Lecture 1: Two out of three ain’t bad. (And an
abundance of curves)

Connections on a bundle E over R*. (Conformally, S*)

V; =8Z- + AZ(Q?)
V:I'(E) > T(EQTR

Curvature
E,j = [VZ, v]] =&Z-Aj — &]AZ + [AZ, A]]
F el'(E® A*(T'RY))
Hodge operator = : A(T*R*) — A?(T"RY)

< a,B>dwol) =a A =
#2 =1

Split into eigenspaces: Self-dual and anti-self dual parts

F* = «(FY)
F~=—x«(F7)
Energy (|[F|[* = [[F[]* + [[F7])

Topological degree ||[FT||? — [|[F~||?)
Minimal energy are Self-Dual, or Anti-Self-Dual (ASD)
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Interactions with a complex structure (or sev-
eral)

21 =1+ 1T, 29 = T3+ 124

2-forms split into bitype:

2,0 : dZZ A\ de
1,1 : dZZ AN dfj;
O, 2 dZZ' A de

With this, SD:
e the 2,0 forms,
e the 0.2 forms,

e in the 1,1 forms, the multiples of the Kahler form

5—2.1d21 AN dfl + ng AN dfg
ASD:

e the orthogonal complement of the Kahler form in the 1,1
forms

[f the connection is ASD, no 0, 2 curvature, and so an inte-
grable ¢ operator: a holomorphic bundle



Flip this around

Take a holomorphic bundle, and choose a hermitian metric.
The Chern connection

e Has the 0 as its 0,1 part, and gives back the holomorphic
structure: no 0,2 curvature,

e Because it is unitary has no 2,0 curvature either.

Two out of three for free. How to get the third:



1) Twistors

R* has three complex structures: I, J, K, in fact a whole
PYs worth: al +bJ + cK,a?> +b* + ¢ =1

Changing the complex structures rotates the SD forms amongst
themselves; the connection is ASD if holomorphic for all of the
complex structures.

Twistor space:

Get here holomorphic bundles on P?(C), with reality con-
straints and a few other constraints. You can get the solution
for this in fairly explicitly (ADHM construction)



2) The direct approach:

Fix one complex structure, and minimise energy on the met-
rics, getting that third piece of the curvature to zero. Typically
through a heat flow.

Need some form of stability to ensure that the minimising
flow converges; here enforced by a trivialisation at infinity.

Does not give the actual solution (minimising flow is a black
box) but gives moduli. Here, on R* (Donaldson):

{Instantons} = {bundles on P*(C), trivial on a fixed line at infinity)

In more generality, for general manifolds

e Hyperkahler manifolds have twistor spaces; in 4D
get instantons

e Kahler manifolds (Kobayashi-Hitchin-Donaldson-Yau-
Uhlenbeck-Simpson-...but Narasimhan-Seshadri!) : again
get two out of three for free from a holomorphic structure,
need stability to flow to ASD

{Stable holomorphic bundles } = {HYM connections}



Some reductions- non compact cases.

1. Monopoles on R?: (Hitchin, Donaldson, Murray-H,
Jarvis)

e Impose time translation invariance. get V;, (R? direc-
tions) and ¢ (time-direction);

e ASD equation becomes F' = «V (in 3d)

e Different boundary conditions: A; decay, ¢ tends to a
unique orbit in u(n)

Fix one complex structure (z = 1 + iz9, w = w3+ it); the
0,2 component of ASD becomes

[Vg, ng + ZQO] =0

So, solving a scattering equation (V,, + ip) - s = 0 gives a
holomorphic bundle on the z plane. Doing this for all of the
complex structures gives a complex bundle on the twistor space.

TP — P!



Which bundles?

How to distinguish? The boundary behaviour
o ~idiag(ay, ag, ...qu,)
gives a flag of decay rates to
(Vo + i) - s =0,

as r3 — o0 AND as z3 — —oo.

