
Lecture 1: Two out of three ain’t bad. (And an

abundance of curves)

Connections on a bundle E over R4. (Conformally, S4)

∇i “Bi ` Aipxq

∇ : ΓpEq Ñ ΓpE b T ˚R4
q

Curvature

Fi,j “ r∇i,∇js “BiAj ´ BjAi ` rAi, Ajs

F PΓpE b Λ2
pT ˚R4

qq

Hodge operator ˚ : Λ2pT ˚R4q Ñ Λ2pT ˚R4q

ă α, β ą dpvolq “ α ^ ˚β

˚
2
“ I

Split into eigenspaces: Self-dual and anti-self dual parts

F` “ ˚pF`q

F´ “ ´ ˚ pF´q

Energy (||F ||2 “ ||F`||2 ` ||F´||2)

Topological degree ||F`||2 ´ ||F´||2)

Minimal energy are Self-Dual, or Anti-Self-Dual (ASD)
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Interactions with a complex structure (or sev-

eral)

z1 “ x1 ` ix2, z2 “ x3 ` ix4

2-forms split into bitype:

2, 0 : dzi ^ dzj

1, 1 : dzi ^ dz̄j;

0, 2 : dz̄i ^ dz̄j

With this, SD:

• the 2,0 forms,

• the 0,2 forms,

• in the 1,1 forms, the multiples of the Kähler form

´1
2i dz1 ^ dz̄1 ` dz2 ^ dz̄2

ASD:

• the orthogonal complement of the Kähler form in the 1,1

forms

If the connection is ASD, no 0, 2 curvature, and so an inte-

grable B̄ operator: a holomorphic bundle
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Flip this around

Take a holomorphic bundle, and choose a hermitian metric.

The Chern connection

• Has the B̄ as its 0,1 part, and gives back the holomorphic

structure: no 0,2 curvature,

• Because it is unitary has no 2,0 curvature either.

Two out of three for free. How to get the third:
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1) Twistors

R4 has three complex structures: I, J,K, in fact a whole

P1’s worth: aI ` bJ ` cK, a2 ` b2 ` c2 “ 1

Changing the complex structures rotates the SD forms amongst

themselves; the connection is ASD if holomorphic for all of the

complex structures.

Twistor space:

Get here holomorphic bundles on P3pCq, with reality con-

straints and a few other constraints. You can get the solution

for this in fairly explicitly (ADHM construction)
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2) The direct approach:

Fix one complex structure, and minimise energy on the met-

rics, getting that third piece of the curvature to zero. Typically

through a heat flow.

Need some form of stability to ensure that the minimising

flow converges; here enforced by a trivialisation at infinity.

Does not give the actual solution (minimising flow is a black

box) but gives moduli. Here, on R4 (Donaldson):

tInstantonsu “ tbundles on P2
pCq, trivial on a fixed line at infinityq

In more generality, for general manifolds

• Hyperkähler manifolds have twistor spaces; in 4D

get instantons

• Kahler manifolds (Kobayashi-Hitchin-Donaldson-Yau-

Uhlenbeck-Simpson-...but Narasimhan-Seshadri!) : again

get two out of three for free from a holomorphic structure,

need stability to flow to ASD

tStable holomorphic bundles u “ tHYM connectionsu
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Some reductions- non compact cases.

1. Monopoles on R3: (Hitchin, Donaldson, Murray-H,

Jarvis)

• Impose time translation invariance. get ∇i, (R3 direc-

tions) and ϕ (time-direction);

• ASD equation becomes F “ ˚∇ϕ (in 3d)

• Different boundary conditions: Ai decay, ϕ tends to a

unique orbit in upnq

Fix one complex structure (z “ x1` ix2, w “ x3` it); the

0, 2 component of ASD becomes

r∇z̄,∇x3 ` iϕs “ 0

So, solving a scattering equation p∇x3 ` iϕq ¨ s “ 0 gives a

holomorphic bundle on the z plane. Doing this for all of the

complex structures gives a complex bundle on the twistor space.

