
must have seen him a few times during the period I 
worked in TIFR. On these early occasions I never had 
a chance to speak to him or interact with him in any 
meaningful way. I knew him by his fame as a leading 
mathematician, who had developed a famous school 
in India based at TIFR, but he was a very distant 
figure to me. 

The next time I remember seeing him was when 
he was in the audience when I once lectured in 
Bangalore. This must have been around 2008 or 
2009, although it could have been a little earlier. 
The topic of my lecture was Serre’s modularity 
conjecture, which I had just proved (or was about to 
complete proving) in work with my French colleague 
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(it would be unstable if ℒ has nonzero degree since then 
either ℒ or ℒ−1 has positive degree). 

The direct sum ℒ ⊕ ℒ−1 has a ℂ* group of 
automorphisms acting as diag (𝑡, 𝑡−1) on the two 
summands ℒ, ℒ−1. Now consider a triangular deformation 
of 𝐸, by adding an upper triangular perturbation to its ∂ ̄ 
operator  

	
∂ ̄  + �        � → ∂ ̄  + �        � 

𝑎    0

0   –𝑎

𝑎    𝑐

0   –𝑎 ,

for some 𝑐 that represents a nonzero class in 𝐻1 (Σ, 
Hom(ℒ−1, ℒ)), and therefore cannot be gauged away. 
In general, such a 𝑐 exists. By the action of ℂ* we can 
replace this with  

	
∂ ̄  + �        � → ∂ ̄  + �        � 

𝑎    0

0   –𝑎

𝑎   λ𝑐

0   –𝑎 ,

for any λ ≠ 0. So the bundle 𝐸′λ defined by the ∂ ̄ 
operator on the right hand side has a holomorphic type 
that is independent of λ as long as λ ≠  0; on the other 
hand, at λ = 0, 𝐸′ reduces to 𝐸 and its holomorphic 
type is different. Since 𝐸′ is thus “infinitesimally close” 
to 𝐸, if we are going to define a sensible moduli space 
of semistable bundles, we have to treat 𝐸 and 𝐸′  as 
equivalent. 

So Seshadri had to develop an equivalence relation, 
𝑆-equivalence, on semistable bundles, basically 
considering any triangular deformation of ℒ ⊕ ℒ−1 
(where ℒ has degree 0) to be equivalent to the direct 
sum. He was able to define a compact moduli space of 
equivalence classes of semistable (or stable) bundles, 
usually called in brief the moduli space of semistable 
bundles, and to prove that it is equivalent to the moduli 
space of unitary flat bundles, not necessarily irreducible. 
(This way to state the result is for the basic case of 
degree 0.) Apart from the importance of this particular 
problem, the ideas in Seshadri’s construction were 
important in many later constructions of moduli spaces 
in algebraic geometry. 

Seshadri’s other generalization of the Narasimhan-
Seshadri theorem, in the 1970’s, with V. B. Mehta, was 
to consider flat unitary bundles on a surface with 
punctures (Fig. 1). On one side of the correspondence, 
they consider flat bundles with prescribed conjugacy 
classes of the monodromy around the punctures. On 
the other side, they consider holomorphic bundles 
with “parabolic structure” at the punctures (meaning 
a reduction of the structure group of a bundle from 
𝐺𝐿(𝑁, ℂ) to a parabolic subgroup). 

Here it is necessary to generalize the ideas of stability, 
semi-stability, and S-equivalence to parabolic bundles. 
This is more complicated than the previous case 
because the stability condition depends on some 
parameters (which correspond to the conjugacy class of 
the monodromy in the other description). After finding 
the right definitions, Seshadri and Mehta proved a 
correspondence between flat bundles with prescribed 

monodromy and semistable parabolic bundles. I will 
mention two applications later.  

 
 
 
 
 
 

 
 
 
Fig. 1. A Riemann surface of genus 0 with 5 marked 
points or punctures

I will also mention two contributions by Narasimhan 
from the 1970’s. First, with Ramanan, he introduced 
a geometric analog of the Hecke transformations of 
number theory. In number theory, a Hecke operator 
acts in a sense only at one prime. The geometric 
analog of a Hecke transformation by Narasimhan and 
Ramanan modifies the holomorphic structure of a 
holomorphic vector bundle 𝐸 → Σ at just one point in 
Σ. It is impossible to modify a flat vector bundle over a 
Riemann surface at just one point, but a holomorphic 
vector bundle over a Riemann surface can be modified 
at just one point, and this is what Narasimhan and 
Ramanan did. Geometric Hecke transformations played 
a central role when the geometric Langlands program 
was developed, starting around 1990, by Beilinson and 
Drinfeld and then many others. In the gauge theory 
approach to geometric Langlands, geometric Hecke 
transformations have a natural interpretation in terms 
of what physicists know as ’t Hooft operators. This is 
actually one of the most important points in the whole 
story. 

Also in the 1970’s, Narasimhan and Harder computed 
the Betti numbers of the moduli space of stable 
bundles (in the case (𝑁, 𝑑) =  1 where this is smooth 
and compact). They did this in a very surprising way 
by comparing to characteristic p and using the Weil 
conjectures (which were proved by Deligne at just 
about this time). They introduced a stratification on the 
set of all bundles over a curve, basically according to 
how unstable a bundle is. Then, in the case of a curve 
over a finite field of characteristic 𝑝, they counted the 
stable bundles. The unstable bundles are relatively 
easy to count by induction on the rank. Knowing that 
the “Tamagawa number” of 𝑆𝐿𝑁 is 1 gave a “sum rule” 
which then gave a count of stable bundles. The form 
of the answer was such that, with the help of the Weil 
conjectures, the Betti numbers of the moduli space of 
stable bundles could be determined. 

This helped set the stage for an important contribution 
by Atiyah and Bott. In 1982, Atiyah and Bott introduced 
a gauge theory perspective on the Narasimhan-
Seshadri theorem and the Narasimhan-Harder results 
about the topology of the moduli space of stable 
bundles. They considered gauge theory of a compact 
group 𝐺 on a Riemann surface Σ, with gauge field 𝐴 

and curvature 𝐹 = d𝐴 + 𝐴 ∧ 𝐴. The Yang-Mills action is 

𝐼  = ∫Σ    Tr𝐹 ∧ ⋆ 𝐹. 

Their basic idea was to consider 𝐼 as an equivariant 
Morse function on the space of all connections. For 
this, one has to consider the critical points of 𝐼. Unlike 
the situation in higher dimensions, in two dimensions 
it is possible to explicitly describe all of the critical 
points of the Yang-Mills action. The critical points with 
𝐼 = 0 are the unitary flat connections. According to the 
Narasimhan-Seshadri theorem, these correspond to 
stable holomorphic bundles. Atiyah and Bott showed 
that the other components of critical points of 𝐼 are 
in one-to-one correspondence with the strata of the 
Narasimhan-Harder stratification. 

Because the Morse indices of the critical point sets 
are all even, Atiyah and Bott observed that if Morse 
theory applies to this situation, as they conjectured, 
then 𝐼 is an equivariantly perfect Morse function on 
the space of all connections (equivariant with respect 
to the action of the gauge group). They showed that 
this would imply formulas for the Betti numbers of the 
moduli space of stable bundles that agreed with those 
of Narasimhan and Harder. Here they used the fact that 
the space of all connections (ignoring the action of 
the gauge group) is contractible, a fact that for them 
played the role of “Tamagawa number equals 1” for 
Narasimhan and Harder. A decade later it was proved 
independently by G. Daskapouos and J. Rade that 
Morse theory does apply in this problem. (This involves 
showing that the gradient flow equation associated 
to the Yang-Mills action, which is a parabolic partial 
differential equation in three dimensions, contracts 
the space of all connections onto the set of critical 
points.) In 1982, however, Atiyah and Bott avoided the 
analytical difficulties by considering instead the action 
on the space of connections of the complexification of 
the gauge group. This sufficed for proving the formulas 
for the Betti numbers. 

The Atiyah-Bott paper inspired a new gauge theory 
proof of the Narasimhan-Seshadri theorem by S. 
Donaldson, in 1983. This in turn inspired many 
generalizations. One that is of particular importance 
for geometric Langlands was due to N. Hitchin. 
Narasimhan and Seshadri had interpreted unitary 
representations of the fundamental group of a 
Riemann surface in terms of algebraic geometry. What 
about representations that might be nonunitary? 
Hitchin proved that (semistable and not necessarily 
unitary) representations of the fundamental group 
of a surface correspond to stable Higgs bundles 
(𝐸,  𝜑), where 𝐸 is a holomorphic bundle and 𝜑 is a 
holomorphic map 𝜑 : 𝐸 → 𝐸 ⊗ 𝐾. Extending this, he 
proved that the moduli space of either of those two 
types of object has a complete hyper-Kahler structure. 
This was the generalization of the Narasimhan-
Seshadri theorem for non-unitary flat bundles. 

Also in the 1980’s, using the gauge theory formulation, 
the Narasimhan-Seshadri theorem was generalized 

to complex manifolds of dimension greater than 1 by 
Donaldson as well as by K. Uhlenbeck and S.-T. Yau. In 
higher dimensions, the theorem says that a semistable 
holomorphic bundle admits a hermitian metric such 
that the corresponding connection satisfies the Yang-
Mills equations; conversely, a holomorphic bundle with 
such a hermitian metric is semistable.  
 
 
 
 
 
 
 

 
Fig. 2. A knot in ℝ3

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. A braid on four strands

I well remember how obscure these things seemed to 
me when I heard about them from Atiyah and Bott in 
the early 1980’s. However, physicists became familiar 
with such matters starting in the mid-1980’s when 
Calabi-Yau threefolds and holomorphic vector bundles 
over them were used to make models of particle 
physics in the context of string theory. This has actually 
become a very important direction. In this context, 
the existence of hermitian Yang-Mills metrics – in 
other words, the generalization by Donaldson and 
by Uhlenbeck and Yau of the Narasimhan-Seshadri 
theorem – is completely crucial. The subtleties of stable, 
unstable, and semistable bundles appear in this context 
as properties of the low energy effective action of the 
model. 

But instead of explaining that, I will explain the role of 
the Narasimhan-Seshadri theorem in my own work a 
few years later on rational conformal field theory and 
the Jones polynomial. Vaughn Jones had discovered the 
Jones polynomial in 1983. It is a subtle invariant of a 
knot in ℝ3 (Fig. 2). From the beginning, it was related to 

is unstable because it has the subbundle 𝒪(𝑝) 
of positive degree. Mumford also defined 𝐸 to 
be semistable if it has a proper subbundle 𝐸′ of 
degree 0 but none of positive degree. If every proper 
subbundle of 𝐸 has negative degree, then in Mumford’s 
terminology, 𝐸 is stable. 

The Narasimhan-Seshadri theorem, as originally 
formulated in 1964, says that irreducible unitary flat 
bundles of rank 𝑁 are in one-to-one correspondence 
with stable bundles. The easier direction is to show 
that for a holomorphic bundle 𝐸 to have a flat unitary 
structure, it is necessary for it to be stable. This can 
be proved by generalizing what I said about the case 
𝒪(𝑝) ⊕ 𝒪(−𝑝). (Again, the approach of Narasimhan and 
Seshadri would have been somewhat different.) The 
opposite direction is more difficult: stability is sufficient 
for existence of a flat unitary structure. I am not the 
right one to explain the proof of this. 

I have stated the Narasimhan-Seshadri result for 
bundles of degree 0, but they actually had a more 
general statement about bundles of rank 𝑁 and degree 
𝑑, for any 𝑑. In gauge theory language, for 𝑑 ≠  0, instead 
of flat unitary bundles, one can talk about unitary 
bundles whose curvature is central. (Their formulation 
was slightly different.) The resulting moduli space 
is smooth and compact if and only if 𝑁 and 𝑑 are 
relatively prime, i.e. (𝑁, 𝑑) =  1. From a modern point 
of view of “D-branes” in string theory, this has the 
following interpretation. 𝑁 and 𝑑 are D-brane charges 
(twobrane and zerobrane charge, for instance), and the 
condition (𝑁, 𝑑) =  1 means that a D-brane configuration 
with charges 𝑁, 𝑑 cannot separate into two subsystems 
in a supersymmetric fashion. 

Seshadri went on to extend the Narasimhan-Seshadri 
theorem in two directions. The moduli space of 
irreducible unitary flat bundles is not compact if 𝑑 and 
𝑁 are not relatively prime (for example in the most 
basic case 𝑑 = 0), because a reducible flat bundle  
𝐸1 ⊕ 𝐸2 can be slightly perturbed to make it irreducible 
(i.e. it can arise as a limit of irreducible flat bundles). 
Likewise, in view of the Narasimhan-Seshadri theorem, 
the moduli space of stable bundles is not compact. 
However, Seshadri extended the Narasimhan-Seshadri 
theorem to an equivalence between compact moduli 
spaces: the moduli space of unitary flat bundles (not 
necessarily irreducible) and the moduli space of 
holomorphic bundles that are stable and/or semistable 
(this is usually called for short the moduli space of 
semistable bundles). 

A primary subtlety here is that Seshadri had to 
understand and incorporate an equivalence relation for 
semistable bundles. There is not a sensible (Hausdorff) 
moduli space that parametrizes all equivalence classes 
of semistable bundles. I will explain this in gauge 
theory language. Consider a rank 2 bundle 𝐸 that is a 
direct sum 

𝐸 = ℒ ⊕ ℒ−1

of line bundles ℒ of degree 0. Such an 𝐸 is semistable 

ICTS faculty member SAMRIDDHI SANKAR 
RAY has been elected a member of the 
National Academy of Sciences, India.  

Samriddhi works in the area of fluid dynamics 
and his research interests include fluid, 
magnetohydrodynamic, passive-scalar, and 
Burgers turbulence, inertial (finite-sized) 
particles in turbulent flows, truncated systems, 
thermalization, and statistical mechanics of 
turbulent flows and Singularities in the Euler 
equation.

BETWEEN THE 
SCIENCE

It was a classical result that if Σ is a Riemann surface 
and ℒ → Σ is a holomorphic line bundle, then ℒ admits 
a unitary flat connection if and only if ℒ has degree 
0, or equivalently 𝑐1(ℒ) = 0. Narasimhan and Seshadri 
became interested in the analogous question for the 
case of a holomorphic vector bundle 𝐸 → Σ of rank  
𝑁 > 1. Does 𝐸 admit a unitary flat connection, which 
in this case would have structure group 𝑈(𝑁)? There is 
an obvious necessary condition 𝑐1(𝐸)  = 0, but this is far 
from the whole story. 