These two flags are generically transverse, and fail to be at
a set of points in the z-plane.

Varying the directions in P! gives n — 1 curves in TP, and
these (along with some sections of line bundles on the spectral
curve) determine the monopole. All is in principle computable
from this.



For moduls.

For moduli, just need one direction, say x3. The behaviour
at +00 can be thought of as fixing a basis, and the scattering of
the flag from —oo then gives a holomorphic map into the flag
manifold

P! — U(n)/T.

These maps determine the monopole:

Moduli of based monopoles = Based rational maps into the flag manifold



2. Monopoles on ¥ x S1.(Charbonneau-H)

Same equation, but now lose the symmetry of four dimen-
sions (except when X of genus one.) The 0,2 part is

[vz, Vo — z'go] =0

Compactness implies the need to allow fixed Dirac style sin-
gularities at fixed points (Singularities of Abelian type, with
integer charges (mq, ma, ..., my))

Scattering through the singularity (in the St direction) gives
9(2) = ho(2)diag(2"™", 2", ..., 2"")h_(2)

(Used by Kapustin Witten to model Hecke transform) but go-
ing all the way round the circle gives

o F—-F

)

e [/ a bundle on X

e ® a meromorphic automorphism with singularities of type
diag(z™, 2™, ..., z") at fixed points p'
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Moduli of monopoles = Stable pairs (E, )
Stability: No @ invariant subbundle of big degree.

Spectral curve S: det(® — zI) =0
Sheaf L on S:  coker(® — 2I)

Moduli also a space of (curves S, sheaves L )
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3. Instantons on Rx S*xX, 3 of genus one. (Charbonneau-
H)

A reduction from R* (discrete symmetries), but different
boundary conditions.

Finite energy, gives asymptotically flat connection on three-
tori S x ¥ at +oo0.

Holomorphically. Compactify R x S! = C* to P!; get
a bundle on P! x 3,

How to analyse? On generic {z} x ¥, F is a sum
®..®L, L;eX"
Pick-out by a Fourier-Mukai transform
P'x Y P xXx¥ - P x ¥
E — 7i(F) ® Poincare — F = (my).(7](F) ® Poincare)

I is generically a line bundle over a curve S of bidegree
(n,k = co(E)) in P! x 27,
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e Monopoles on ¥ x St for (g(X) = 1) and

e Instantons on R x ST x ¥

are Nahm transforms of each other,
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4. Nahm’s equations.

Here reduce R* by three translations, get
e Connection V = d; + Ty(t) along a line,
e T;(t) skew hermitian matrices.

ASD equations become

1
VI, = 9 Z €iji 15, Tk]

Rewrite in a way compatible with the twistor paradigm:

A(¢,s) = Th +1iTs — 2T3¢ — (Th — iT3) (%
A4(C,s) = —iTs —1(Th —iT3)C,

with the Lax equation
[V + Ay (C,8), AC8)] = 0
Invariant is again a spectral curve:
det(A((,s) —nl) =0

Can solve with the Krichever-Novikov approach. (Ercolani)
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Holomorphic data:

( is the twistor parameter, set ( = 0 for one complex struc-
ture.

|V —iT5,T1 + 11| = 0.
In other words 1} +175 is covariant constant. Not much there...

Answer is in boundary conditions.

For example, for monopoles, get via the Nahm transform a
solution on a sequence of intervals, with matrices of different
sizes n,, on the intervals. As a sample of the boundary condi-
tions, for n, > n,_1, at the common boundary point s = 0,
from the big side:

Ti(s) = (%‘(S) b;(s) )

cj(s) —gt +dj(s)
Here, the top left block is n,—1 x n,_1, the bottom right block
iIs m x m, with m = n, —n,_1; we ask that a;, b;, ¢cj, d; be
analytic at s = 0, and {p, ?:1 be the components of the m-
dimensional irreducible representation of su(2) in its standard
basis, that is the standard representation in m dimensions of
the Pauli matrices. (Additional vanishing for b;, c; at s = 0)

Furthermore, the solutions on the two intervals should match
by
aj(\) = TN,
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Different boundary conditions for nilpotent orbits, instan-
tons on a Taub-NUT, etc.