TP1
Ñ P1
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Which bundles?

How to distinguish? The boundary behaviour

ϕ » idiagpα1, α2, ...αnq

gives a flag of decay rates to

p∇x3 ` iϕq ¨ s “ 0,

as x3 Ñ 8 AND as x3 Ñ ´8.

These two flags are generically transverse, and fail to be at

a set of points in the z-plane.

Varying the directions in P1 gives n´ 1 curves in TP1, and

these (along with some sections of line bundles on the spectral

curve) determine the monopole. All is in principle computable

from this.
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For moduli.

For moduli, just need one direction, say x3. The behaviour

at `8 can be thought of as fixing a basis, and the scattering of

the flag from ´8 then gives a holomorphic map into the flag

manifold

P1
Ñ Upnq{T.

These maps determine the monopole:

Moduli of based monopoles “ Based rational maps into the flag manifold
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2. Monopoles on Σˆ S1.(Charbonneau-H)

Same equation, but now lose the symmetry of four dimen-

sions (except when Σ of genus one.) The 0, 2 part is

r∇̄Σ,∇θ ´ iϕs “ 0

Compactness implies the need to allow fixed Dirac style sin-

gularities at fixed points (Singularities of Abelian type, with

integer charges pm1,m2, ...,mnq)

Scattering through the singularity (in the S1 direction) gives

gpzq “ h`pzqdiagpz
m1, zm2, ..., zmnqh´pzq

(Used by Kapustin Witten to model Hecke transform) but go-

ing all the way round the circle gives

Φ : E Ñ E,

• E a bundle on Σ

• Φ a meromorphic automorphism with singularities of type

diagpzm
i
1, zm

i
2, ..., zm

i
nq at fixed points pi
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Moduli of monopoles “ Stable pairs pE,Φq

Stability: No Φ invariant subbundle of big degree.

Spectral curve S: detpΦ´ zIq “ 0

Sheaf L on S: cokerpΦ´ zIq

Moduli also a space of (curves S, sheaves L )
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3. Instantons on RˆS1ˆΣ, Σ of genus one. (Charbonneau-

H)

A reduction from R4 (discrete symmetries), but different

boundary conditions.

Finite energy, gives asymptotically flat connection on three-

tori S1 ˆ Σ at ˘8.

Holomorphically. Compactify R ˆ S1 “ C˚ to P1; get

a bundle on P1 ˆ Σ,

How to analyse? On generic tzu ˆ Σ, E is a sum

L1 ‘ ...‘ Ln, Li P Σ˚.

Pick-out by a Fourier-Mukai transform

P1
ˆ Σ Ð P1

ˆ Σˆ Σ˚ Ñ P1
ˆ Σ˚.

E ÞÑ π˚1pEq b Poincare ÞÑ F “ pπ2q˚pπ
˚
1pEq b Poincareq

F is generically a line bundle over a curve S of bidegree

pn, k “ c2pEqq in P1 ˆ Σ˚.

11



• Monopoles on Σˆ S1 for (gpΣq “ 1) and

• Instantons on Rˆ S1 ˆ Σ˚

.

are Nahm transforms of each other.
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4. Nahm’s equations.

Here reduce R4 by three translations, get

• Connection ∇ “ Bt ` T0ptq along a line,

• Tiptq skew hermitian matrices.

ASD equations become

∇Ti “
1

2

ÿ

εijkrTj, Tks

Rewrite in a way compatible with the twistor paradigm:

Apζ, sq “ T1 ` iT2 ´ 2T3ζ ´ pT1 ´ iT2qζ
2,

A`pζ, sq “ ´iT3 ´ ipT1 ´ iT2qζ,

with the Lax equation

r∇` A`pζ, sq, Apζ, sqs “ 0

Invariant is again a spectral curve:

detpApζ, sq ´ ηIq “ 0

Can solve with the Krichever-Novikov approach. (Ercolani)
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Holomorphic data:

ζ is the twistor parameter, set ζ “ 0 for one complex struc-

ture.

r∇´ iT3, T1 ` iT2s “ 0.