For example, suppose that 

𝐸 = 𝒪(𝑝) ⊕  𝒪(−𝑝),

where 𝑝 is a point in Σ. (𝒪(𝑝) is the line bundle whose 
sections are holomorphic functions that are allowed to 
have a simple pole at 𝑝). Then 𝑐1(𝐸)  = 0, but 𝐸 does not 
admit any unitary flat connection. This can be proved 
as follows. 𝒪(𝑝), and therefore 𝐸, has a holomorphic 
section 𝑠 that vanishes at 𝑝. But if 𝐸 has a flat unitary 
connection 𝐴, and ∂𝐴̄s = 0, then by integration by parts, 
after picking a Kahler metric on Σ, one can prove 

	 ∫Σ  d
2𝑥�g |d𝐴𝑠|2  = ∫Σ    d

2𝑥�g |∂𝐴̄𝑠|2  = 0,

and hence d𝐴𝑠 = 0. Therefore, 𝑠 (if not identically zero) 
cannot vanish anywhere. This explanation is in the 
spirit of gauge theory; it is probably not very close to 
what Narasimhan and Seshadri would have said in 
1964. 

Mumford had defined the notion of a stable 
holomorphic vector bundle over a Riemann surface. A 
bundle 𝐸, for simplicity with 𝑐1(𝐸)  = 0, is unstable if it 
has a holomorphic subbundle 𝐸′ of positive degree: 

0 → 𝐸′  → 𝐸 → 𝐸″ → 0.

For example, the bundle 

𝐸 = 𝒪(𝑝) ⊕  𝒪(−𝑝)

↑Time

Witten | continued from Page 1 ...
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mathematical physics in a bewildering variety of ways. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4. To construct the Jones representations of the braid group 
from gauge theory, one first constructs a Hilbert space in the 
presence of 𝑛 parallel vertical strands. Then, letting the points 
vary, one constructs a flat connection over the configuration 
space of n distinct points in the plane; the monodromy of this flat 
connection gives the Jones representations

Jones’s original definition involved the Jones 
representations of the braid group. A braid in the 
mathematical sense is a picture like the one sketched 
in Fig. 3. Points move around in the plane, then return 
to their starting positions. In this example, I have 
drawn a braid with 4 strands. Braids form a group 
because they can be composed by gluing one braid on 
top of another. 

Jones’s original definition of the Jones polynomial of 
a knot was as follows. We can build a knot by gluing 
together the top and bottom ends of a braid. This 
gluing is a little bit like taking a trace. Let 𝐵 be a braid. 
If 𝑅 is a representation of the braid group, let us write 
ℛ(𝐵) for the matrix that represents the braid 𝐵 in this 
representation. In his original work, Jones constructed 
representations 𝑅i(𝑞) of the braid group, where 𝑞 is a 
complex parameter, and defined the Jones polynomial 
as a linear combination of the corresponding traces: 

	
𝐽(𝑞)=� 𝑐𝑖 (𝑞) Tr𝑅𝑖(𝑞) ℛ𝑖, 𝑞(𝐵)

𝑖

It worked, but it was unclear why, since there was 
no manifest three-dimensional symmetry in the 
construction. There are many different ways to 
construct the same knot as the “trace” of a braid. Why 
would this construction always give the same result? 
What is special about the particular representations 
𝑅𝑖 (𝑞) and the coefficients 𝑐𝑖 (𝑞)? Atiyah recommended 
these questions for physicists. 

A very important step was taken by A. Tsuchiya and 
Y. Kanie. They showed that the Jones representations 
of the braid group are the ones that arise when 
one decomposes the correlation functions of 

Fig. 4 for a local picture. Now one can show that the 
phase space that has to be quantized is a moduli space 
𝑀′ of flat bundles on Σ\{𝑝1, · · · , 𝑝𝑠} with a prescribed 
conjugacy class of the monodromy around the 𝑝𝑖. So 
now we have to quantize 𝑀′. To do this, we again pick 
a complex structure on Σ, and now, invoking Seshadri’s 
extension of the Narasimhan-Seshadri theorem, we can 
identify 𝑀′ with the moduli space ℳ′ of semistable 
holomorphic 𝐺ℂ bundles over Σ with parabolic 
structure at the points 𝑝𝑖. 

A key ingredient is missing in what I have said so 
far. We picked a complex structure 𝐽 on Σ in order to 
quantize the moduli space 𝑀 of flat bundles or its 
counterpart 𝑀′ of flat bundles with point singularities. 
Of course, the choice of complex structure violated 
topological invariance. So now we have to show that 
the Hilbert space ℋ𝐽 that we construct in complex 
structure 𝐽 really does not depend on 𝐽. This is proved 
by constructing a (projectively) flat connection that 
lets us compare the ℋ𝐽’s for different (nearby) 𝐽’s. For 
the case of punctures on the plane, as in Fig. 4, the 
positions of the punctures are the complex moduli, 
and the monodromy of the flat connection gives the 
Jones representations of the braid group. Construction 
of the flat connection is a very important part of the 
story, which can be understood by adapting to infinite 
dimensions some simple facts about quantization in 
finite dimensions. But as this would take us rather far 
afield from the Narasimhan-Seshadri theorem, I will not 
explain this here. 

However, I want to draw attention to a superficially 
similar problem that has not been solved. We do not 
have a good understanding of Chern-Simons gauge 
theory with a noncompact real semi-simple gauge 
group 𝐺 such as 𝑆𝐿(𝑁, ℝ) 

I =  𝑘 � 
4π

 ∫
𝑊    d

3𝑥𝜖𝑖𝑗𝑘 Tr �𝐴𝑖 ∂𝑗 𝐴𝑘+   2 � 
3
  𝐴𝑖𝐴𝑗𝐴𝑘 �,

because the Narasimhan-Seshadri theorem does not 
apply to flat bundles with non-compact gauge group. 
The closest analog is Hitchin’s theorem about Higgs 
bundles. After picking a complex structure 𝐽 on Σ, we 
can indeed use that theorem, as was shown by Hitchin, 
to construct a Kahler polarization of the appropriate 
phase space 𝑀. But we do not understand in what 
sense the resulting Hilbert space ℋ𝐽 is independent 
of 𝐽, so we do not know how to exhibit topological 
invariance. (This is a broad brush statement; there are 
some important special cases in which the problem has 
been solved or circumvented.) 

There is one much more recent contribution by 
Seshadri that I wish to mention. Seshadri and V. Balaji 
(2010) developed a theory of holomorphic vector 
bundles over a Riemann surface with “parahoric” 
structure, which is more general than parabolic 
structure. (There is also a gauge theory approach by P. 
Boalch, and there have been other more recent papers.) 
I only learned about this work very recently and will 
not attempt to describe it here. I will just make the 
following remark. In 2006-8, Sergei Gukov and I wrote 

the two-dimensional WZW model in conformal 
blocks, as originally analyzed by V. Knizhnik and A. 
Zamolodchikov. The background to this statement is as 
follows. Consider the correlation functions of a primary 
field Φ in this theory, say in genus 0: 

𝐺(𝑧1, 𝑧̅1; 𝑧2, 𝑧 2̅; ··· ; 𝑧n, 𝑧𝑛̅) =	〈Φ(𝑧1, 𝑧1̅)Φ(𝑧2, 𝑧2̅)Φ(𝑧3, 𝑧3̅) ···  
			   Φ(𝑧n, 𝑧𝑛̅)〉.

These functions are neither holomorphic nor 
antiholomorphic, and they cannot be factored as the 
product of a holomorphic and an antiholomorphic 
function. But Knizhnik and Zamolodchikov had shown 
that they are finite sums of products of holomorphic 
and antiholomorphic functions:  
 
𝐺(𝑧1, 𝑧1̅; 𝑧2, 𝑧 2̅; ··· ; 𝑧𝑛, 𝑧𝑛̅) = 

		      � ƒ𝛼 (𝑧1, 𝑧2, … 𝑧𝑛 ) ƒ ̅
𝛼 (𝑧̅1, 𝑧 ̅2, … 𝑧𝑛̅)𝛼

Here the functions ƒ𝛼 (𝑧1, 𝑧2, … 𝑧𝑛 ) are multivalued 
holomorphic functions. For each 𝑛, we can define a 
vector bundle 𝑉𝑛 over the configuration space of 𝑛 
distinct points 𝑧1, 𝑧2, … 𝑧𝑛 ∈ ℂ ∪ ∞ with a basis given 
by the ƒ𝛼 . These are automatically flat vector bundles 
(with the ƒ𝛼  understood as covariantly constant 
sections), and their monodromies when the points 
move around give representations of the braid group. 
Single-valuedness of the correlation functions of the 
WZW model implies that these representations are 
unitary. The observation of Tsuchiya and Kanie was 
essentially that, for symmetry group 𝐺 = 𝑆𝑈(2) and 
a primary field in the 2-dimensional representation, 
these are the Jones representations. 

The holomorphic functions ƒ𝛼 are called conformal 
blocks. E. Verlinde had defined operators that act 
on the space of conformal blocks, and intuitively it 
seemed that he was treating the space of conformal 
blocks of the WZW model as the Hilbert space of some 
quantum system. But what was that system? At some 
point, I had the idea that the appropriate quantum 
system was simply Chern-Simons gauge theory, with 
the action 

I =  𝑘 � 
4π

 ∫
𝑊   d

3𝑥 𝜖𝑖𝑗𝑘 Tr �𝐴𝑖 ∂𝑗 𝐴𝑘+   2 � 
3
  𝐴𝑖𝐴𝑗𝐴𝑘 �

where 𝐴 is a connection on a G-bundle over a three-
manifold 𝑊 and 𝑘 is the level of the WZW model. 
Because the only structure of 𝑊 used in defining this 
action is an orientation, one can hope that a quantum 
theory derived from this action will be topologically 
invariant and will give three-manifold invariants. 

We can include a knot or embedded circle 𝐾 ⊂ 𝑊 by 
including a Wilson loop operator 

𝒲𝑅(𝐾) = Tr𝑅𝑃 exp ∮𝐾     𝐴,

where 𝑅 is a representation of 𝐺 and the expression 
on the right hand side is just a way to describe the 
trace, in the representation 𝑅, of the holonomy of a 
connection 𝐴 around 𝐾. Now the path integral 

two papers on “surface operators” in the context of 
the gauge theory approach to geometric Langlands. In 
the first paper, we used Seshadri’s theory of parabolic 
structure, or more precisely the extension of this to 
Higgs bundles by C. Simpson, to describe in gauge 
theory the “ramified” case of geometric Langlands. 
But then we realized that there were more general 
singularities to consider; we tried to analyze these in 
the second paper but were not able to get a systematic 
picture. Since learning about parahoric structure, I have 
suspected that this might provide a better framework 
for at least a large part of what we were trying to do. 

In conclusion, in this article I have described some 
of the celebrated contributions of Narasimhan and 
Seshadri and hopefully I have given at least a few hints 
of the role that their work has played in theoretical 
physics. ■  

Edward Witten is the Charles Simonyi Professor at the 
Institute for Advanced Study, Princeton.

∫ 𝐷𝐴 e xp(𝑖𝐼)  𝑊𝑅 (𝐾) 

depends on 𝐾 (and 𝑅) as well as on 𝑊, but nothing else. 
So (taking 𝑊 = ℝ3) this will potentially give an invariant 
of a knot. (It turns out that these statements need slight 
modification: because of an anomaly, both 𝑊 and 𝐾 must 
be “framed.”) 

But to get anywhere, we need to know that the quantum 
Hilbert space ℋΣ of Chern Simons theory, on a Riemann 
surface Σ, is the same as the space of conformal blocks 
of the WZW model on Σ (with the same symmetry group 
𝐺 and the same “level” 𝑘). That is where the Narasimhan-
Seshadri theorem came in. First of all, to construct ℋ 
we are supposed to “quantize” the classical phase space. 
The Euler-Lagrange equations of the Chern-Simons 
action just say that 𝐹 = d𝐴+𝐴 ∧  𝐴, the curvature 
of a connection 𝐴, should vanish. The phase space 
that we have to quantize to construct ℋΣ is thus the 
moduli space 𝑀 of flat connections on ℝ × Σ (here ℝ 
parametrizes the “time”) which is the same as the moduli 
space of homomorphisms 𝜌 : 𝜋1(Σ) → 𝐺. Somehow we 
have to quantize 𝑀 and show that the result is the same 
as the space of conformal blocks of the WZW model. 𝑀 
should be quantized with symplectic structure kω0 where 
ω0/2π generates 𝐻2 (𝑀, ℤ) ⊗ℤ ℝ. 

There is not any known way to quantize 𝑀 without 
picking some additional structure, and I expect that 
there is no way to do so. Suppose we choose the 
additional structure to be a complex structure on Σ. 
Then we can invoke the Narasimhan-Seshadri theorem, 
which says that 𝑀 is the same as the moduli space ℳ 
of semistable holomorphic 𝐺-bundles over Σ. Knowing 
this, we can quantize ℳ using geometric quantization. 
There is a fundamental holomorphic line bundle ℒ→ℳ, 
whose first Chern class is represented in de Rham 
cohomology by 𝜔0 (for 𝐺 = 𝑆𝑈(𝑁), ℒ is the determinant 
line bundle of the Dirac operator on Σ, coupled to a 
rank 𝑁 holomorphic vector bundle 𝐸 → Σ). Then ℒ𝑘 
is a prequantum line bundle for this problem in the 
language of geometric quantization, and geometric 
quantization tells us that we should define ℋ = 𝐻0 (ℳ, 
ℒ𝑘 ) as a quantization of ℳ. 

At this point we get “lucky.” The answer 𝐻0 (ℳΣ, ℒk) 
coincides with a known and in a sense standard – 
though rather abstract – description of the space of WZW 
model conformal blocks on a genus 𝑔 surface. (I learned 
this description from G. Segal and I was fortunate here 
as this description was certainly not well-known among 
physicists at the time and possibly also not today. It is 
widely used – in a more general form – in research on 
the geometric Langlands program.) This is the basic 
link between 2 and 3 dimensions, and as I explained it 
depends on the Narasimhan-Seshadri theorem.