Why bother?

Holomorphic data usually easy to describe; on the other
hand the hyperKahler reduction gives you a hyperKahler met-
ric.
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5. Integrable Hierarchies and ASD

A whole zoo of integrable pde and ode are reductions of
ASD.:

(Mason, Ward, Woodhouse, Ablowitz, Clarkson) see 2003
paper of Ablowitz and Clarkson in J. Math Phys.

e NLS

o KdV

e Sine Gordon
e N-Wave

e Toda

e Tops

e Painlevé
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Lecture 2. Higgs bundles

Now reduce SDYM by two translations, get equation on a
plane; instead, put them on a genus g > 2 compact Riemann
surface X. Fix a degree d and a rank n, and repackage:

1) V 4, unitary connection and 2) ¢ € End(F) ® Q'Y(X)
dap =0
Fa= _[907 90*]

or again,

[AO4 + &, 04 + A" =0,YA

Again, implicitly, a whole sphere of complex structures.
Now look at the Higgs moduli in the I-complex structure (A =
0).

M = {(E, ¢)|E a rank n holomorphic bundle, p € H'(X, End(E)®Ky}

(Semi-)stability: Slope condition: for any ¢-invariant sub-

bundle E’
deg(E') deg(E)

rank(E") = (g)rank(E)

Guaranteed by stability of F.
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Symplectically

Holomorphic symplectic structure from hyperKahler; but
more simply:

If A/ = moduli of stable bundles, then a large piece of M
1S
T"(N)
Deformations of bundles:

Te(N) = H'(X, End(E))

(deform transition functions as T, g(€) = T4 5(0)(1 + €to )
Dually:

Ti(N) = H(X, End(E) ® Kx),
where ¢ lives, making for
T"N < M
Alternately, from deformation theory, the symplectic form:
HY(X,End(E)® Kx) — TM — H'(X, End(E))
Dually, get the same sequence:

H(X,End(E)® Kx) —» T°M — H'(X, End(E))
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The identity map between the two defines a symplectic
form. Alternately, it can be defined in terms of a symplec-
tic reduction of an infinite dimensional sum of two spaces dual
to each other, one of 0- operators, and the other of (smooth)

Higgs fields.
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An integrable system.
We have
H' =tr(¢") e H'(X,KY%)
fixing a basis of the d;-dimensional space H(X, K%) and tak-
ing components H/, i = 1,...,n,j = 1, ...d; gives a family of
Hamiltonians.

Theorem. (Hitchin) These Hamiltonians Poisson commute,
and give a completely integrable system on M

Spectral curves.

Combine the Hamiltonians into one object, the spectral
curve X, living in the total space 7 : L — X of the canonical
bundle and cut out by

det(p — zI) = 0

where z is the tautological section over K of the lift of the
canonical bundle. The spectral curve combines all the invari-
ants of the Hamiltonian flows.

There is then an exact sequence of sheaves

0 (EQ KNS E — L —0

The quotient sheaf £ is supported on the spectral curve, and is

in the generic situation (smooth curve, multiplicity one) a line
bundle over X.
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Parametrisation by spectral curves and sheaves

M ={(E,p)} ~{(%, L)}

The inverse map is £ = m.(L),p = m.(xz). Note auto-
matic stability if > irreducible.

Thus the general picture is of a family of Picard varieties
Pick (%) over a vector space space @ H (X, K%).

Hitchin: the fibres are compact (The whole Picard variety
in a fixed curve gets realized)
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Abelianization of the symplectic form

One has variations of the curve given by HY(X, Ny) =
H'(%, Ky), and variation of line bundles by H(X, O).