In other words T1` iT2 is covariant constant. Not much there...

Answer is in boundary conditions.

For example, for monopoles, get via the Nahm transform a

solution on a sequence of intervals, with matrices of different

sizes nµ on the intervals. As a sample of the boundary condi-

tions, for nµ ą nµ´1, at the common boundary point s “ 0,

from the big side:

Tjpsq “

ˆ

ajpsq bjpsq

cjpsq ´
ρj
2s ` djpsq

˙

.

Here, the top left block is nµ´1ˆ nµ´1, the bottom right block

is m ˆ m, with m “ nµ ´ nµ´1; we ask that aj, bj, cj, dj be

analytic at s “ 0, and tρju
3
j“1 be the components of the m-

dimensional irreducible representation of sup2q in its standard

basis, that is the standard representation in m dimensions of

the Pauli matrices. (Additional vanishing for bj, cj at s “ 0)

Furthermore, the solutions on the two intervals should match

by

ajpλiq “ T smallj pλiq.
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Different boundary conditions for nilpotent orbits, instan-

tons on a Taub-NUT, etc.

Why bother?

Holomorphic data usually easy to describe; on the other

hand the hyperKähler reduction gives you a hyperKähler met-

ric.
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5. Integrable Hierarchies and ASD

A whole zoo of integrable pde and ode are reductions of

ASD.:

(Mason, Ward, Woodhouse, Ablowitz, Clarkson) see 2003

paper of Ablowitz and Clarkson in J. Math Phys.

• NLS

• KdV

• Sine Gordon

• N-Wave

• Toda

• Tops

• Painlevé

• ...

16



Lecture 2. Higgs bundles

Now reduce SDYM by two translations, get equation on a

plane; instead, put them on a genus g ą 2 compact Riemann

surface X . Fix a degree d and a rank n, and repackage:

1) ∇A, unitary connection and 2) ϕ P EndpEq b Ω1,0pXq

B̄Aϕ “ 0

FA “ ´rϕ, ϕ
˚
s

or again,

rλBA ` φ, B̄A ` λϕ
˚
s “ 0, @λ

Again, implicitly, a whole sphere of complex structures.

Now look at the Higgs moduli in the I-complex structure (λ “

0).

M “ tpE,ϕq|E a rank n holomorphic bundle, ϕ P H0
pX,EndpEqbKXu

(Semi-)stability: Slope condition: for any ϕ-invariant sub-

bundle E 1
degpE 1q

rankpE 1q
ă pďq

degpEq

rankpEq

Guaranteed by stability of E.
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Symplectically

Holomorphic symplectic structure from hyperKähler; but

more simply:

If N “ moduli of stable bundles, then a large piece of M
is

T ˚pN q

Deformations of bundles:

TEpN q “ H1
pX,EndpEqq

(deform transition functions as Tα,βpεq “ Tα,βp0qp1` εtα,βq

Dually:

T ˚EpN q “ H0
pX,EndpEq bKXq,

where ϕ lives, making for

T ˚N ĂM

Alternately, from deformation theory, the symplectic form:

H0
pX,EndpEq bKXq Ñ TMÑ H1

pX,EndpEqq

Dually, get the same sequence:

H0
pX,EndpEq bKXq Ñ T ˚MÑ H1

pX,EndpEqq
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The identity map between the two defines a symplectic

form. Alternately, it can be defined in terms of a symplec-

tic reduction of an infinite dimensional sum of two spaces dual

to each other, one of B̄- operators, and the other of (smooth)

Higgs fields.

19



An integrable system.

We have

H i
“ trpϕiq P H0

pX,K i
Xq

fixing a basis of the di-dimensional space H0pX,K i
Xq and tak-

ing components H i,j, i “ 1, .., n, j “ 1, ...di gives a family of

Hamiltonians.

Theorem. (Hitchin) These Hamiltonians Poisson commute,

and give a completely integrable system on M

Spectral curves.