Actually, I explained this in the absence of knots. To 
incorporate knots, we need to use the later refinement of 
the Narasimhan-Seshadri theorem by Seshadri to include 
parabolic structure. To get the Jones representations of 
the braid group, we pick some points 𝑝𝑖 ∈ Σ and place 
knots, in some representations 𝑅i, on 𝑝𝑖×ℝ ⊂ Σ× ℝ. See 

I first met Narasimhan in Paris in 
the late 80's. I was there for a year 

and Ramadas was also there for an 
extended stay. One day, in the then 
library of the LPTHE of Paris VI/VII, 
Ramadas introduced me to a handsome, 
elegant, though very quiet man. The 

meeting was bit awkward and we did not speak much 
at all. Later Ramadas was shocked to learn that I did not 
know who Narasimhan was. As fate would have it this 
ignorance was to be corrected very shortly afterwards.

In the early 90’s I moved to the ICTP and a year or so later 
Narasimhan was appointed as Head of the Mathematics 
section here. By that time my research had wandered into 
the physics side of moduli spaces of bundles on Riemann 
Surfaces, I learnt to my embarrassment something I 
should have known, namely that Narasimhan was a father 
of the field. So for the following years you could find us 
animatedly discussing in the bar at the ICTP, at least that 
is, when he wasn't helping every young mathematician 
in sight. Our discussions were about mathematics 
(somewhat one sided) and about cricket (happily, at that 
time, other sided).

The mathematics discussions certainly helped me and 
my colleagues understand better what we were up to. I 
must say that Narasimhan was a staunch supporter of 
the idea that one could learn something from physicists 
and so he helped me and others along. He put in a large 
effort to understand us and our language. In his time at 
the ICTP he began to build a solid mathematics group, 
and he was always available to help young postdoctoral 
fellows (often hunting them down so they would not find 
themselves isolated while here). And it always amazed 
me that he always had something useful to impart to 
these young people regardless of their field.

When is the moment that you pass from being colleagues 
to being friends? I do not know, but we passed it and 
that friendship has been a joy for me. In those days you 
could also sometimes find us in our favourite restaurant 
in the evening drinking red wine (he very much 
appreciated the Shiraz wines of Australia) and he would 
tell me very funny anecdotes of his life and about other 
mathematicians that he knew. We would also discuss 
more serious matters such as the mission of the ICTP- 
dear to both of us- on which he often proclaimed that I 
was a bleeding heart liberal only to turn around and help 
everyone that he could.

That is how I think he should be remembered or at least 
how I will. A great mathematician, a wonderful human 
being but, even more importantly, a dear friend. ■ 

George Thompson is Professor of Physics at ICTP, Trieste.

MY DEAR FRIEND, 
NARASIMHAN
GEORGE THOMPSON
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one had to try and live up to the high repute of the 
place, live up to that theorem in a way. Further it 
gave a sense that it was possible to do first class 
mathematics working at a place somewhat distant 
from the traditional, mainly Western, centres of 
mathematical research, especially as their work had 
been done in Bombay in times when the world was 
far less connected than now. 

I read later in an interview with Narasimhan that he 
felt it could be advantageous to work somewhere at 
a distance from the main mathematical centres, and 
follow the latest developments from this distance. 
One could then work on one’s own ideas, partly 
inspired by the work happening at these centers, 
without being overwhelmed by the influence of the 
leaders in the subject. Such direct influence, while it 
could be greatly beneficial for some, might dissuade 
others from trying out ideas that could seem 
unpromising to the experts, but that one could not 
give up on internally. 

Although I did not know Prof. Narasimhan’s quote 
at that time, I found for myself that this awareness 
from a distance of important developments in one’s 
area, while working independently on one’s own, 
worked quite well for me in the first three to four 
years of my time at TIFR. 

After arriving in India in 1995, I worked on trying 
to generalize the work I had done in my thesis, 
which used ingredients that overlapped with the 
astonishing work of Andrew Wiles on Fermat’s Last 
Theorem. I arrived in a faltering way at a satisfactory 
generalization of my thesis work over a period of a 
few years after I returned to India. 

Temperamentally I am drawn to tilting at windmills, 
and I started doing, more or less simultaneously, 
more open-ended work inspired by Serre’s 
modularity conjecture. The very few known cases 
of the conjecture had provided Wiles a foothold 
to launch his audacious attack on the modularity 
conjecture for elliptic curves (motivated by the 
corollary that would follow, namely Fermat’s Last 
Theorem). Serre’s conjecture seemed wide open 
even after Wiles’ work. It was a great prize sought 
after by many working in this area of number 
theory. Its allure was that it was a simple striking 
statement, a conjectured correspondence between 
two types of objects (modular forms and Galois 
representations) that were very different. It had 
a wealth of consequences. Its attraction was also 
that it was made by Jean-Pierre Serre, one of the 
important mathematicians of the 20th century, who 
worked in Paris and who could have influenced 
both Narasimhan and Seshadri by his personality, 
mathematical exposition, and his own research. They 
probably had interacted with him as young men 
when they went to Paris in the late 1950’s, deputed 
there from TIFR to learn the latest mathematics at 
one of the great centers for pure math. 

I kept musing about questions suggested by Serre’s 
conjecture, carrying them in my mind, experiencing 
mainly frustration, but also small eureka moments, 
making small observations that I wrote up as short 
papers. I sent some of these observations to Serre 
himself, and a couple of times surprised him with my 
remarks. 

It was a little like kicking the ball around on a field, 
with the goalposts obscured by a thick fog. As 
there was no way of reasonably aiming to kick at 
the goal which was smothered in the fog, one just 
kicked the ball around and chased after it in bursts 
of somewhat random, sporadic, but still intense, 
activity. 

I read later of another piece of Prof. Narasimhan’s 
advice to young people to work “off the top”: work 
on something without necessarily knowing precisely 
all the background required, getting by on a sense 
of the subject, impressionistic to begin with, which 
could be deepened as one continued thinking 
(continually!) about the subject. This way one 
would not get bogged down and overwhelmed by 
the myriad technical details right at the beginning, 
which could have a paralyzing effect on a novice, 
and instead learn them as one needed to. 

In the interview he said: 
“....one should learn any subject from as sophisticated 
a point of view as one is capable of; so that in some 
sense, from then on, you can move down into the 
details.

I don’t prescribe going canonically from definitions, 
theorems and so on to start with. You have to 
eventually do it anyway, at some stage. But then 
the problem is that you can get lost in the minutiae 
without any idea of what it is all adding up to. As 
Eilenberg once said, everybody in mathematics has 
a “natural boundary”. What he meant was that 
up to a certain level, you can understand things. 
Beyond that, it becomes very difficult to do so, even 
in a particular field. When you have to cross this 
boundary, how do you do it? Well, you could just get 
discouraged and simply give up, which is not at all 
what I am talking about. You could also say “I’ll go 
to some classic textbook and read linearly word 
by word, the definitions, and so on.” On the other 
hand, as in a metaphor, suppose that you can see and 
identify a few small holes in a large and otherwise 
mostly opaque structure. And through which some 
scattered bits of understanding are filtering through. 
This affords you some view into the world beyond, 
though only slightly and incrementally better than 
before. Now, you try to get ahead by using these 
little toeholds of incremental understanding that has 
filtered through the small openings. It is essentially 
that sort of a thing. For this, you clearly need some 
sophistication… Finally, of course, you have to sit 
down and get all the minute details thrashed out. No 
escaping that.” 

On reading Prof. Narasimhan’s interview, I realized 

Jean-Pierre Wintenberger. Professor Narasimhan 
was enthusiastic about our work, in spite of it being 
far away from his mathematical interests, and this 
pleased me greatly. 

Later I met him a few times at the prize ceremonies 
of the Infosys Science Foundation, and also at a 
Commonwealth Science Congress, in Bangalore 
where he then lived. He had a natural charisma, 
presence, intensity, an aura around him, and also an 
enthusiasm to converse and discuss ideas. We talked 
about the changing political climate of the country, 
the decline in the quality of public debate, a growing 
illiberalism and a decline in scientific temper and 
support for basic science. He talked about the 
quality of the political leadership in the past of the 
newly independent India. He lauded its empathy for 
open ended intellectual inquiry, and a thought-out 
rationale and vision that translated into a keenness 
to invest in basic sciences, even when the country 
had many more immediate demands on its scarce 
resources. 

Much to my regret, I did not get to know him well, 
either personally or mathematically. In this tribute to 
him, I will focus on his role as an inspiring figure – 
because of the importance of the work he had done, 
where he had done it, and when he had done it – to 
a young person (like myself) trying to do research in 
pure mathematics in India in the 1990’s. 

TIFR had established itself in the world of pure 
mathematics through important theorems proved by 
mathematicians working there, through the decades 
from the 1950's onwards, and of these there was 
none more celebrated than the Narasimhan-Seshadri 
theorem. It was in an area of algebraic geometry 
and differential geometry that was far away from my 
area of work which was in number theory. 

I had come back to India immediately after my 
thesis in 1995, and joined TIFR as a Visiting Fellow 
(the entry level postdoctoral position available to 
someone after finishing their PhD). I did not know 
the mathematical content of the theorem. Many of 
my senior colleagues at TIFR worked in different 
aspects of the mathematical specialty – vector 
bundles on curves – that had been decisively 
impacted by the Narasimhan-Seshadri theorem. It 
continued to be the focus of much of the research 
done at TIFR decades after the theorem had been 
proved. 

For me the influence of the Narasimhan-Seshadri 
theorem was more indirect but still psychologically 
quite important. The discovery of such an 
influential theorem by two young brilliant Indian 
mathematicians, in their early thirties, working in 
Bombay at TIFR in the 1960’s, led to putting TIFR 
on the world map of mathematics. It also made one 
feel that as someone working at the same Institute, 

that I have been unconsciously following his advice 
of working “off the top” all along. In my work I reach 
my “natural boundary” (as defined by Eilenberg) very 
quickly, and can go past it only by obsessing about 
a piece of mathematics, living with it in my mind. 
The fact that the Narasimhan-Seshadri theorem 
had been proved when India was still young as an 
independent country (not yet twenty years old) was 
also fascinating. TIFR was founded by Homi Bhabha 
who had filled it with paintings by contemporary 
Indian artists (through the 1950’s and 1960’s), many 
of them working in Bombay, not so far away from 
Navy Nagar where TIFR is located. The works of the 
members of the Bombay Progressive Artists’ Group 
were amply present on the walls of the Institute. 
The modernity the paintings represented, made in 
a newly independent country, which had its own 
ancient culture and tradition of art, architecture, 
music, dance, seemed to marry these civilizational 
influences with what was happening in the 
contemporary world of art then. Many of the artists 
whose paintings Bhabha collected (with discernment 
and a remarkable sense or intuition for what was 
vital in the art made in India then) had spent time 
in Paris and returned to produce work which was 
influenced by what they had absorbed in their time 
there. Narasimhan and Seshadri also had been 
deputed to Paris, from 1957 to 1960 as I learnt from 
interviews of Prof. Narasimhan, absorbed new ideas 
and influences there, and after returning to India 
proved their landmark theorem. A four month long 
visit in 1997 that I made to Paris, made possible by 
an Indo-French scientific exchange program that 
owed its existence to the relationship between the 
Indian and French mathematical communities that 
went back a few decades, played an important role 
in my own development as well. 

It was a different India that I lived in during my years 
working at TIFR (post the economic liberalization of 
1991), but the earlier example of Prof. Narasimhan, 
Prof. Seshadri and their colleagues, who had worked 
at TIFR and proved path breaking theorems decades 
earlier, lived on as an inspiration, present in the air, 
setting a certain tone, holding me and my colleagues 
accountable, pushing us to try and live up to their 
formidable legacy. ■

Chandrashekhar Khare is Professor and  David Saxon 
Presidential Term Chair in Mathematics at University 
of California, Los Angeles.

Khare | continued from Page 1 ...

On July 12, 2021, a special online event was 
organised by ICTS-TIFR to celebrate the work 
of M. S. Narasimhan (1932-2021) and C. S. 
Seshadri (1932-2020). This event was part of 
the program Quantum Fields, Geometry and 
Representation Theory 2021. Narasimhan and 
Seshadri, the doyens of Indian science, put TIFR 
on the mathematical map of the world in the 
early days of independent India. The speakers 
were Vikraman Balaji (Chennai Mathematical 

Institute, India), Jacques Hurtubise (McGill 
University, Canada), Shrawan Kumar (University 
of North Carolina at Chapel Hill, USA) and 
Edward Witten (Institute for Advanced Study, 
Princeton, USA).

A special virtual memorial meeting for M.S. 
Narasimhan was held at TIFR, Mumbai, on 4 
June 2021.

MEMORIAL EVENT

The first page of Narasimhan-Seshadri's famous 1965 paper
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and Simons to define new invariants, and had also 
applications in theoretical physics. 

Later he started to discuss a problem with C.S. 
Seshadri, another great mathemati-cian who 
passed away a few months ago. This related to an 
understanding of a ques-tion that arose out of the 
work of Andre Weil twenty-five years earlier. Weil had 
in-vestigated the analogue of the theory of divisors 
on a Riemann surface, due to Jacobi of the nineteenth 
century, and generalised it to what he called “matrix 
divisors”. In the 1950's, this was subsumed in the 
notion of holomorphic vector bundles on alge-braic 
curves. Weil’s approach was analytic, but it had given 
birth to algebraic vector bundles of a certain kind. 
Weil had wondered that “unitary bundles play an 
im-portant part, without doubt, in this theory but every 
indecomposable bundle is not unitary.” 

David Mumford had, around that time, introduced 
the concept of stable and semi-stable bundles. In a 
path-breaking paper, again written in a short time, 
Narasimhan and Seshadri settled this question. In 
these instances, the solutions came fast and were 
published soon. At the same time, the TIFR’s School 
of Mathematics did not put undue pressure on 
its researchers to publish, which proved to be an 
advantage. For instance, in my next collaborative 
result with MSN, the moduli of vector bun-dles were 
determined in the first non-trivial case: rank 2, genus 
2. After we had proved it, we worked on it for nearly 
a year to get a full understanding of this result in a 
satisfactory set-up and this enabled further work both 
by us and others.

MSN had the knack of choosing interesting problems 
that were within reach -- as he would say “abordable”. 
As I mentioned above, his ability to absorb the 

Mathematicians usually acquire a deep understanding 
of a theory and try to solve re-lated problems using 
their expertise on the subject. Narasimhan was of a 
different mould. iEven if he was initially not conversant 
with the nitty-gritty of a branch, he had the capacity 
to come to grips with the essentials of a problem and 
bring to it an original way of thinking and solve it. 
He would fill in the details of the theory later, often 
holding a seminar on the subject. It was my good 
fortune to have collaborated with him for decades and, 
to a certain extent, to have imbibed this methodology. 
Our joint papers were published from time to time, 
between 1961 and 1989. He was my mentor, colleague, 
collaborator and a close friend.