These are Serre dual, and indeed, choosing a base line bun-
dle on a neighbourhood of the curve

Theorem. (Abelianisation) The symplectic structure on M
18 qiven by the natural symplectic pairing

H(S,Ky) @ H(Z,0) - C
Then:

e The differential of a Hitchin hamiltonian gives a section
of the conormal bundle of the spectral curve.

e Since the canonical bundle of the surface Ky is trivial,
this is dual to a one-form on the spectral curve

e By the symplectic pairing, this gets identified with an
element of H*(3, O), given by a cocycle w, 5.

e The flow of line bundles by a flow of transition functions
exp(twy ).
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Generalise (allow poles)

Let D be a positive divisor. Now X can be of arbitrary
genus.

Mp = {(E,¢)|E arank n bundle, ¢ € H(X, End(E)®Kx (D)}

Theorem. (Biswas, Bottacin, Markman) This is a Pois-
son manifold. Symplectic leaves: fix the adjoint orbit of
over D.

Have again a spectral curve X..
det(p — zI) = 0
sitting in Kx (D), and a sheaf L:
p—z1

071 (EQ Kx(D) H)Y">n"E — L — 0

Casimirs: Intersections of D with ..
Again,
Mp={(E,0)} ={(X, L)}
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A special case: X = P!, E degree 0.

Restrict to the generic locus of trivial £/, Let D = Zf a,
for simplicity «; distinct, and # oo

M = {A(N) = )5 f@'%,ZAZ. = 0}/Gl(n,C)

l

The A; are matrices. The vanishing at infinity is imposed
by the canonical bundle being O(—2). The symplectic leaves
correspond to fixing the (co-)adjoint orbits of the A;.

Theorem. The symplectic leaves of MY, are the reductions
at zero of the product of coadjoint orbits of the A; by the
simultaneous action of Gl(n,C).

Another way of looking at this:
e g = polynomial loop algebra of gl(n);

e Via < a,b >= res,,Tr(ab), the dual g* is the negative
Laurent series,

e (reduced) finite dimensional coadjoint orbits are basically
MY, (varying D, and conjugacy classes)

e The Adler-Kostant-Symes theorem gives for the Hamil-
tonian flows of

fij = TGSOOTT(A(A)iAj)
24



the Lax equation
AN = [GAN) TN, AN

Metatheorem Any classical algebraically integrable sys-
tem that anyone is interested tn somehow fits into this pic-
ture, or its variants for other Lie algebras. Also finite gap
solutions of integrable pde. False, of course.

25



A classical example: the Neumann oscillator.

This oscillator appeared in the work of C. Neumann in 1859.
It treats the motion of a particle on the (n — 1)-dimensional
sphere under the influence of a quadratic potential. It gets
realized as a (constrained) flow on R?". If x;, 3; are coordinates,
set

2
-1 f 5" ry N Y

2 S i S L
1=1 )\—Ozz‘) 1=1 A—ay

The Hamiltonian is

Hy(z,y) = % [(Z x?)(z vi) + Z%x? -0, xiyi)Ql

= Res  MN2(\)

N

The equations of motion for our Hamiltonian system are equiv-

AN
E - [67-/\/]7 (1)

alent to

where Z” Z” ,
_ im1 Tl A= 21 Y
b= <— DT =D ﬂfzyz> ' 2
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How to solve? Darboux coordinates.

[nvariantly, M, M p is a space of pairs (X, L) of curves and
(generically) a line bundle on the curve,

Twist in some uniform way so that L has generically a single
section; this occurs when deg(L) = ¢g(X). Then

L < divisor Zpu, Py € 2.
i

Now erase the curve X, so that »,, p, € Hulb?(K), Hilb(Kp).