Combine the Hamiltonians into one object, the spectral

curve Σ, living in the total space π : K Ñ X of the canonical

bundle and cut out by

detpϕ´ zIq “ 0

where z is the tautological section over K of the lift of the

canonical bundle. The spectral curve combines all the invari-

ants of the Hamiltonian flows.

There is then an exact sequence of sheaves

0 Ñ π˚pE bK´1
X q

ϕ´zI
ÝÑπ˚E Ñ LÑ 0

The quotient sheaf L is supported on the spectral curve, and is

in the generic situation (smooth curve, multiplicity one) a line

bundle over X .
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Parametrisation by spectral curves and sheaves

M “ tpE,ϕqu » tpΣ, Lqu

The inverse map is E “ π˚pLq, ϕ “ π˚pˆzq. Note auto-

matic stability if Σ irreducible.

Thus the general picture is of a family of Picard varieties

PickpΣq over a vector space space ‘n
i“1H

0pX,K i
Xq.

Hitchin: the fibres are compact (The whole Picard variety

in a fixed curve gets realized)
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Abelianization of the symplectic form

One has variations of the curve given by H0pΣ, NΣq “

H0pΣ, KΣq, and variation of line bundles by H1pΣ,Oq.
These are Serre dual, and indeed, choosing a base line bun-

dle on a neighbourhood of the curve

Theorem. (Abelianisation) The symplectic structure onM
is given by the natural symplectic pairing

H0
pΣ, KΣq ‘H

1
pΣ,Oq Ñ C

Then:

• The differential of a Hitchin hamiltonian gives a section

of the conormal bundle of the spectral curve.

• Since the canonical bundle of the surface KX is trivial,

this is dual to a one-form on the spectral curve

• By the symplectic pairing, this gets identified with an

element of H1pΣ,Oq, given by a cocycle wα,β.

• The flow of line bundles by a flow of transition functions

expptwα,βq.
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Generalise (allow poles)

Let D be a positive divisor. Now X can be of arbitrary

genus.

MD “ tpE,ϕq|E a rank n bundle, ϕ P H0
pX,EndpEqbKXpDqu

Theorem. (Biswas, Bottacin, Markman) This is a Pois-

son manifold. Symplectic leaves: fix the adjoint orbit of ϕ

over D.

Have again a spectral curve Σ.

detpϕ´ zIq “ 0

sitting in KXpDq, and a sheaf L:

0 Ñ π˚pE bKXpDq
´1
q
ϕ´zI
ÝÑπ˚E Ñ LÑ 0

Casimirs: Intersections of D with Σ.

Again,

MD “ tpE,ϕqu “ tpΣ, Lqu
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A special case: X “ P1, E degree 0.

Restrict to the generic locus of trivial E. Let D “
řk

i αi,

for simplicity αi distinct, and ‰ 8

M0
D “ tApλq “

n
ÿ

i“1

Ai

λ´ αi
,
ÿ

i

Ai “ 0u{Glpn,Cq

The Ai are matrices. The vanishing at infinity is imposed

by the canonical bundle being Op´2q. The symplectic leaves

correspond to fixing the (co-)adjoint orbits of the Ai.

Theorem. The symplectic leaves ofM0
D are the reductions

at zero of the product of coadjoint orbits of the Ai by the

simultaneous action of Glpn,Cq.

Another way of looking at this:

• rg “ polynomial loop algebra of glpnq;

• Via ă a, b ą“ res8Trpabq, the dual rg˚ is the negative

Laurent series,

• (reduced) finite dimensional coadjoint orbits are basically

M0
D (varying D, and conjugacy classes)

• The Adler-Kostant-Symes theorem gives for the Hamil-

tonian flows of

fi,j “ res8TrpApλq
iλjq
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the Lax equation

9Apλq “ rpiApλqi´1λjq`, Apλqs

Metatheorem Any classical algebraically integrable sys-

tem that anyone is interested in somehow fits into this pic-

ture, or its variants for other Lie algebras. Also finite gap

solutions of integrable pde. False, of course.
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A classical example: the Neumann oscillator.