He joined TIFR as a graduate student in 1953 and 
was deputed to France in 1957. There he came in 
contact with Takeshi Kotake, a student of the Fields 
medallist Lau-rent Schwartz, who was instrumental in 
facilitating Narasimhan’s visit. Kotake and Narasimhan 
wrote a very interesting paper on the regularity 
behaviour of the solu-tions of linear elliptic equations 
with analytic coefficients.

When he returned to India in 1960, I was a graduate 
student looking for a problem to work on. Our first 
work was on universal connections, which proves that 
the bun-dle universal for principal unitary bundles has 
a connection that is universal for uni-tary bundles with 
connections. As soon as I told him that I felt this could 
be true, he got excited and began asking me questions, 
such as “did you check it for U(1)” and “did you check 
it for trivial bundles?” This helped me understand how 
one should go about solving problems: try and solve 
simpler cases and look for analogies. We solved this 
question within a couple of weeks, and it appeared in 
a prestigious jour-nal. It was later applied by Chern 

Ramanan | continued from Page 1 ... essentials of a theory quickly and “think from the 
top”, as he would call it, enabled him to work on a 
variety of subjects: differential equations, differential 
geometry, representations of Lie groups, gauge theory, 
etc. He could thus collaborate with mathematicians in 
different areas and with different methodologies of 
research. His work with Gunter Harder and, much later, 
with T.R. Ramadas are examples of his wide interests 
and quick adaptability. It is not an exaggeration to say 
that he was the most versatile In-dian mathematician.

The technical details of his work have been 
summarised by C.S. Seshadri in the first part of The 
Collected Papers of M.S. Narasimhan, published by the 
Hindustan Book Agency.

Rather than dwell more on his contributions, I shall 
recall an incident, illustrative of his passion for 
mathematics, since we collaborated for long years, 
both of us were often invited to the same conference. 
Once during such a visit to Madrid, we took a walk 
one evening, and had got into a small lonely lane near 
Plaza Major, discussing some mathematical question. 
He stopped for a minute, lost in thought, while I was 
going ahead. Perhaps assuming I was alone, a young 
Spaniard came and tried to snatch my wallet. I held it 
tight, clutching my pocket and shouted for Narasimhan. 
The fellow ran away, and at once, another guy rushed 
at me with the same intent. Narasimhan came running 
and I could breathe easy, although understandably 
nerv-ous. Narasimhan continued on the mathematical 
theme we were discussing as if nothing had happened!

We lived in the same housing colony, so we could work 
together day and night. The American mathematician 
Bertram Kostant, who was visiting TIFR, remarked 
that he had never seen two mathematicians working 
together all the time. Another wit quipped that 
people may think that ‘Narasimhan Ramanan’, is one 
mathematician.

It was my privilege and good luck to have had his 
company for so long. Even after he had moved to 
Bengaluru and I to Chennai, we visited each other 
often. Almost till his last days, we used to talk on the 
phone and email each other. He wrote to me last 
year saying, “You know, guys have now generalised 
our results and have defined something they call 
Narasimhan-Ramanan branes. We should try and 
understand what they are.”

I will remember him and our time together to the very 
end. ■  

S. Ramanan was a student of M. S. Narasimhan and 
retired as Distinguished Professor from the School of 
Mathematics, Tata Institute of Fundamental Research. 
Currently he is Adjunct Professor of Mathematics at 
Chennai Mathematical Institute.

Geometry, an indication of his versatility that I 
mentioned earlier.

In 1964, he was responsible for getting me invited as 
a speaker in the prestigious International Colloquium 
in Differential Analysis held at TIFR. This was, of 
course big recognition for me. But his role went 
beyond that. Narasimhan and Chandrasekharan (the 
then Head of the School of Mathematics) made me 
rehearse my talk with them and that resulted in 
a well-received lecture – much to the surprise of 
colleagues who were aware of my poor track record 
as a speaker. 

In 1966 – the year in which I received my PhD – I 
was appointed an Associate Professor at TIFR, and 
so became a colleague of Narasimhan’s. From the 
beginning he treated me as an equal, but it was 
necessarily an asymmetric relationship: I continued to 
see him as a teacher. Our views on most issues were 
almost identical, but when occasionally we differed, 
I would defer to his views. He was a stickler for 
correct and dignified conduct on all occasions, and 
in Faculty meetings, in particular. He would wince 
when anyone failed on that front. He never raised his 
voice even while he was firm in giving his views on 
any subject. During the period he was Dean of the 
Mathematics Faculty he was meticulous in organizing 
and conducting Faculty meetings. He paid great 
attention to the wording of his letters to ensure that 
they said not just the right things, but in the right 
way. He treated the administrative staff courteously, 
extracting the best out of them.

Narasimhan, along with Seshadri, was one of 
the principal architects in building the School of 
Mathematics at TIFR  into an international centre of 
excellence in mathematics, from the fledgling state 
it was in when they joined as students there in 1953. 
The two were about the same age and had been 
together at college. They continued to be together 
for some 30 years at TIFR, guiding the School of 
Mathematics there. They remained close friends even 
after they were physically far away from each other. 
It would appear that in death too they were close to 
each other – Seshadri died less than a year ago.

When in 1983 the DAE formed the National Board 
for Higher Mathematics (NBHM) as an agency for 
the promotion of higher mathematics in the country, 
Narasimhan was the natural choice to head it. NBHM 
under his chairmanship took many initiatives which 
went a long way in fulfilling its mandate. He took 
me in as a member of the Board, and later in 1986 
made me Secretary. This gave me more opportunities 
to see his administrative skills from up close and 
that was of course a learning experience which was 
valuable to me when I succeeded him in 1984 to the 
Chairmanship of the Board.

In 1987, The Governing Council of TIFR passed up 
the opportunity of getting him to lead TIFR. It is 
a great pity, as I am sure that with his stature as a 

until the end. He was second to no Indian in terms of 
scientific achievements.

I was first his student and later his colleague at 
the Tata Institute of Fundamental Research (TIFR). 
Narasimhan was a great teacher as any of his students 
would attest. He was good, not spectacular, in 
the class-room, but he had few peers in informal 
one-on-one communication with students or 
fellow mathematicians. He had the gift of getting 
to the heart of the most abstruse problems and 
then conveying it to the student, side-stepping 
technicalities that could cloud the issue. I benefitted 
from this ability of his early on (towards the end of a 
seminar on Differential Geometry he had conducted 
with Ramanan): He explained to me all of the 
Kodaira-Spencer deformation theory (incidentally, one 
of his favourites, and a  recently developed theory 
at that time) in about 3 hours during a few walks on 
the seashore at TIFR. I learnt later that Narasimhan 
had studied the Kodaira-Spencer theory while 
recuperating from an illness in a hospital in France. 
During one of those walks Narsimhan suggested a 
problem for my doctoral degree. The background 
material needed for the problem had been covered by 
the Differential Geometry seminar. 

Narasimhan had an abiding interest in Tamil 
literature, especially contemporary writing. And in 
conversations with him I learnt a good deal about 
Tamil writers and their work. He also had a big 
influence in shaping my political views. Three of us, 
Ramanan, Narasimhan and myself would often go to 
a particular restaurant for snacks and coffee in the 
late afternoon and talk about diverse topics (even as 
mathematics took the lion’s share), politics figuring 
inevitably. Narasimhan was of a leftist persuasion, 
Ramanan in those days did not lean as far left as 
Narasimhan. My own views did not go beyond an 
unqualified admiration for Jawaharlal Nehru, and 
these outings with them helped me towards a more 
sophisticated understanding of politics. 

After my thesis my interests diverged from those 
of Narasimhan, but he was responsible for that as 
well. He had pointed out that my thesis problem had 
connections with some work of Andre Weil and asked 
me to explore that; which led me eventually to the 
theory of Discrete Subgroups of Lie Groups, a major 
preoccupation of my entire career. Our mathematical 
interactions continued, but were of a more general 
and less intense nature. 

In the early sixties, Narasimhan and Ramanan 
organized a seminar on the Atiyah-Singer Index 
theorem in which I also gave some lectures. 
Narsimhan was at the same time working with 
Seshadri on the now famous Narsimhan-Seshadri 
theorem on stable vector bundles on a compact 
Riemann surface, directing my thesis and also 
working with Ramanan on a problem in Differential 

scientist and his proven skills as an administrator he 
would have taken TIFR to much greater heights than 
what was achieved in the subsequent ten years. But 
fortunately, his abilities did not go to waste even 
while TIFR denied itself his leadership. In 1992, he 
accepted an invitation from Abdus Salam to head 
the Mathematics Section at the International Centre 
for Theoretical Physics (ICTP) in Trieste. Under 
his leadership, mathematics at ICTP reached new 
heights. His advent ensured that initiatives for the 
promotion  of mathematics in the developing world 
grew rapidly.

He played a big role in setting up programmes of 
cooperation in mathematics between India and other 
countries: France, Spain and Brazil. Some of this 
happened after he retired from ICTP and settled in 
Bengaluru. In Bengaluru, the Centre for Applicable 
Mathematics of TIFR, the Institute of Science and 
the International Centre for Theoretical Sciences 
benefitted immensely by his inspiring presence and 
advice on many matters. 

Narasimhan received numerous awards and honours. 
I mention a few: Fellowship of the Royal Society, The 
World Academy of Sciences  prize for Mathematics, 
the King Faisal Prize for Mathematics and the  Padma 
Bhushan of the Government of India.

Despite his stature and achievements, he always 
remained accessible, especially so to anyone who 
wanted to discuss mathematics with him. He was 
always good company and had interesting things 
to say on a wide variety of subjects. As a liberal, he 
was in recent years much distressed at our country’s 
slide away from the values he held dear. Mathematics 
was however his magnificent obsession, and perhaps 
shielded him from greater despondency. The way 
he kept abreast of the most recent developments in 
mathematics, was truly amazing. 

I have dwelt at some length on my personal 
interactions with Narasimhan in the expectation 
that it will throw some light on some less known 
aspects of his personality. The internet has ample 
information on his public persona, in particular about 
his great achievements as a mathematician.

His passing away is for me a great personal loss – he 
was a close friend and mentor. ■ 

M. S. Raghunathan was a student of M. S. Narasimhan 
and retired as Professor of Eminence from the School of 
Mathematics, Tata Institute of Fundamental Research. 
He is currently a Distinguished Visiting Professor, 
DAE-MU Centre for Excellence in Basic Sciences, 
Mumbai.

Raghunathan | continued from Page 1 ...

M. S. Narasimhan with C. S. Seshadri, S. Ramanan and M. S. Raghunathan. Credit: TIFR Archives
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baffled by computers. Once, I was trying to talk him 
through a series of computer operations via Skype. 
I said “Now, press ‘delete’!”, whereupon he became 
very nervous, and kept exclaiming, “Bayamaa irukku 
maa!” (My dear, I feel scared!)

My father read widely and voraciously, in English, 
Tamil, French and occasionally Italian. He also 
enjoyed reading the Times Literary Supplement, 
the New York Review of Books, and the weekend 
arts and literary supplements in The Hindu, Il Sole 
24 and the Financial Times. We shared a love for 
detective fiction, and would wait eagerly for the 
latest instalment in mystery series by our favourite 
authors. Surprisingly often, he and I (in different 
countries) bought the same book, by the same 
author, on the same day. After this happened several 
times, he began to faithfully send me an sms or 
email message as soon as he bought a book, to avoid 
such duplication in our libraries. We spent many 
happy hours browsing together, in bookstores in 
Mumbai, Bangalore, Paris, Cambridge MA, Cambridge 
UK, New York and Berlin. Inevitably, both of us would 
finally emerge from the stacks with a towering pile 
of books we wanted to buy, with his collection of 
books being more eclectic than mine.

In addition to mathematics and books, he enjoyed 
good food and wine, cricket and the company of 
friends. Well into his eighties, he was open to 
new experiences and new adventures. Once, he 
was visiting me in Cambridge UK, and as we were 
chatting, he mentioned that he had always been 
fascinated by the Rosetta Stone, both because 
of his interest in Ancient Egypt and because the 
mathematician Andre Weil invoked it when drawing 
analogies between number theory, function fields 
and Riemann surfaces. “Shall we go to London to 
see the Rosetta stone?”, I suggested. His eyes lit up, 
“Why not?”, he replied. So, we immediately jumped 

and Mermin (which he approved of). Once, when 
he was in hospital with six broken ribs, he was in 
great pain, and to distract him, I asked for help with 
some mathematics I was stuck on. I tried to explain 
the problem I was attempting to solve, and failed 
completely! We seemed to speak totally different 
languages. I would say something like, “The atoms 
sit on a triangular lattice,” to which he would 
respond, “That sentence makes no sense!” Both of us 
found this very frustrating, but that night, as he lay 
in bed sleepless with pain, he suddenly grasped the 
question I was working on, and the next morning 
I had a neatly written solution waiting for me! 
However, he refused to be a co-author on the paper, 
explaining that he had a policy of only accepting 
authorship on a paper if he understood every word 
of it, and that he couldn’t understand most of what I 
had written! 

Indeed, his grasp of physics (as of many practical 
things) had astonishing lacunae. After he complained 
that he could not finish a bottle of wine in one 
sitting, I bought him a vacuum wine saver set. He 
assured me that he knew how to use it, and was 
very happy with it. It was only several years later 
that he happened to actually use it in front of me. 
He employed it correctly to pump out the air from 
the bottle, but then removed it, left the bottle 
open to the air, and then reinserted the cork. My 
jaw dropping, I howled: “What are you DOING?” 
Annoyed, he said, “I pumped out the air!” “Yes,” I 
replied, “but then you left the bottle open! What then 
was the point in pumping out the air beforehand? 
Haven’t you heard that ‘nature abhors a vacuum’?!” 
My father stared at me blankly, whereupon I was 
betrayed into exclaiming, “Appa, you may be a great 
mathematician but you don’t understand physics 
at all!”. Quite upset with me, he retorted, “Do you 
know that my work is said to have contributed greatly 
to the advancement of physics?!” He was also quite 

on a train to London, and two hours later we were in 
the British Museum, paying homage to the Rosetta 
Stone! He also enjoyed greatly our trip to Cambodia 
to see Angkor Wat, another longtime dream of his, 
enjoying every aspect of our visit, from visiting the 
temples, to trying out Khmer cuisine, and chatting 
in French to two old gentlemen in a crêperie in Siem 
Reap. 