Theorem. (Adams, Harnad, H., ... but see Garnier (1919)!)
The p,, provide Darboux coordinates on M, Mp; that is lo-
cal “birational” symplectomorphisms

M ~ Hilb’(K), Mp ~ Hilb!(Kp)

27



A nineteenth century integration

Fix a coordinate A on X, and so cotangent coordinate (;
the symplectic form on KC is then d¢ A dA. Let P, ..., P, be
the Hitchin Hamiltonians; then have

¢=C\ Py ...y Py)

since A determines ( along the curve. Define a generating func-
tion

G (A, P;) Z CAPl,...Pg)dA.

= (,; then (standard trick; d*°G = 0) the

coordinates (Qg linearize the flow. But then

oG L (M o
= E (C(N\, Pry..o, Py))dA. (3)
OP; “ OP, g

are Abelian integrals; if these flow linearly, the line bundle is
too.
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Explicitly, on P!

The divisors are computable: in P! case, the section of L
is an image of a section of E, the trivial bundle; vanishing
computable in terms of cofactors.

For our Neumann example: get ellipsoidal coordinates A, u =
l,...,n—1by

g [T =)
N —q a(\)

and

_1 - LiYi P(Au)
CN—QZ;)\N—O{Z'— a(A,)

We have that 0S/0\, = (,; the canonically conjugate co-
ordinates to the P;, undergoing linear flow, are then:

ijt, j=0,...,n—2,

0, . 08 1”21ru N d\
i= a5 =5

0P; 240 /PO
The integrands form a basis for the holomorphic differentials
on a hyperelliptic curve § cut out by the equation

22— P(\) =0.

29



Variants-
A cousin- the Sklyanin system (elliptic case)

In its "easier” version, requires a rigid bundle. Here, on an
elliptic curve X, take the (unique) stable bundle E of degree
1 (fixing the determinant)Then H'(X,sl(E)) = 0, and so,
covering X by U, = disk centred at p, U_ = X —p, a splitting

HY U, nU_,sl(E)) = H(U,,sl(E)® H (U_, sl(E))

Lg=Lg, @ Lg-
with projections P,, P_, and a difference R = P, — P_. On

the loop group, there are two derivatives D, D’ € Lg, defined
at g by left and right translation to the origin:

<Df h>= %f(exp(th)-g)\tzo, <D'f h>= %f(g-exp(th))hzo

and the Sklyanin bracket:
1
tf,9; = 5(< R(Df),Dg > — < R(D'f),D'g >

This gives a bracket on the space of ¢ € I'(Aut(FE)); the
space of sections we allow will be meromorphic ones. They will
have spectral curves S given by det(¢(A) — ¢ I) = 0, and a
sheaf L given as the cokernel of ¢

Theorem. 1) The symplectic leaves for the Sklyanin bracket
are given by fixing the intersection of the spectral curves
with z =0,z = 0.
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2) Taking a suitable twist, so that the divisor (A, ()

representing L has degree equal to the genus of S, the sym-
plectic form s given by Zu dA, A %.

So a Hilbert scheme of a surface again.
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Classification of Poisson surfaces.
These are fairly restricted.

Theorem. (Bartocci, Macri) The complex Poisson sur-
faces P are given by

1) Abelian surfaces, and K3 surfaces.

2) (g arbitrary) Ruled surfaces, of the form P(O®K x(D)).
The Poisson tensor has divisor 2-E + D', with D" positive,
equivalent to D, and E

3) (g = 1,0) Ruled surfaces, of the form P(O @ L),
deg(L) = 0. For g = 1, the Poisson tensor has divisor
E + E" with E, E' representing the divisor of the inclusion
of O, L into P(O® L). For g =0, the Poisson tensor has
diwisor E+ E'+ D, with now D a sum of two fibres of the
projection to the base.

4) (9 > 1), Ruled surfaces P(V), where V = JH(L)®L"

18 the non-trivial extension

0 — Kx —V—0—70.
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Which system corresponds to Hilb(M)?

1) themselves?

2) Hitchin systems

3) Sklyanin

4) (Biswas, H) Ruled surfaces P(V'), where V = JY(L)® L*

1s the non-trivial extension

0 — Ky —V—0—70.