This oscillator appeared in the work of C. Neumann in 1859.

It treats the motion of a particle on the pn ´ 1q-dimensional

sphere under the influence of a quadratic potential. It gets

realized as a (constrained) flow on R2n. If xi, yi are coordinates,

set

N pλq “ λ´1

2

¨

˝

´
řn

i“1
xiyi
λ´αi

´1´
řn

i“1
y2i

λ´αi
řn

i“1
x2i

λ´αiq

řn
i“1

xiyi
λ´αi

˛

‚.

The Hamiltonian is

H0px,yq “
1

2

«

p
ÿ

i

x2
i qp

ÿ

i

y2
i q `

ÿ

i

αix
2
i ´ p

ÿ

xiyiq
2

ff

“ Res8λ
2N 2

pλq

The equations of motion for our Hamiltonian system are equiv-

alent to
dN
dt
“ rB,N s, (1)

where

B “
ˆ
řn

i“1 xiyi λ´
řn

i“1 y
2
i

´
řn

i“1 x
2
i ´

řn
i“1 xiyi

˙

. (2)
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How to solve? Darboux coordinates.

Invariantly,M,MD is a space of pairs pΣ, Lq of curves and

(generically) a line bundle on the curve.

Twist in some uniform way so that L has generically a single

section; this occurs when degpLq “ gpΣq. Then

LØ divisor
ÿ

µ

pµ, pµ P Σ.

Now erase the curve Σ, so that
ř

µ pµ P Hilb
gpKq, HilbgpKDq.

Theorem. (Adams, Harnad, H., ... but see Garnier (1919)!)

The pµ provide Darboux coordinates onM,MD; that is lo-

cal “birational” symplectomorphisms

M » HilbgpKq, MD » HilbgpKDq
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A nineteenth century integration

Fix a coordinate λ on X , and so cotangent coordinate ζ ;

the symplectic form on K is then dζ ^ dλ. Let P1, ..., Pg be

the Hitchin Hamiltonians; then have

ζ “ ζpλ, P1, ..., Pgq

since λ determines ζ along the curve. Define a generating func-

tion

Gpλµ, Pjq “
g
ÿ

µ“1

ż λµ

λ0

ζpλ, P1, . . . , Pgqdλ.

One has BG
Bλµ

“ ζµ; then (standard trick; d2G “ 0) the

coordinates BG
BPi

linearize the flow. But then

BG

BPi
“

g
ÿ

µ“1

ż λµ

λ0

B

BPi
pζpλ, P1, . . . , Pgqqdλ. (3)

are Abelian integrals; if these flow linearly, the line bundle is

too.
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Explicitly, on P1

The divisors are computable: in P1 case, the section of L

is an image of a section of E, the trivial bundle; vanishing

computable in terms of cofactors.

For our Neumann example: get ellipsoidal coordinates λµ, µ “

1, . . . , n´ 1 by

n
ÿ

i“1

x2
i

λ´ αi
“

śn´1
µ“1pλ´ λµq

apλq
.

and

ζµ “
1

2

n
ÿ

i“1

xiyi
λµ ´ αi

“

d

Ppλµq
apλµq

.

We have that BS{Bλµ “ ζµ; the canonically conjugate co-

ordinates to the Pi, undergoing linear flow, are then:

Qj :“
BS

BPj
“

1

2

n´1
ÿ

µ“1

ż λµ

0

λjdλ
a

Ppλq
“ bjt, j “ 0, . . . , n´ 2,

The integrands form a basis for the holomorphic differentials

on a hyperelliptic curve S cut out by the equation

z2
´ Ppλq “ 0.
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Variants-

A cousin- the Sklyanin system (elliptic case)