My father was also interested in art, with his 
favourites being the French Impressionist painters. 
However, he also followed me uncomplainingly 
through several exhibitions of abstract art, graffiti 
art and conceptual art. He even suggested that 
we visit the Venice Biennale, brushing aside my 
reservations (I knew that the art there was unlikely 
to appeal to him). After visiting a few pavilions 
(featuring displays such as rooms of blank walls, 
to make a statement) he sighed, pronounced 
‘Interesting! So this is art, nowadays!’, and then 
found a comfortable bench to sit on in the gardens, 
while I visited the rest of the exhibits. What I find 
truly remarkable, though, is that two years later, he 
insisted that we visit the Venice Biennale again!

My personality was shaped by him in important 
ways. I acquired from him a feeling of empathy 
for the disadvantaged and disenfranchised in our 
society, a non-jingoistic pride in being Indian, and a 
respect for rationalism and the power of science. 

Above all, we were great friends, and I miss him 
terribly. ■ 

Shobhana Narasimhan is Professor of Physics at 
Jawaharlal Nehru Centre for Advanced Scientific 
Research, Bengaluru.

to Bombay, and found free accommodation, for a 
few days, in a temple. Many people have remarked 
how dapper my father looked in his elegant suits 
and ties, however the first time he wore European 
trousers (as opposed to the Tamil veshti) was for 
his TIFR interview. He would later recall feeling 
intimidated during the interview, especially by 
KGR (KG Ramanathan) whose dark glasses made 
him appear particularly inscrutable. My father and 
Seshadri were both admitted to TIFR, their ‘hostel’ 
was the former servant quarters of the Old Yacht 
Club. My father was to wonder later whether the 
dismal living conditions there were responsible for 
him subsequently catching tuberculosis. 

Recently, after he passed away, a group of people 
were trying to find a single word to capture the 
essence of my father’s personality. My friend Ralph 
Gebauer chose ‘gentleman’. George Thompson 
chose ‘remarkable’. After some thought, I chose 
‘mathematician’. For though there were many other 
aspects to his personality, his overwhelming love 
and passion for mathematics defined him, and 
mathematics brought him great joy. My abiding 
memory of my father is of him lying in bed, one leg 
crossed over the other, his nose buried in a yellow 
Springer Verlag volume, or scribbling equations on 
a notepad. One little-known idiosyncrasy of his was 
that he believed that mathematics could best be 
done with black Bic ballpoint pens. Though he was 
proud of his Mont Blanc fountain pen, he suffered 
from Bic anxiety: the fear that he would run out 
of Bic pens, as a result of which his mathematical 
creativity would dry up!  I would therefore return 

from trips to Europe with dozens of these cheap 
ballpoint pens in my luggage. (I now find that his 
desk drawers are filled with packs of Bic pens, the 
sight of which seems particularly poignant and 
evocative to me, and brings tears to my eyes). When 
he was focusing on mathematics, the rest of the 
world receded: once, when he was about seven, my 
brother Mohan came to me with a funny look on 
his face, and said, “I just went and told Appa that I 
thought I had broken my thumb, he was working and 
replied ‘Don’t worry, Mohan, I’ll buy you another 
one!’”

I was born prematurely and was very tiny, and my 
father used to call me epsilon (because, of course, 
e → 0). One of my earliest memories of my father is 
related to mathematics. I must have been about four 
years old, I was in his office at TIFR, and, standing 
on a chair, was writing numbers on his blackboard. I 
wrote, “0, 1, 2, 3,…” and then turned and asked him, 
“Appa, what number comes before zero?” He got 
tremendously excited by this question, explained 
to me about negative numbers, and kept boasting 
about my precocity to everyone. “I knew then,” he 
was to tell my students, many years later, “that she 
would one day become a mathematician …” There 
was then a small pause, before he continued, a little 
sadly, “Or … maybe … a physicist.”

I did indeed go on to become a physicist, and my 
father tried very hard to understand what I was 
working on, reading through the introductory 
solid state physics books by Kittel (which he didn’t 
like because of its lack of rigour) and Ashcroft 

I write this note in memory of my 
father, M.S. Narasimhan, from 

the rather unique perspective of 
someone who was his daughter, as 
well as scientific colleague, book 
buddy, guide to contemporary 

popular culture, and partner in many adventurous 
travel and culinary forays.  

Those who saw in my father a rather patrician 
aloofness may be surprised to learn of his humble 
beginnings in a small village in Tamil Nadu, where 
there was not even a high school. He, therefore, had 
to drive a bullock cart every day to the school in 
the nearby town. At lunch time, he would emerge 
briefly from the classroom to eat his meal of thayir 
sadam (rice with yogurt) and feed the bullock hay 
–  to find, occasionally, that the bullock would 
have come unmoored, and run all the way back 
home! An early childhood photo shows him with 
the traditional shaved head and kudumi (topknot) 
of the South Indian brahmin, and wearing diamond 
studs in his ears. However, after his father passed 
away when my father was twelve, years of financial 
hardship followed. Chellappa (his family’s pet name 
for my father – it means ‘cherished one’) found his 
solace in books, reading everything that he could 
lay his hands on. A favourite family story is about 
the time he was sent to the town with money to 
buy some sugar, and discovered to his delight that a 
circulating library had just opened there. He spent 
all the money on a library membership instead, 
returning home much later with a bag of books 
(having forgotten all about the sugar). He also 
found joy in solving ‘riders’ or trigonometric puzzles, 
and declared that he would devote his life to 
mathematical research. His proud family responded 
by painting the walls of a room in their house black, 
so that he could scribble equations on the walls 
using chalk.

For college, he chose Loyola College in Madras over 
Vivekananda College; he was to tell me that this 
decision was determined largely by his discovery 
that students in Vivekananda College were expected 
to wake up before dawn for hours of morning 
prayers! This proved to be a life-changing decision, 
as at Loyola College, he encountered the French 
Jesuit priest Fr. Charles Racine, who mentored him, 
and, crucially, suggested that he join the newly-
established TIFR in Bombay for a PhD. It was only 
earlier this year that I learnt that my father did 
not have enough money to pay the train fare from 
Madras to Bombay to attend the TIFR admissions 
interview; a teacher found out and lent him the 
money. He and his classmate CS Seshadri travelled 

HIS PASSION FOR MATHEMATICS DEFINED HIM 
SHOBHANA NARASIMHAN

M.S. Narasimhan with his wife Shakuntala and daughter Shobhana. Credit: Shobhana Narasimhan
M.S. Narasimhan greets S. Chandrasekhar during the latter's visit to TIFR in 1987. M.S. Raghunathan, 
B.V. Sreekantan, K.G. Ramanathan and K. Ramachandra are also present. Credit: TIFR Archives M.S. Narasimhan with M.S. Raghunathan. Credit: Shobhana Narasimhan
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In August 2007 after the ICTS was formally 
approved I invited him to be on the International 
Advisory Board on which he served till March 
2013. During the 5 years we spent at IISc in the 
‘one corridor institute’ as ICTS was then called, 
I greatly benefitted from his advice. More than 
his words I felt supported by his presence. He 
was always there and was always very positive 
about ICTS and its trajectory. After we moved to 
the campus in Shivakote he visited us on several 
occasions.

His last visit to ICTS was in February of 2020 
during the program on `Moduli of Bundles and 
Related Structures’ and the inaugural `Madhava 
Lectures’ by P. P. Divakaran. At that time, ICTS 
organized a discussion session on the early days 
of mathematics at TIFR in which Narasimhan, 
Seshadri, Raghunathan, Divakaran and Carlos 
Simpson participated along with some of us from 
ICTS. It was an amazing session of historical value 
that is reproduced in an issue of ICTS News. Here 
Narasimhan spoke at length about the early years 
that established the school of mathematics at 
TIFR and the mathematical excellence that was 
achieved there.

In his passing away we in India and the world 
at large have lost a great mathematician and an 
inspiring mentor and builder of mathematical 
institutions. 

I have lost a friend and someone whom I looked 
up to. ■ 

Spenta R. Wadia is Founding Director, Emeritus 
Distinguished Professor and Infosys Homi Bhabha 
Chair Professor at ICTS-TIFR, Bengaluru.

I first got to know Narasimhan 
in 1984, when we began 

working on String theory. Our 
aim was to explore new models 
of String Theory and generalize 
the standard Nambu-Goto area 

action for string propagation in a manifold with 
the addition of a term that generalizes the 
motion of a particle in the field of a magnetic 
monopole. In this connection I had many very 
useful discussions with Narasimhan. It was a 
pleasure to discuss with him and he was very 
generous with his time. I was constantly wanting 
to connect with my mathematician colleagues 
at TIFR and once they asked me to give a mini 
course in Quantum Mechanics…I do not think 
I was very successful. Narasimhan later told 
me to my surprise at that time that “concepts 
of physics are hard to comprehend”.  That was 
a surprise to me as I thought that formal math 
was hard and textbooks demanded too much 
patience.

During the decade we overlapped at TIFR, 
he left an impression on me which I want to 
mention. I very vividly remember Narasimhan 
speaking continuously and intensely about 
mathematics to his younger students and 
colleagues as they walked down the corridors or 
on their way to the canteen or along the seaside. 
By example and perhaps even unconsciously 
he made the point that within the institute 
we should be intensely discussing subject and 
research rather than anything else!

During the years he was at ICTP in Trieste I 
always made it a point to meet him during my 
yearly visits and enjoyed his hospitality during 
many dinners with good Italian wine. The focus 
of our discussions was about how to do better in 
Indian science.

NARASIMHAN AND ICTS
SPENTA R. WADIA

I met Prof.M.S. Narasimhan in the 
early nineties just before he joined 

ICTP Math group after his retirement 
from TIFR. At that time the ICTP Math 
group was very small, he essentially 
developed the ICTP math group to 

what it is now. 

From the very beginning Narasimhan was interacting 
a lot with HEP group and in particular with those of us 
who were working on string theory or mathematical 
physics. I remember, many times we would meet 
at the ICTP cafeteria, and he would be very keenly 
interested in what I was doing and what were the 
recent interesting results in string theory. Many times 
he wanted to know the details and would ask me to 
come to his office and explain it on the blackboard. 
And there were many times he would give some 
suggestions or some ideas that helped me to solve 
some of the problems those days. 

I remember one occasion very vividly. During one of 
the conversations, it came up that there was some 
result that a mathematician and a theoretical physicist 
had obtained independently that contradicted each 
other. My own inclination was that the mathematician 
must be correct, but to my surprise, Narasimhan said 
the physicist must be correct. Seeing my stunned 
expression, he laughed and said that the physicists 
have a different intuition, many times they know 
already what the result should be, for good reason, 
even before embarking on trying to prove it. He of 
course said it half-jokingly, but it was also clear to me 
that he was making a serious statement. 

He was also very concerned about the social and 
political situation in the world. Any injustice anywhere 
in the world would bother him. We had many social 
occasions, having dinner at home or in a restaurant, 
where we would have long discussions and what I 
noticed was his seriousness and mathematical rigour 
even in these matters. He wanted precise references 
and he would go through them meticulously and we 
would discuss again at a later occasion. 

We will all miss him. He was a great mathematician 
who helped the development of mathematics in India 
and all over the world, and he was a great human 
being. ■ 

Kumar S. Narain is Professor Emeritus at ICTP, Trieste.

ANY INJUSTICE 
IN THE WORLD 
WOULD BOTHER 
NARASIMHAN
KUMAR S. NARAIN

2) Narasimhan had an abiding interest in the 
masterful synthesis (due to Hörmander and others) 
of PDE in geometric terms, and he was very aware 
of the uses of symplectic geometry, wave-front sets, 
the Hamilton-Jacobi equation, Maslov indices, etc. 
By the time, I met him in 1977-78, I think he had also 
understood the ideas of geometric quantisation, and 
was aware of their limited success.

3) Among Narasimhan’s close friends was P.P. 
Divakaran, with whom he carried on a dialogue 
that spanned decades, a dialogue that covered 
mathematics, physics, politics, culture, and much 
else. Divakaran has described — in his tribute at the 
TIFR memorial meeting — how Narasimhan (and 
also S. Ramanan and M.S. Raghunathan) were his 
mathematical consultants. Many of their discussions 
turned on representation theory and the role of 
central extensions.

4) I joined TIFR as a graduate student in theoretical 
physics, with a good training from IIT Kanpur. Thanks 
to H.S. Mani and Tulsi Dass, I knew about gauge 
theories and the early work on their geometric 
aspects. Divakaran adopted me informally as a 
student, and through him I began hesitatingly to talk 
to Narasimhan. The Gribov ambiguity was in the air, 
and I explained to Narasimhan my rather primitive 
understanding of these matters. Narasimhan very 
quickly brought all the geometry into focus, and we 
proved (independently of I.M. Singer, whose paper 
appeared after we finished our manuscript) that 
gauge-fixing was not always possible. It was typical 
that he insisted on the “correct” analytical setting 
for infinite-dimensional geometry, and our work 
contained the earliest construction of the space of 
connections as an infinite-dimensional principal 
bundle modelled on a suitable Sobolev space. And 
much else.

5) During this period, Narasimhan [and I] interacted 
intensely with Pronob Mitter [then at the LPTHE, 
Jussieu] and his students O. Babelon and C. Vialet, 
trying to decipher the geometry and physics of gauge 
theories. But the path integral proved a bridge too far, 
though Narasimhan made repeated attempts to “crack 
the code.”

6) Incidentally, my thesis also contains a very efficient 
précis of Dirac’s theory of constrained systems, 
translated into modern geometry by Narasimhan from 
my accounts (learned from Dirac’s little book and a 
wonderful set of notes by N. Mukunda) as a physics 
student. He was amused by how Dirac’s intuition 
seemed guided by algebra, even though the situation 
is so intrinsically geometric.

7) In the late eighties and nineties the moduli spaces of 
semi-stable vector bundles on curves that Seshadri and 
he characterised with their epoch-making theorem, and 
then Ramanan and he studied in loving detail for over a 
decade, were identified as the spaces in terms of which 
the conformal blocks of the WZW models were defined. 
Narasimhan watched, with considerable interest and 
not a little bemusement. In particular, he was intrigued 
by the work of E. Verlinde that — from an entirely 
unexpected angle — gave a formula for the dimensions 
of linear series on these moduli spaces. He returned 
repeatedly to Witten’s approach to the Jones polynomial 
(which he preferred to the combinatorial approaches), 
though yet again the path-integral stood in the way of 
the mastery that he would have liked.