Get a moduli space of by deforming the Hitchin system,
MY = {(E,)|Ea bundle, 1) € H'(X, End(E)QV), 7(¢)) = I}

(v is an End(FE)-valued connection on L.) Get spectral curves,
integrable system, divisor coordinates in P(V)

Multi-Hamiltonian systems. Trick for integrating
a Hamiltonian system if there is a large compatible family of
Poisson structures. A flurry of papers on these; all based on
the systems being secretly Hilb(M), and the fact that any two
Poisson brackets on a surface are automatically compatible.
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Lecture 3. Integrable systems of Abelian vari-
eties

Hitchin system

M = {(E, ¢)|E a rank n holomorphic bundle, p € H'(X, End(E)®Kyx)}

e The spectral curve X, living in the total space 7 : K — X
of the canonical bundle and cut out by

det(p — zI) =0

e The quotient sheaf £ is supported on the spectral curve,
and is in the generic situation (smooth curve, multiplicity
one) a line bundle over ¥

0> (EQ KNS E — L —0

Abelianization:

M ={(E, @)} = {(%, L)}

——

Represent the line bundle by a divisor on 2 < K; with this:

’_/\——ﬂ

Theorem. Symplectically,

—_—

-~

M ~ Hilt!(K) 4
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Sklyanin system (Sklyanin, H., Markman)

Base curve X of genus 1,0

Replace End(E)® K by Aut(E), again get spectral curves
in P! x X, line bundles,

N ={(E,¢)} = {(X, L)} %
Again representing L by a divisor on ¥ < P! x X

Theorem. Symplectically,

N ~ Hilb(P' x X)
%‘

Deformed Hitchin system(Biswasi H.)
Have rank 2 bundle V with V2 O — 0,V = JI(W) ®
W= W alb,
Replace End(E)® K by 7~ }(I) ¢ End(E)®V, again get
spectral curves in P(V'), line bundles L,

——

M = {(B, o)t ~ {(3, L)}

Again representing L by a divisor, get an element of HilbY(P(V))

Theorem. Symplectically
M~ HilbY(P(V))

All of these isomorphisms ”semi-local”, in the neighbour-

)

hood of a fixed Jacobian (almost the symmetric product of the

- B\l

v —¥5—



Integrable systems of Jacobians- a local picture.
—

1T
H:J—-U. 4
Here U = UY is a ball in CY, and J = J% is 2¢-dimensional,
symplectic (with form €2). The fibration H is assumed to be
Lagrangian, with fibers that are Jacobians of smooth genus

g curves. Corresponding to J?9 there is a family of curves
S = S9*! with —
- H S —U. (1.9)

When is J symplectic?

Jis C9 x U, quotiented by A-periods A; ;(u), B; ;(u). Get
action-angle coordinates: ¢; on the fibers, and H; on U, with

Q=ZdtiAdHi

Normalise the A periods to I, for the B periods, the invari-

ance of the symplectic form under translation gives (Donagi-
Markman)

for a suitable F.
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The Abel map gives us an embedding
[:S—]J.

This map is not unique, but depends on the choice of a base-
point in each fibre.

= N,
=

iﬁ T(= l%
= T
—
o)< {p‘:@
DL k!
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‘DMR)‘J‘“WQSQS\C AU/\&U\A

Theorem. Let I"QQ A I"Q0 = 0 ("rank 2 condition”)

(i) Under the embedding I, the variety S is coisotropic.
Quotienting by the null foliation, one obtains, restricting
U if necessary, a surface () to which the form I*C) projects,
defining a symplectic form w on (). The curves Sy, all embed

mn Q.

(i) If 1, I are two Abel maps with 'O A I*Q = 0, I'Q A
I"Q) = 0, then I'Q) = I'Q), when g = 3, and so () depends
only on' S and not on the particular Abel map chosen. For
g=2, I"OQ A I"C) = 0 always.