In its ”easier” version, requires a rigid bundle. Here, on an

elliptic curve X , take the (unique) stable bundle E of degree

1 (fixing the determinant)Then H1pX, slpEqq “ 0, and so,

covering X by U` “ disk centred at p, U´ “ X´p, a splitting

H0
pU` X U´, slpEqq “ H0

pU`, slpEq ‘H
0
pU´, slpEqq

Lg “ Lg` ‘ Lg´

with projections P`, P´, and a difference R “ P` ´ P´. On

the loop group, there are two derivatives D,D1 P Lg, defined

at g by left and right translation to the origin:

ă Df, h ą“
d

dt
fpexppthq¨gq|t“0,ă D1f, h ą“

d

dt
fpg¨exppthqq|t“0

and the Sklyanin bracket:

tf, gu “
1

2
pă RpDfq, Dg ą ´ ă RpD1fq, D1g ą

This gives a bracket on the space of ϕ P ΓpAutpEqq; the

space of sections we allow will be meromorphic ones. They will

have spectral curves S given by detpϕpλq ´ ζ Iq “ 0, and a

sheaf L given as the cokernel of ϕ

Theorem. 1) The symplectic leaves for the Sklyanin bracket

are given by fixing the intersection of the spectral curves

with z “ 0, z “ 8.
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2) Taking a suitable twist, so that the divisor pλµ, ζµq

representing L has degree equal to the genus of S, the sym-

plectic form is given by
ř

µ dλµ ^
dζµ
ζµ

.

So a Hilbert scheme of a surface again.
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Classification of Poisson surfaces.

These are fairly restricted.

Theorem. (Bartocci, Macri) The complex Poisson sur-

faces P are given by

1) Abelian surfaces, and K3 surfaces.

2) (g arbitrary) Ruled surfaces, of the form PpO‘KXpDqq.

The Poisson tensor has divisor 2 ¨E`D1, with D1 positive,

equivalent to D, and E

3) (g “ 1, 0) Ruled surfaces, of the form PpO ‘ Lq,

degpLq “ 0. For g “ 1, the Poisson tensor has divisor

E `E 1 with E,E 1 representing the divisor of the inclusion

of O, L into PpO ‘ Lq. For g “ 0, the Poisson tensor has

divisor E `E 1`D, with now D a sum of two fibres of the

projection to the base.

4) (g ą 1), Ruled surfaces PpV q, where V “ J1pLqbL˚

is the non-trivial extension

0 ÝÑ KX ÝÑ V ÝÑ O ÝÑ 0 .
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Which system corresponds to HilbpMq?

1) themselves?

2) Hitchin systems

3) Sklyanin

4) (Biswas, H) Ruled surfaces PpV q, where V “ J1pLqbL˚

is the non-trivial extension

0 ÝÑ KX ÝÑ V ÝÑ O ÝÑ 0 .

Get a moduli space of by deforming the Hitchin system,

MC
“ tpE,ψq|Ea bundle, ψ P H0

pX,EndpEqbVq, πpψq “ Iu

(ψ is an EndpEq-valued connection on L.) Get spectral curves,

integrable system, divisor coordinates in PpV q

Multi-Hamiltonian systems. Trick for integrating

a Hamiltonian system if there is a large compatible family of

Poisson structures. A flurry of papers on these; all based on

the systems being secretly HilbpMq, and the fact that any two

Poisson brackets on a surface are automatically compatible.
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Lecture 3. Integrable systems of Abelian vari-

eties

Hitchin system

M “ tpE,ϕq|E a rank n holomorphic bundle, ϕ P H0
pX,EndpEqbKXqu

• The spectral curve Σ, living in the total space π : KÑ X

of the canonical bundle and cut out by

detpϕ´ zIq “ 0

• The quotient sheaf L is supported on the spectral curve,

and is in the generic situation (smooth curve, multiplicity

one) a line bundle over Σ.