It is fair to say that these matters remained a major 
preoccupation from then on.

8) Together with J.-M. Drézet, he laid out the basics of 
the theta bundle on moduli spaces of vector bundles 
of arbitrary rank and degree. Soon after he and I 
undertook a proof of the Verlinde formula in purely 
algebro-geometric terms. This dealt only with rank two 
bundles and proofs of the main ingredients – constancy 
of the dimension of theta functions and “factorisation” 
— follow more naturally from the point of Kac-Moody 
groups. But our method of proof forced us to confront 
many issues for the first time. We had to give a careful 
construction of parabolic moduli spaces on singular 
curves, (which we did á la Simpson), definition of theta 
bundle thereon, a vanishing theorem (in a context where 
Kodaira vanishing could not be immediately applied), 
and finally a geometric proof of factorisation. 

9) Narasimhan was quick to recognise the power 
of Kac-Moody groups in the context. He enlisted A. 
Ramanathan and S. Kumar in a series of works that 
carefully elucidated the relationship between the 
definitions of conformal blocks in algebro-geometric 
terms and in terms of loop groups. These papers, 
technically difficult and carefully written, remain 
standard references.

10) During his years in Trieste (at ICTP and SISSA), 
Narasimhan was as close to the physicists as to 
the mathematicians. George Thompson (and for a 
while, Mathias Blau) was his interlocutor in matters 
topological-field-theoretical, and Narasimhan and he 
continued their conversation on these matters even 
after Narasimhan’s return to India.

11) Narasimhan was ever on the lookout for expositions 
of physics, particularly quantum mechanics and 
quantum field theory, that would make the fields 
accessible to him. He held Dirac’s “Principles of 

Narasimhan always insisted — 
here he differed from the view 

of people like von Neumann – that 
mathematics has its rich internal 
logic, and when capable people 
follow natural questions with good 

taste and a feel for structure, its landscape could be 
illuminated without recourse to physical intuition. 

Among his many outstanding qualities was a 
remarkably disciplined curiosity. This was reflected in 
the breadth and depth of his work, which ranged over 
the analysis of differential and integral operators, 
representation theory, differential geometry, 
mathematical physics, and large parts of algebraic 
geometry. His scholarship in Mathematics was vast 
and penetrating. For example, although he never 
worked on number theory per se (and confessed to a 
lack of intuition for analytic number theory) he was 
fascinated by the interaction between geometry, 
representation theory, and arithmetic. After the 
appearance of Wiles’ proof, he invested significant 
effort understanding its relationship with the 
Langlands program, and many of us benefitted by his 
aphoristic summaries.

Coming of age mathematically at TIFR, at a time 
when the influence of Dirac [via Bhabha] and Weyl 
[via K. Chandrasekharan] was certainly present, it was 
natural [I imagine] that Narasimhan engaged with the 
mathematics of physics. This had an impact on his 
mathematics, though analysis and geometry remained 
his major pre-occupations.

Let me list somewhat carefully the points of contact 
between Narasimhan and theoretical physics. These 
were not all equally consequential, of course. But 
their very number points to his ability for wide-
ranging intellectual engagement, and of course, 
friendship!

1) Given a partial differential equation invariant under 
a group (of “symmetries”), one gets for free an action 
on its space of solutions. If the equation in question is 
linear, the space of solution is a vector space and one 
gets a representation. The discovery by Dirac of his 
equation, and consequences for physics are well-
known. Harish Chandra’s interest in representation 
theory was kindled by the ensuing interest in 
“invariant wave equations”. 

It was Narasimhan’s fantastic idea, flawlessly 
executed by his student R. Parthasarathy, that a 
version of the Dirac equation formulated on an 
appropriate homogeneous space, would give a 
“realization” of certain discrete series representations, 
a cornerstone of Harish-Chandra’s theory.  

NARASIMHAN AND THE MATHEMATICS OF PHYSICS
T. R. RAMADAS

Quantum Mechanics” in high esteem, and said on 
more than one occasion that notwithstanding the 
lack of analytical rigour, it had a rigorous and clear 
narrative. I think he was largely disappointed with 
other expositions, though. 

12) Narasimhan served as mathematical consultant 
on topics as diverse as calculations of string 
amplitudes, Berry’s phase, band theory of crystals, 
and general relativity. He was particularly happy 
when A. Raina used ideas from conformal field theory 

to give extremely elegant proofs of classical facts 
about Riemann surfaces, among them Fay’s trisecant 
identity. Narasimhan was also proud of the occasions 
when he could provide a useful mathematical 
insight to Shobhana Narasimhan, (his daughter and 
well-known physicist) in her work on computational 
nanoscience. ■  

T. R. Ramadas was a student of M. S. Narasimhan. 
He is currently Professor of Mathematics at Chennai 
Mathematical Institute.
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JOURNEYS: EPISODES IN THE MAKING OF A 
PAN-INDIAN CULTURAL IDENTITY 
P. P. DIVAKARAN

examples from our own early history.

The objects in Fig. 1 are a set of weights from the 
sophisticated urban phase (beginning ca 2600 BC) of 
the Indus Valley (or Harappan) civilisation, cut from 
semi-precious stone in the form of cubes, doubling in 
weight and volume as we go from the smallest to the 
heaviest. The remarkable fact about them (apart from 
their gem-like beauty) is that they are all cubes, to a fair 
degree of accuracy. To double the volume of a cube, one 
needs to multiply the side by the cube root of 2. Did the 
Indus artisans have an algorithm for it? What makes the 
question interesting is the obvious fact that if the aim 
was simply to double the weight without insisting on 
a cube at every stage of doubling, they could just have 
doubled one side while keeping the other two sides 
unchanged.

Fig. 2 shows a familiar Indus Valley streetscape, also 
from the same ‘high’ period. The geometric precision and 
regularity of the plan, based on straight lines intersecting 
perpendicularly (involving a certain nontrivial geometric 
property of circles), is immediately evident; so is the 
proliferation of bricks in the architecture. What the 
picture cannot show is that the grid pattern is aligned 
along the cardinal directions and that the dimensions of 
the standard bricks are, universally, binary in proportion, 
i.e., in the ratio 1 to 2 to 4 (and that they are kiln-fired 
bricks).

The use of elementary – from today’s perspective – 
principles of mathematics in the creation of material 
objects (‘technology’) is a common characteristic of many 
ancient cultures. What is special to India is that it was 
not limited to technology alone; the intimate embedding 
of mathematical ideas in the general intellectual 
universe is a pervasive theme running through our 
entire cultural history, from the time of our earliest 
textual compositions onward, sometimes explicitly 
acknowledged, more often to be painstakingly extracted 

from analytical readings of (non-mathematical) texts. The 
miracle is that it is possible to do so – it is as though one 
were able to reconstruct the fundamental principles and 
results of early Greek geometry from a reading of Plato 
and Aristotle, not to mention Homer. The other miracle is 
that the connection survived the increasing complexity 
and specialisation of scholarly concerns, and lasted as 
long as traditional scholarship itself lasted; there never 
was a culture of two cultures in India.

There are very many examples, from disciplines ranging 
from prosody to philosophy, that can be cited in support 
of the case for the place mathematics had in our culture. 
The one I like best is an episode from Lalitavistāra, 
a mythic-historic account of the life of the Buddha, 
composed and recomposed over a span of about five 
centuries either side of the beginning of the common 
era. In preparation for his marriage, Prince Siddhartha 
is made to undergo an examination on his knowledge 
of the world in all its aspects, during which he dazzles 
the assembled court by his mastery of, among other 
skills, the principles of decimal enumeration. It is quite 
a long passage and running through it (as well as in 
some other Buddhist texts) are clear intimations of the 
future Buddha’s recognition of the infinitude of numbers 
which, it is explicitly stated, is a necessary part of the 
knowledge that leads to enlightenment. Indeed, in the 
cosmic imagery of Mahayana Buddhism as it grew to 
maturity in Gandhara, the universe itself is infinitely 
replicated in time and space; the totality of all of them 
is presided over by Amitabha, no longer identified as just 
the historical Buddha but worshipped in his transfigured 
form, as the supreme and transcendental lord of 
everything that is or that can be. 

The language of mathematics and the 
mathematics of language 
Of all the ways in which a mathematical mode of 
thought insinuated itself into the general cultural matrix, 

Mathematics as Culture 
 The particular thread running through 
the episodes of my title is that of our 
mathematical culture. That will surely 
cause some eyebrows to rise. But 
before explaining why mathematics is 

an apt choice as a proxy for Indian intellectual concerns 
– or Indian culture more generally – let me note that 
no civilisation has had as long and continuous an 
engagement with mathematical thought as the Indian: 
from at least as early as about 1200 BC (early Vedic 
times) until about 1700 AD. And, if the first tentative 
outline we have begun to glimpse of the mathematical 
knowledge of the Indus Valley (Harappan) people can 
pass future critical review, we can push the beginning 
back to about 2500 BC. Over this long period, the loci 
of activity covered almost every region of cultural India: 
from its northwestern frontiers and the Indus river 
valley, over the northern plains, across the Vindhya to 
the Deccan plateau and, in a final burst of creativity, 
to farthest Kerala. What is unusual and remarkable is 
that this continuity did not emerge unintended out of 
the random events of history but was something quite 
consciously constructed, as a form of resistance to the 
vagaries of history itself. The works of the great masters 
of the past, the pūrvācārya, were taught to the initiates 
everywhere and at all times; the Indian scholar never 
had to rediscover his roots as Renaissance Europe had 
to rediscover Classical Greece before laying claim to 
its inheritance. Nothing of value was ever lost. The 
history of Indian thought is replete with references to 
the imperative of preserving and propagating validated 
knowledge, not just in sciences like mathematics and 
linguistics but in virtually every activity that called upon 
imagination and skill. What resulted is a distinctively 
Indian cultural DNA whose invariant backbone goes back 
to the original wellsprings of our cultural being; and 
that, despite minor mutations over our long history and 
over the vast distances of our geography, is what defines 
us, the quintessential Indian of today. 

Mathematics has always played its due role in the 
growth of civilisations; one had, at the very least, 
to count, measure, weigh or otherwise quantify the 
increasingly complex objects civilisations produced 
and dealt in as they evolved. Figures 1 and 2 are some 

(left) Fig. 1 A set of weights from the Indus Valley civilisation and (right) Fig. 2 Typical Indus Valley streetscape

none had as deep and extensive an impact as on 
language in its various manifestations. This too goes 
back to the earliest phase of our linguistic history. 
That began, as we all know, with the composition 
of the Vedas, the R. gveda first (ca 1300 -1200 BC, 
consolidated into its ten Books of poems a century or 
two later). It is less well known that the main body of 
the Vedas, the sam. hitā  texts, especially the R. gveda 
itself, is a treasure trove of information about the 
interplay between the mathematical and the literary/
linguistic universes. (I am not speaking here about 
the auxiliary Vedic texts known as the Śulbasūtra, 
on architectural (‘technological’) geometry, in which 
language does not play a role except in the making of 
an appropriate terminology). Particularly informative 
is the part played by the grammar of (Vedic) Sanskrit 
in the implementation of the rules that regulated the 
formation of names for numbers of which, surprisingly, 
there are a few thousand occurrences in the R. gveda 
alone; what are they doing in a text which is best read 
as a work of visionary poetry?

To give this somewhat unexpected phenomenon 
its cultural context, it is essential to remember that 
Vedic people had no writing; Vedic literature is oral 
literature, composed orally, memorised and recited. For 
numbers to have an unambiguous identity, they had to 
have unambiguous names, constructed by following 
the rules of Vedic grammar. What emerges when we 
analyse the names are rigorous grammatical evidence 
for a perfect understanding of a mathematical 
construct, the now-universal system of decimal 
counting in which all numbers are ‘measured’ by a unit, 
10, rather as distances are measured in metres. The 
significance of this breakthrough is often undervalued 
because representing numbers bigger than 9 nominally 
is not a matter of writing down abstract symbols 
side by side as we have been taught; it is, instead, an 
exercise in grammar that starts with the names of 
the numbers 1 to 9 and of 10, 100, etc., and combines 
them in grammatically correct ways to arrive at the 
name of every conceivable number. The decipherment 
of a name so formed as a precisely identified number 
follows the converse grammatical process that is 
equally rule-bound though not always easy; famous 
people have made mistakes in the past.

The R. gveda is a veritable proving ground for, on the 
one hand, the mastery of the fundamental principles 
of decimal enumeration – true Vedic mathematics, 
greatly more sophisticated than the schoolboy tricks 
that pass for it these days – and, on the other, of the 
parallel evolution of the equally rigorous rules of the 
grammatical composition of sounds, syllables and 
words; and we must remember that we are speaking of 
a time 800-700 years before Panini tied up the loose 
ends and put Sanskrit grammar to sleep for all time 
to come. The grammar of Sanskrit and the grammar of 
numbers – the rules of enumeration – came into being 
at the same time and in mutual symbiosis, and were 
preserved for posterity in the same text. Who is to say 
which was science and which language?

The millennium that followed saw several other 
manifestations of the close synergy between language 
and mathematics. There was, first, Panini’s treatment 
of grammar (6th–5th century BC) from a categorical 
point of view: rules were formulated not for individual 
linguistic units but for whole categories of them, a 
category (or a ‘set’, denoted in the modern manner by 
an otherwise meaningless syllable) consisting of all 
objects having a given linguistic function – noun stems 
or verb roots or various kinds of affixes for instance. 
This is an amazingly mathematical and amazingly 
modern thing to have done, a technique from what is 
today called abstract set theory in mathematics and 
logic but applied to the subtle complexities of a living 
language. That it was precisely that was recognised 
right away. Panini's great commentator Patanjali (3rd 
C. BC?) has a lovely little parable involving Indra and 
Brhaspati (the guru of the gods) whose moral is the 
indispensability of categorical, not enumerative, rules 
for the mastery of the infinitude of valid linguistic 
expressions. At about the same time, Pingala was 
constructing a theory for the classification of metres 
after first inventing methods that are the founding 
steps of the branch of mathematics now called 
combinatorics. It did not take long before Bharata in 
his Nāt.yaśāstra, till today the foundational text for 
Indian performing arts, extended these methods to 
melodic and rhythmic structures.