(iii) There is a symplectic isomorphism
O Hilb'(Q,w) — J,

defined over a Zariski open set, between J and Hilb(Q,w)
The symmetric product SPI(Sy,) = HilbI(S,) of the curves
is Lagrangian in HilbY(Q,w), and the restriction of ® to
SPI(Sy) is the Abel map

SPI(S,) — J, .
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Can turn this around

Given a symplectic surface (), and a smooth curve S in Q).

—— —_—

e Sections of the normal bundle are differential forms on

the curve.

e Deformations give a family of curves § over U, and so a
fiberwise symmetric product 39 over U,

e and then to the Jacobian.

The surface is an invariant of the system

Not quite complete- note shift of degrees. Gerbe structure.
(Donagi, Gaitsgory, Pantev)

~

~
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What about other groups?
The Hitchin integrable system exists for arbitrary reductive

groups.

e [ a principal G-bundle

e ¢ asection of ad(Pg) ® Kx

Moduli space Ma(X).

f_/—l\

—  Commuting Hamiltonians: for F' an invariant function of
degree 7 on g,

—

F(p) e H'(X, KY)

Taking components, get an integrable system on Mg(X). (bl
—

What is the geometry of this? . cf

Back to gﬂ_/ﬁ), instead of individual eigenvalues of M diag-
onalisable, think of all ordered sequences (A;,,...\;,) of eigen-
values, in other words all possible diagonalisations. This gives
in general n! points in C", invariant under the action of the
syminetric group.
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For general G, generic ¢, think at a generic x € X of
all possible conjugations of ¢ to h ® Kx, with b the Cartan
subalgebra; at non-generic X, to a Borel subalgebra containing
b: projecting to the Cartan, get a cameral curve ¥ € h ® Kx.
[t is Weyl invariant.

77j\ "#t‘
//K n —~ . !
= / &
S _ \ 77- L
. R 7{ \x‘ S

e \

\
< J \\
& foe

Figure 1: The cameral curve.
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Analogue of the line bundle?

e The bundle lifted to the spectral curve comes with a nat-
ural reduction to the Borel subgroup.

e Projecting to the Cartan subgroup H, get an H bundle
(think transition functions).

e [t is not W-invariant, but a twist (computable in terms of
roots and the branch points of the curve (Donagi, Scog-
namillo), is), and the result can be normalised to degree
zero. Call the result Ppy.

P

Note the action of W intertwines the action on H and the

— -

action on the curves.

H bundles: Jy @ x = J", where Jy, is the Jacobian of X,

and 'y the lattice e:cpk_l(l) in b
D

Invariant H-bundles. (Js®@ )V = CTascnn
——— ’Lf—”
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So: Abelianization (For smooth spectral curves)

¢ K
Mg(X) > {(5. Pu)}

with ¥ a W-invariant curve in Kx @ b, Py € (Jx @z x)".

The variety of (Jx ®z x)" is called a (generalized) Prym
variety:.

Geometry then, a fibration of Prym varieties, over a family
U of W-invariant curves, parametrised by the Hitchin hamil-

.

tonians

Hitchin Hamiltonians give linear flows on (Jx ®z-x)" .
nital
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So... any Darboux coordinates? (Markman, H.)

Deforming the H-bundle: H(X, 0 ® b))

Deforming the curve sitting in Kx ® h: H(Z, Ng)"' =
HO(Z7 Ky ® h)W

Proposition 1. (Abelianization) With an appropriate split-
ting, the symplectic form is the natural one on

HE N @ HY(Z,00H)"
—t -

Where next? Ki@w\ '

There is an equivalence:

e The duality pairing W-invariant 2-form on

H, Ne)V @ H' (2,00 1)

—_—

) Seben

H S, N @ HY(Z,0®b) «

e The duality pairing W-invariant 2-form on

e The duality pairing W-invariant h*-valued 2forms§ Q%

X
HE N @ HY(S,0) & W |

4)“-’—5
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To get the second from the first, extend by zero (Schur’s
lemma). The second is basically a linear algebra equivalence.