0 Ñ π˚pE bK´1
X q

ϕ´zI
ÝÑπ˚E Ñ LÑ 0

Abelianization:

M “ tpE,ϕqu » tpΣ, Lqu

Represent the line bundle by a divisor on Σ Ă K; with this:

Theorem. Symplectically,

M » HilbgpKq
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Sklyanin system (Sklyanin, H., Markman)

Base curve X of genus 1, 0

Replace EndpEqbK by AutpEq, again get spectral curves

in P1 ˆX , line bundles,

N “ tpE,ϕqu » tpΣ, Lqu

Again representing L by a divisor on Σ Ă P1 ˆX

Theorem. Symplectically,

N » HilbgpP1
ˆXq

Deformed Hitchin system(Biswas, H.)

Have rank 2 bundle V with V Ñ O Ñ 0, V “ J1pW q b

W ˚, W a l.b.

Replace EndpEqbK by π´1pIq Ă EndpEqbV , again get

spectral curves in PpV q, line bundles L,

M1
“ tpE,ϕqu » tpΣ, Lqu

Again representingL by a divisor, get an element ofHilbgpPpV qq

Theorem. Symplectically

M1
» HilbgpPpV qq

All of these isomorphisms ”semi-local”, in the neighbour-

hood of a fixed Jacobian (almost the symmetric product of the

curve)
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Integrable systems of Jacobians- a local picture.

H : JÑ U.

Here U “ U g is a ball in Cg, and J “ J2g is 2g-dimensional,

symplectic (with form Ω). The fibration H is assumed to be

Lagrangian, with fibers that are Jacobians of smooth genus

g curves. Corresponding to J2g there is a family of curves

S “ Sg`1, with

H1 : SÑ U. p1.9q

When is J symplectic?

J is Cg ˆ U , quotiented by A-periods Ai,jpuq, Bi,jpuq. Get

action-angle coordinates: ti on the fibers, and Hi on U , with

Ω “
ÿ

i

dti ^ dHi

Normalise the A periods to I, for the B periods, the invari-

ance of the symplectic form under translation gives (Donagi-

Markman)

Bijpuq “
B2F puq

BHiBHj

for a suitable F .
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The Abel map gives us an embedding

I : S ãÑ J .

This map is not unique, but depends on the choice of a base-

point in each fibre.
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Theorem. Let I˚Ω^ I˚Ω “ 0 (”rank 2 condition”)

(i) Under the embedding I, the variety S is coisotropic.

Quotienting by the null foliation, one obtains, restricting

U if necessary, a surface Q to which the form I˚Ω projects,

defining a symplectic form ω on Q. The curves Sh all embed

in Q.

(ii) If I, Ĩ are two Abel maps with I˚Ω ^ I˚Ω “ 0, Ĩ˚Ω ^

Ĩ˚Ω “ 0, then I˚Ω “ Ĩ˚Ω, when g ě 3, and so Q depends

only on S and not on the particular Abel map chosen. For

g “ 2, I˚Ω^ I˚Ω “ 0 always.

(iii) There is a symplectic isomorphism

Φ : HilbgpQ,ωq Ñ J,

defined over a Zariski open set, between J and HilbgpQ,ωq

The symmetric product SP gpShq “ HilbgpSuq of the curves

is Lagrangian in HilbgpQ,ωq, and the restriction of Φ to

SP gpSUq is the Abel map

SP g
pSuq Ñ Ju .
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Can turn this around

Given a symplectic surface Q, and a smooth curve S in Q.

• Sections of the normal bundle are differential forms on

the curve.

• Deformations give a family of curves § over U , and so a

fiberwise symmetric product §g over U ,

• and then to the Jacobian.

The surface is an invariant of the system

Not quite complete- note shift of degrees. Gerbe structure.

(Donagi, Gaitsgory, Pantev)
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What about other groups?

The Hitchin integrable system exists for arbitrary reductive

groups.

• PG a principal G-bundle

• ϕ a section of adpPGq bKX

Moduli space MGpXq.

Commuting Hamiltonians: for F an invariant function of

degree i on g,

F pϕq P H0
pX,K i

Xq

Taking components, get an integrable system onMGpXq.

What is the geometry of this? .