The primacy of the spoken word, made divine in 
the R. gveda as the goddess Vāc, runs through all 
of India’s collective intellect and imagination, not 
least in mathematics, even after writing gained wide 
acceptance; mathematicians never got around to 
dealing in symbols and equations even in highly 
technical passages. Beyond that, the oral paradigm 
radically transforms the philosophy of how knowledge 
is acquired and passed on: the listener has to catch 
transient sequences of uttered sound on the fly, lodge 
them in his memory – that is the only existence they 
can have, as states of mind – and retrieve them as 
faithful reproductions of the original sound patterns. 
Such questions occupied linguists and other theorists 
at least from the time of Patanjali and found full 
expression in the work (named Vākyapadīya) of 
another great linguist (and philosopher of language 
and cognitive theorist), Bhartrhari (5th–6th C. AD, 
possibly a contemporary of Aryabhata). For Bhartrhari, 
apprehension of śabda was the precondition for the 
description of the world, the basis of all ontology; to 
name was to know.

What has this to do with the content of mathematics 
itself? Take your minds back to (the memory of) what 
I said about numbers in the R. gveda: numbers are 
their names. And that brings in its wake all sorts of 
other issues, none more intractable than the notion 
of the infinite. Beginning as early as the Taittirīya 
Sam. hitā (ca. 1000 BC), one of the two recensions 
of the Yajurveda, we can glimpse the first uncertain 
recognition of the idea that numbers are without end. 
The paradox is that to bring them all into existence, 
they must be given names and that of course is a 

Based on the 5th Jehangir Sabavala memorial lecture, Chhatrapati 
Shivaji Maharaj Vastu Sangrahalaya (Mumbai), 4 November 2016. 
In this written version, I have tried to stay faithful to the open and 
informal style of the lecture. Readers who would like to get a more 
detailed idea of the historical and cultural background against which 
these journeys – geographical and intellectual – unfolded and of 
the essential evidence on which the emerging picture is based will 
find them in my book The Mathematics of India: Concepts, Methods, 
Connections (Hindustan Book Agency, New Delhi, 2018).

practical impossibility. A millennium after Bhartrhari 
and at the southern end of India, the mathematical 
text Yuktibhās.ā of Jyeshthadeva (which will have a 
role in one of my episodes below) has the startlingly 
unexpected statement:

. . . there is no end to the names of numbers; therefore 
there is no end to numbers themselves.

It is another story that, by the end of the book, 
Jyeshthadeva’s mathematics obliges him to disregard 
his own dictum. The history of the mathematical infinity 
in India is a fascinating one; ironically, it never even got 
a proper name beyond adjectives meaning ‘unending’ 
or ‘uncountable’. The zero, śūnya, in comparison is a dull 
thing, epistemically and historically.

The other striking fact is one I have already noted: 
the flow was not all one way, from linguistics to 
mathematics. Bhartrhari’s model for the rule-bound 
process by which words (pada) cluster together to form 
sentences (vākya) is the process by which the numbers 
1 to 9 (together with 0) coalesce, “like atoms”, in their 
various positions to form larger numbers. 

Journeys 
Apart from its role in the shaping of a uniquely Indian 
philosophical substratum for our knowledge systems, 
the lack of writing had consequences at a more 
practical level. The rest of this talk is, in a sense, about 
how it contributed to the making of ‘the pan-Indian 
cultural identity’ of my title.

When the only repository of information is the 
individual mind, how else can knowledge travel but 
by the displacement of the body that envelops the 
mind? When people move, they bear their whole inner 
world – their knowledge, ideas right or wrong, practices 
mundane and sacral, skills, imagination, likes and 
dislikes – with them, individually and as a community. 
This realisation came surprisingly late to prehistorians 
but is currently the foundation of several models of 
cultural diffusion, for example the correlations between 
the spread of different cultural markers like a particular 
language or family of languages (the descendants of 
Old Indo-European for instance) and the cultivation of 
particular foodgrains (wheat and barley). What seems to 
be an Indian hallmark is the rich connotations the very 
idea of a journey evoked. Indians have always travelled: 
as pilgrims and proselytisers, invaders and those 
who sought to flee them, fugitives from calamities, 
those looking for patronage for their special skills 
etc., or simply in search of their imperishable selves 
in forest and mountain. There are many instances 
of such journeys in our narratives, often on an epic 
scale, some well-documented, others celebrated in 
myth and legend. Not all of them led to large cultural 
changes but there are those whose impact was truly 
transformational; very close to our own times, we 
know how the musical landscape of Maharashtra and 
Karnataka was redefined in the beginning of the 20th 
C. by just two or three gifted singers from north India 
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who found enlightened patronage in the courts of kings 
and chiefs far from their homes. The episodes of my title 
are three marathon migrations of whole populations, 
one from the remote past whose historicity is now 
being actively explored, the other two from historical 
times, where the facts on the ground only need a degree 
of informed interpretation. All three produced major 
cultural shifts and all three have a strong connection 
with our mathematical heritage; in fact, mathematical 
continuities are part of the basis of their reconstruction.

From the Indus to Damilica: the first great 
southern migration 
When the highly evolved urban phase of the Indus 
civilisation collapsed around 1900–1800 BC, what 
happened to the people who built all those magnificent 
cities? No one believes any longer that they were 
massacred by invading Aryans. The archaeological 
evidence is that the emptying of the cities, probably as 
a result of climatic/ecological disruptions, was followed 
closely by the appearance of a small-town culture of 
petty settlements, devoid of any of the signatures of the 
high urban culture. A reasonable hypothesis is that a 
part of the population stayed around in the vicinity of 
their homeland, to be absorbed gradually in the culture 
of the Vedic Sanskrit speakers who succeeded them, 
while others, more robust in body and mind, moved 
away having lost the resources that had sustained 
them in their prosperity. Civilisations do not die totally 
and abruptly leaving only inanimate ruins behind; they 
either get overtaken by new arrivals or move off in 
search of greener pastures.

Unlike the Vedic Aryans, the Indus people had a written 
language though we only know what the characters 
look like, not how they were vocalised or what they 
meant. What was that language and is it possible to find 
fossilized bits of it in later Indian languages, preferably 
in those which are still alive? Not only will success 
establish a direct line connecting us to our remotest 
past, we will also have in hand the beginnings of a 
systematic approach to an eventual decipherment of the 
Indus script itself. 

Almost all of the dozens of attempts that have been 
made to ‘read’ the Indus script have failed but one, 
more daring than the others at first sight, refuses to die. 
Its central thesis is that the Indus language was the 
original Dravidian tongue, the ancestor of Old Tamil. 
As far as I know, the hypothesis was first advanced by 
Father Heras of St. Xavier’s College in Bombay – when 
its only support was the fact that a language currently 
spoken in a part of Balochistan, Brahui, has clear 
Dravidian roots – and taken up by several other scholars, 
not always with the necessary rigour. There is, however, 
one person who has brought exciting new credibility 
to the conjecture and that is Iravatham Mahadevan, 
in a series of identifications of a sample of individual 
Indus signs and even short phrases with expressions 
in Dravidian languages. The reasoning is intricate, 
too intricate for me to try to explain, but persuasively 
logical.

For a language, even one with a rudimentary form of 
writing like Harappan, to be transported over such 
huge distances, there must have been a substantial 
migration of its speakers and they must have left other, 
material, traces of their displacement. The last few 
decades have seen several discoveries in Tamil Nadu 
and Kerala of incisions on rock and pottery of groups 
of characters having an affinity with Indus signs. Some 
of the inscriptions appear to be written from right to 
left like the Indus writing (which is one of the few 
things we do know about it). But more convincing 
perhaps are certain numerical commonalities between 
Indus artefacts and south Indian trade and commercial 
practices dating back to the earliest historical times. For 
instance, traditional weights in south India followed the 
same doubling as in the Indus culture and were also the 
same in absolute terms: the unit weight is identical, 0.87 
grams, 8 times (remember the 8!) the weight of a seed 
called kunri-man. i  or kunni-kkuru in Tamil-Malayalam 
(they were still in use by goldsmiths when I was a boy) 
and gunja in the North. The binary progression is seen 
in linear dimensions as well: the common Indus brick, 
of which there are millions scattered over the city 
ruins, are standardised to this proportion to an amazing 
degree, with the longest side about 28cm (allowing 
for erosion, etc.). Some months back I was at Pattanam, 
the recently excavated site near Kochi of a port 
trading with Mediterranean and west Asian emporia 
(possibly the fabled Muziris). Among the amphorae with 
ancient residues of wine and olive oil were also found 
baked bricks (of indigenous fabrication) of the same 
dimensions. And, embossed on a potsherd or two, a little 
swastika, whose first appearance is also in the Indus 
Valley.

From the ubiquity of the binary ratio, it is a reasonable 
guess that the Indus people counted using a standard (a 
‘base’) that is a power of 2: 2, 4, 8, 16 and so on, rather 
than the Vedic 10 (though there are also some weights 
in decimal order). The consensus view is that it was 8: 
2 and 4 are inconveniently small and 16 is too big for 
cognitive comfort. Fact: in Dravidian languages, the verb 
‘count’ and the noun ‘eight’ have the same etymology; 
the verb root is en.  and the name for 8 is its noun form 
et.t.u. Another fact: the name for 9 means ‘1 less than 10', 
as though it was an afterthought (and, intriguingly, in 
Sanskrit nava is both 9 and 'new', already in the R. gveda).

There are, however, questions about chronology which 
are as yet unanswered. The archaeological evidence 
from Tamil Nadu-Kerala (Damilica to the Mediterranean 
people), as of now, is not older than about the 3rd C. BC 
and that includes the site of Keezhadi near Madurai, very 
recently unearthed and very Harappan in its use of fired 
bricks in the making of perpendicularly intersecting, 
cardinally aligned walls. Perhaps future work will 
help fill in the time gap. (Note added: The continuing 
excavations at Keezhadi have now unearthed artefacts 
datable to ca 600 BC). Or perhaps, more interestingly, 
the travellers took their time over the long journey, 
groups of them putting down roots at places along the 
way. Let us only note that there are first millennium BC 
archaeological sites with a strong Indus Valley signature 

on the natural routes from Sind-Gujarat to Damilica, for 
example Daimabad, east of Pune.

I have spent some time over the technicalities of the 
Indus-Dravidian connection because there are competing 
narratives about what the Indus civilisation evolved into, 
though they are, in terms of evidence, nowhere near as 
persuasive. And because, if and when fully established, 
its implications will be so shatteringly disorienting: 
Madrasis as the descendents of Panjabis and Sindhis 
and Gujaratis? Each single fact that I have laid out may 
be less than absolutely convincing; together, they merge 
into a cohesive picture of what can happen to cultural 
identities when people in the mass journey into the 
unknown, to uncertain destinations along uncharted 
roads. Mahadevan has several examples of Indus 
Dravidian equivalences but the icing on the cake has to 
be his extension of linguistic concordances to include 
Vedic Sanskrit as well. The reasoning is again subtle 
but what he ends up with is, tentatively for the present, 
tripartite equivalences of a few Indus signs with words 
in both Old Tamil and Sanskrit, the result, according to 
him, of direct borrowings from Indus to Vedic. It has long 
been known that the R. gveda already had a fair sprinkling 
of loan words from Old Tamil. The mechanics of how 
that happened – across thousands of kilometers in the 
conventional view – has been a mystery for as long. If 
the stick-at-homes among the suddenly impoverished 
Indus-Dravidian speakers were next-door neighbours of 
the Vedic speakers, there is no more mystery; we would 
know where the Vedic Panjabis learned their Madrasi. 
And, if the journey took the natural route down western 
India, we will have the answer to another longstanding 
puzzle: why Marathi is so abundantly rich in words of 
Dravidian origin which, according to several scholars, are 
not relatively recent borrowings from, say, Kannada but of 
prehistoric, Old Tamil, provenance. 

Aryabhata and the great eastern migration 
Everybody knows that Aryabhata was the greatest 
mathematician and astronomer that India produced; he 
was in fact one of the greatest mathematicians of all 
time, anywhere. We know from his own words that his 
magnum opus, the Āryabhat.īya, the only work of his to 
have survived, was completed in 499 AD when he was 
23 years old, in a place called Kusumapura close to 
Pataliputra, modern Patna, in Magadha. We know very 
little else. The image below (courtesy: Arvind Paranjape) 
is of a sculptural portrait of him as imagined at the 
Inter-University Centre for Astronomy and Astrophysics 
in Pune and it does him justice, conveying not only his 
youthfulness and vigour, but also the supreme self-
assurance that runs through the 121 two-line verses of 
his book. Later astronomers tell us that he was of the 
region of Ashmaka, but not where this Ashmaka was. 
The problem is that texts, from a very early time (Panini 
onwards), have reference to two Ashmakas, one more or 
less in the neighbourhood of Gandhara in the north-west, 
the other between the rivers Narmada and Godavari in 
northwestern Maharashtra.

The quest for Aryabhata’s roots quickly turns into a 

There are very many other representations in these (and 
other) Mahayana sites which have close affiliations to 
Gandhara: especially popular in Ajanta and Kanheri is 
the Buddha in his transcendental Amitabha form, the 
supreme lord of the cosmos in its infinite multiplicity, 
accompanied by Bodhisattvas, also deified. Let us recall 
again that the region of Gandhara was where the final 
apotheosis of the Buddha occurred.

The only sensible explanation I know of for this sudden 
upsurge of explicitly Gandharan Mahayana piety where 
none existed before – some of the sites, (Kanheri, Ajanta, 
etc.) had a Hinayana presence earlier but had fallen 
into disuse – is that the Huna depradations forced 
a mass exodus of monks and scholars out of their 
northwestern homeland to the safe edges of the Gupta 
dominions. The timing is right: inscriptions as well as 
stylistic considerations establish quite satisfactorily 
that the rebirth of Buddhism at Ajanta is to be dated to 
the second half of the 5th century. Likewise at Kanheri. 
The scale and opulence of the monuments (as well 
as some inscriptions) leave no doubt that they had 
royal or quasi-royal patronage. If the Gupta kings, in 
particular Skandagupta who led the resistance to the 
Huna advance, gave sanctuary to the homeless monks, 
they were only being true to the royal ideal of the 
dharmarāja, the guardian of faiths, in the plural. Gupta 
kings were Vaishnavas in the beginning but, before 
the 5th century was out, some of them had names like 
Buddhagupta and Tathagatagupta. 