In our case, our symplectic form on the family of Pryms on

U becomes a h*-valued symplectic form on the corresponding

family of Jacobians.

Now pull back this form to the family of curves, embedded

\'\“':()HKE ® b, via the Abel map. Note that the bundle Ky ® b
5% haS a natural W invariant h*-valued 2-form Q —_— -

L « Proposition 2. (Darboux coordinates) The pulled back form
under the Abel map is €.

—
—_

Can allow poles in ¢ at a divisor D.

Essentially, same theorems.

e Have a Poisson moduli space Mg(X, D). Symplectic
leaves fix conjugacy class over . Have a log-symplectic
form 2p on the bundle Ky (D) ® b*.

e Hitchin Hamiltonians given by the invariant polynomials;
Casimirs are values at D.
—~ —

e Ky®h* has anatural W-invariant h*-valued log-symplectic
form €, with poles at D.

—_——

e Abel map gives Darboux coordinates.

e
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G-Sklyanin systems (Markman, H.)

On an elliptic curve X (and, degenerating, on rational curves),
can define a Sklyanin system for arbitrary G.
(Etinghof—va’}?namical R-matrix. Geometrically- generic bun-
dles reduce to the torus.)
) dsg et -
Spaces of pairs
(Principal bundle Pg, meromorphic section of Aut(Pg))
il

—

Recall that the Sl(n) moduli space had symplectic leaves
obtained by fixing the locus and the type of the singularities.
At z = 0: £ L A

g(z)diag(x™, x", ..., ") h(x)

The general group case is given in the same way, fixing
the locus of the singularities, and at each point of these, a

co-character. Let O denote this data, analogous to a divisor.
— — —
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Have a symplectic moduli space Ng(X, Q).
A A

Hitchin Hamiltonians given by the invariant polynomials;

Casimirs are the locations of the singularities.

A W-invariant spectral curve living in a (P!)"-bundle V

over X, compactifying X x h*.

Build on V" a natural W-invariant §*-valued log-symplectic

form €2, with poles along 0, oo

Pull-back via via Abel map gives (2.

A7



Local set-up
Suppose:

o A family U of W-invariant curves >,

-

e An integrable system of Prym varieties Pr = (J ®z x)"
over U, with a symplectic form w. -

A

Remark: W does not have to be a Weyl group. Works for
”cla/ss@ljwf W = 7Z/2, x = sign representation, curves

with involution. =

Set V = C®zx and r = dim(V'). On the associated family
J of Jacobians, the associated V*form wy. Embed the family
of curves S into J via the Abel map A®~

Definition 1. The system is of rank two iff A*(wy)AA*(wy) =
0 (i.e. the components A*(wy); A A*(wy); = 0)

—

, Theorem. Under reasonable genericity assumptions:
1) There is an r+1 dimensional W -invariant variety X

Qégw into which the curves S, embed. It has a natural V* valued
g K 2 form )y, tnvartant under W.
2) For r > 2, there is an invariant codim 1 foliation of

ST X such that the quotient by the foliation and by W is a

curve ..

V<

3) The curves S, thus have a constant quotient > =

S,/ W.
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A K3 example- bundles on an elliptic K3. (Donagi)

] X
K3 surface Y — P!, elliptic fibers.

M = G— bundles on Y, degree zero. e P

On each elliptic curve E., reduce generically to the torus
H . and give a W-orbit in " ®z x.

Varying z, get a curve in the fiber product over P! which
replaces I/, with F Qg x.

—

One gets, in addition an element of the Prym over the spec-
tral curve., and an integrable system of Prym varieties.

(Roughly speaking, the curve tells you what the bundle is
over each E,, and the Prym element fits them together.)

Interesting- not given by a spectral construction, but by a
¢
Fourier-Mukai transform. ¢ re e fve oven © _)

—

Ce—
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