Graphic confirmation of the hardships of the journey 
comes from one particular sculptural theme – very 
popular in western India – that had no prototype in 
Gandhara. Figure 8 is a superbly executed example.

It is from Mumbai's own backyard (cave 90 in Kanheri, 
on top of the hill). What it portrays is the Bodhisattva 
Avalokiteśvara, granting protection (the secondary 
panels on either flank) to the traveller beset by the 
dangers of the trackless forest. One cannot possibly 
doubt that it is a shrine of thanksgiving to the infinitely 

fascinating exercise in the reconstruction of the 
cultural history of his time. The background is this. In 
the first half of the 5th C. AD, the Gupta empire was 
in its pomp, extending right across the north Indian 
plains and into Afghanistan. The northwestern part 
of the empire in particular had become home to a 
remarkably cosmopolitan intellectual and artistic 
life, nurtured equally by Mahayana Buddhism and 
Hellenic Alexandria, well before the Guptas rose to 
power. Mahayana sculpture and architecture in the 
so-called Indo-Greek style reached great heights 
and Taxila cemented its place as one of the cultural 
crossroads of the antique world – it was thus that 
Ptolemaic astronomy reached India, thereby making 
it possible for Aryabhata to construct his synthesis of 

Greek astronomy and Indian geometry. But the first 
half of the 5th C. was also the time when the seeds 
of the eventual disappearance of the Gupta dynasty 
were being sown. The Hunas of central Asia, encamped 
in northern Afghanistan, were making increasingly 
frequent raids into Gandhara and beyond and, by the 
middle of the century, had made serious inroads into 
the western part of the Gupta empire. The Hunas 
were implacably hostile to Buddhism and devastated 
Gandhara – and, of course, they burned the libraries as 
others had earlier burned the library of Alexandria and 
still others were, in due course, to burn Nalanda. Taxila 
was reduced to ashes and rubble, never to come to life 
again; the ruins we see there today are the ruins left 
behind by the Hunas.

What happened to the monks and the professors 
and the students? In the absence of documented 
information, we are forced, as so often in India, to 
extract what we can from the indirect records carved 
in indestructible stone, the architecture and sculpture 
of the period. Of that there is a profusion, and of an 
extraordinarily high quality, from Mathura in the north, 
to Sarnath and farther east, to Ajanta and Kanheri 
and several other places south of the Vindhya. The 
iconographic and stylistic unity we see in Gandharan 
and in late Gupta and early post-Gupta art from 
virtually every region on the periphery of the empire is, 
given the distances involved, nothing short of startling. 
I restrict myself here to one theme out of many: the 
benevolent standing Buddha in abhaya or varada 
mudra.

Fig. 4 is a particularly lovely example from late (4th-5th 
C.) Gandhara. Figs. 5–7, equally if not more graceful, 
are less than a century later and are, from left to right, 
from Mathura, Ajanta and Sarnath.

Even to the untutored eye, even without any analytic 
comparisons, their thematic and aesthetic congruence 
is obvious.

(left to right) Fig. 4 A standing Buddha from late (4th-5th C) Gandhara, Fig. 5 Standing Buddha from Mathura, Fig. 6 Standing Buddha from Ajanta and Fig. 7 Standing Buddha from Sarnath

Fig. 3 A modern sculptor's rendering of Aryabhata (in the IUCAA 
campus, Pune) 
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compassionate Bodhisattva for having led the 
wanderer safely across perilous lands to a new haven. 
The sedentary monks of Gandhara would have had 
no use for this particular avatar; he is the travellers’ 
Bodhisattva.

It is in these chaotic times that Aryabhata the 
Ashmakiya announces himself in Kusumapura: a 
man of the northwest, who or whose gurus probably 
learned their Alexandrian astronomy in the colleges 
of Gandhara, and who found himself, by the time 
he was 23, at the other end of the rapidly declining 
Gupta empire. What is more natural then than that he 
or his immediate ancestors formed part of the great 
migration eastward? Aside from his name, bhat.a, not 
the Brahmin title bhat.t.a, there are hints in his work 
that he might himself have had Mahayana leanings. 
Two examples: his idea of time as without beginning 
or end, accommodating infinitely repeating equal 
cycles, yuga, of planetary motion – quite distinct from 
the four conventional yugas of Hindu mythology – is 
also part of Mahayana cosmogony; and his description 
of the bejewelled garden on the axis of the world 
that is the Meru mountain, the axis mundi on whose 
heights the gods dwelt, is reminiscent of the Buddhist 
'Land of Bliss' Sukhāvatī. There is no sign at all that he 
was a Puranic Hindu; no benediction is sought from 
an identifiable god or goddess as was the common 
custom of Hindu authors.

Towards the last quarter of the 5th century monastic 
settlements and universities were coming up all over 
the eastern half of north India. Huen Tsang counts 
in his famous travelogue dozens of sangharamas 
each with hundreds of scholar-monks; monasteries 
from those days are still being unearthed today. The 
great university in Nalanda was founded by a Gupta 
king, possibly Skandagupta, less than two decades 
after the destruction of Taxila, and its first rector was 
Vasubandhu, a celebrated spiritual philosopher from 
Gandhara. In the midst of all the turmoil, the great 
migration thus also initiated a renewal: north India's 

intellectual and aesthetic life shifted its centre of 
gravity decisively across its breadth, there to thrive 
afresh over six or seven centuries until that too came 
to an end at the hands of Muhammad Ghori. 

The Sanskritisation of Kerala: Madhava 
One must not imagine that transformational journeys 
were always driven by calamities and invasions. People 
of talent had always gone where they found a market. 
Especially willing travellers were the temple builders, 
guilds of architects and sculptors and other artisans 
who criss-crossed the land looking for patronage and 
finding it, creating in the process the quintessential 
Indian sacral landscape that surrounds and subsumes 
us: think of the soaring spires of Khajuraho and 
Bhubaneswar and the gopurams of Tamil Nadu. There 
may be local variations in the detail but the underlying 
unity of vision cannot be missed, and that comes 
primarily from the theoretical and symbolic conception, 
unchanged across India at least from the 5th C. AD 
onwards, of the temple as the location where the 
worldly and the cosmic are in connection, a man-made 
terrestrial replication of the axis mundi. The canonical 
manuals of sacred architecture, going all the way back 
to the Śulbasūtra, are no more than the encoding of 
this vision. Figure 9 is a relatively early example of 
architectural universality, not just at the conceptual 
level, but extending right down to the smallest of 
details.

In Fig. 9 (photo courtesy: Baerbel and Guenter 
von Gehlen) are two temples in a complex of nine, 
mostly of the 7th C., in a place called Alampur on the 
Tungabhadra river, just across from Kurnool. In Fig. 10 is 
part of another complex, built perhaps a century later, 
but not in arid Telengana as the vegetation attests. It is 
in fact in Jageswar in Uttarakhand, northeast of Almora, 
1500 kilometers north of the Tungabhadra. Who will be 
willing to swear that it was not designed and built by 
the descendents of the same guild?

The fact is that, between the two halves of India, there 
has always been a traffic of people and ideas, at least 
from the time of Ashoka, more north–south than the 
other way, mostly but not always pacific. There are any 
number of tidemarks of this civilisational ebb and flow, 
covering a whole spectrum of fields and activities. My 
third episode kicks off around the 5th-6th centuries AD, 
from when we get the first recorded indications of the 

increasingly powerful hold of northern Brahmins on 
the kings and chieftains along the West Coast – and, 
to a smaller extent, elsewhere in south India – and of 
how they brought with them, along with their special 
gifts as middlemen between this world and the other, 
their learning in the sciences and the arts as well as 
the language, Sanskrit, that was its vehicle. Between 
the 8th and the 13th centuries, the slow flow turned 
into a flood. A large number of the migrants ended 
up in Kerala which was never to be the same again.

There is no good understanding of what attracted 
this alien tide, wave upon wave, over seven or eight 
centuries; perhaps it was nothing other than the 
promise of verdant lands ruled by gullible chieftains. 
Several places turn up in the records as possible 
staging areas in their journeys down the coast but, 
according to a late document submitted by the 
Brahmins of Kerala to the British to buttress their 
claim to their adopted land, their original home was 
very far away indeed, Ahichhatra on the Ganga, near 
Kannauj. By the 13th C. their north Indian past was no 
more than a fading memory as they became socially 
and culturally integrated, in fact dominant, in their 
new home. Massive changes were brought about. 
The local language was transformed almost beyond 
recognition by wholesale borrowings from Sanskrit – 
thus was modern Malayalam born – as were literary 
forms and the performing arts. Kerala as a whole 
assumed a fresh cultural identity, a fruitful graft of its 
Dravidian roots and the discipline and rigour brought 
in by Sanskrit.

One may once again ask: what has all this to do with 
mathematics?

Keeping aside Shankaracharya (8th C.), of an early 
migrant family and a true wanderer himself, the first 
book written in Sanskrit in Kerala is, astonishingly, an 
astronomical treatise named, after its author,  
Śan. karanārāyan. īya. It is a dated (869 AD) 
commentary, at second hand, on the Āryabhat.īya 
but its historical significance goes well beyond 
astronomy. Parts of the book are in the form of 
a scientific dialogue between the author and his 
patron, the Chera emperor himself (a king who 
was a learned astronomer!), in the capital city of 
Mahodayapuram, the same as the Muziris that traded 
with Rome in pre-Sanskritisation antiquity. When the 
manuscript was rediscovered in the 1940s, it was 

immediately realised that the many incidental details 
in it were of immense value in firming up the history 
of the so-called second Chera empire, until then very 
poorly known.

Within the mathematical context too, and in its 
own time, the book turned out to be path-breaking: 
it marked the first implantation of Aryabhatan 
mathematics in Kerala, in fact in any part of India 
south of the Vindhya. (The wanderings of Aryabhata’s 
book will make for an excellent case study in itself). 
The seed sprouted, largely out of sight, over five 
centuries before it burst forth in a riot of brilliant new 
mathematics. That happened around 1400 AD, in a 
cluster of villages in the lower basin of the river Nila 
in central Kerala, in the heart of the area that had 
become and remained the nursery of the new hybrid 
culture, home not only to astronomer-mathematicians 
– we should no longer be surprised to learn that some 
of them distinguished themselves as philosophers, 
philologists and grammarians, etc. – but also great 
writers and poets, over several centuries.

The mathematical hero of that story and the founder 
of what we can call the Nila school was another 
Brahmin migrant, as great a mathematician as 
Aryabhata but nowhere near as famous: Madhava, 
unknown except to a handful of local scholars even as 
late as 30 years ago. Madhava (ca. 1360-1430; not the 
same as the religious philosopher Madhvacharya), very 
simply, invented calculus. Now, the world has always 
believed that calculus was invented by Newton and 
Leibniz in 17th C. Europe. It will take me into tedious 
technicalities to explain why that is wrong history, but 
that is the case. The reason the misunderstanding took 
so long to correct – and still persists in some quarters 
– throws a revealing sidelight on reverse acculturation. 
After a period of self-imposed insularity, the Sanskrit 
speaking Brahmins of Kerala gradually mastered the 
local language which they had themselves helped 
shape; they finally became Malayalis. And it is in a 
Malayalam  text with the Sanskrit/Malayalam title 
Yuktibhās.ā (which I mentioned earlier), written in 
about 1520 by Jyeshthadeva, a Brahmin who was 
totally comfortable in his new skin, that we find the 
best account of Madhava’s calculus. Its first translation 
into another language (English) is only 10 years old. 
The world has taken a long time to wake up to the 
richness of its contents and to Madhava’s own place in 
the pantheon of the truly great.

Appropriately, Madhava himself was a recent arrival 
in Kerala; his full name, Madhavan Empran, tells us 
that he was a Tulu Brahmin by origin. The Tulu country 
was a settlement area as well as a staging post on the 
long trek from Ahichhatra to the farthest southwestern 
corner of India. It was also a part of the Vijayanagar 
kingdom which oversaw a rejuvenation of traditional 
knowledge systems after they were driven out of north 
India, for the last time, by Muhammad Ghori. Once 
again, the cultural centre of gravity moved, this time 
from the north to the south.

In the end, what the journeys I have spoken about 
(and others like them) bring home to us most vividly 
is how little India’s fragmented polity through most 
of its history – which king ruled over which part of 
it when – mattered to the diffusion of creative ideas 
that slowly but ever so surely built up the mosaic 
that is our civilisational inheritance. Very few of them 
were journeys of armed conquest. Kerala, where 
Indian mathematics went, first to flourish and then to 
die, but which at the same time renewed itself in so 
many ways in response to these stimuli coming from 
so far away, was never part of any kingdom based 

outside it. It was something of a shock when I first 
realised this but no longer; I like to think that it best 
illustrates what it means, and has always meant, to be 
Indian. ■ 

P. P. Divakaran is a former Professor of Physics at 
TIFR, Mumbai.

PROGRAMS
Elliptic Curves and the Special Values of 
L-Functions 
2—7 August 2021  ✦ Organisers — Ashay Burungale, 
Haruzo Hida, Somnath Jha, Ye Tian

Quantum Fields, Geometry and Representation 
Theory 2021 
5—23 July 2021  ✦ Organisers — Aswin 
Balasubramanian, Indranil Biswas, Jacques Distler, 
Chris Elliott, Pranav Pandit 

ICTS Summer School on Gravitational-Wave 
Astronomy  
5—16 July 2021 ✦ Organisers — Parameswaran Ajith, 
K. G. Arun, Bala R. Iyer, Prayush Kumar

Bangalore School on Statistical Physics - XII   
28 June—9 July 2021 ✦ Organisers — Abhishek Dhar, 
Sanjib Sabhapandit.

OUTREACH
Kaapi With Kuriosity has been temporarily renamed 
Kuriosity During Quarantine. All talks are held online.

KURIOSITY DURING QUARANTINE

Metallurgical Heritage of India 
25 July 2021 ✦ Speaker: Sharada Srinivasan (National 
Institute of Advanced Studies, Bengaluru)

PUBLIC LECTURE

Technology & Cosmic Frontiers 
19 August 2021 ✦ Speaker — Kip S. Thorne (Richard 
P. Feynman Professor of Theoretical Physics (Emeritus), 
Caltech; Nobel Laureate in Physics, 2017) and Rana 
Adhikari (Professor of Physics, Caltech)

Fig.8 Bodhisattva from Cave 90 in Kanheri

(left) Fig. 9 Two temples in Alampur and (right) Fig. 10 Temple in Jageswar
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