Back to Glpnq; instead of individual eigenvalues of M diag-

onalisable, think of all ordered sequences pλi1, ...λinq of eigen-

values, in other words all possible diagonalisations. This gives

in general n! points in Cn, invariant under the action of the

symmetric group.
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For general G, generic ϕ, think at a generic x P X of

all possible conjugations of ϕ to h b KX , with h the Cartan

subalgebra; at non-generic X , to a Borel subalgebra containing

h; projecting to the Cartan, get a cameral curve Σ P hbKX .

It is Weyl invariant.

Figure 1: The cameral curve.
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Analogue of the line bundle?

• The bundle lifted to the spectral curve comes with a nat-

ural reduction to the Borel subgroup.

• Projecting to the Cartan subgroup H , get an H bundle

(think transition functions).

• It is not W -invariant, but a twist (computable in terms of

roots and the branch points of the curve (Donagi, Scog-

namillo), is), and the result can be normalised to degree

zero. Call the result PH .

Note the action of W intertwines the action on H and the

action on the curves.

H bundles: JΣ b χ “ J r, where JΣ is the Jacobian of X ,

and χ the lattice exp´1p1q in h

Invariant H-bundles. pJΣ b χq
W
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So: Abelianization (For smooth spectral curves)

MGpXq » tpΣ, PHqu

with Σ a W -invariant curve in KX b h , PH P pJΣ bZ χq
W .

The variety of pJΣ bZ χq
W is called a (generalized) Prym

variety.

Geometry then, a fibration of Prym varieties, over a family

U of W -invariant curves, parametrised by the Hitchin hamil-

tonians

Hitchin Hamiltonians give linear flows on pJΣ bZ χq
W .
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So... any Darboux coordinates? (Markman, H.)

Deforming the H-bundle: H1pΣ,O b hqW

Deforming the curve sitting in KX b h: H0pΣ, NΣq
W “

H0pΣ, KΣ b hqW

Proposition 1. (Abelianization) With an appropriate split-

ting, the symplectic form is the natural one on

H0
pΣ, NΣq

W
‘H1

pΣ,O b hqW

Where next?

There is an equivalence:

• The duality pairing W -invariant 2-form on

H0
pΣ, NΣq

W
‘H1

pΣ,O b hqW

• The duality pairing W -invariant 2-form on

H0
pΣ, NΣq

W
‘H1

pΣ,O b hq

• The duality pairing W -invariant h˚-valued 2-forms on

H0
pΣ, NΣq

W
‘H1

pΣ,Oq
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To get the second from the first, extend by zero (Schur’s

lemma). The second is basically a linear algebra equivalence.

In our case, our symplectic form on the family of Pryms on

U becomes a h˚-valued symplectic form on the corresponding

family of Jacobians.

Now pull back this form to the family of curves, embedded

in KΣ b h˚, via the Abel map. Note that the bundle KΣ b h

has a natural W invariant h˚-valued 2-form Ω.

Proposition 2. (Darboux coordinates) The pulled back form

under the Abel map is Ω.

Can allow poles in ϕ at a divisor D.

Essentially, same theorems.

• Have a Poisson moduli space MGpX,Dq. Symplectic

leaves fix conjugacy class over D. Have a log-symplectic

form ΩD on the bundle KΣpDq b h˚.

• Hitchin Hamiltonians given by the invariant polynomials;

Casimirs are values at D.

• KΣbh
˚ has a naturalW -invariant h˚-valued log-symplectic

form Ω, with poles at D.

• Abel map gives Darboux coordinates.
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G-Sklyanin systems (Markman, H.)

On an elliptic curveX (and, degenerating, on rational curves),

can define a Sklyanin system for arbitrary G.

(Etinghof- dynamical R-matrix. Geometrically- generic bun-

dles reduce to the torus.)

Spaces of pairs

(Principal bundle PG, meromorphic section of AutpPGq)

Recall that the Slpnq moduli space had symplectic leaves

obtained by fixing the locus and the type of the singularities.

At x “ 0:

gpxqdiagpxm1, xm2, ..., xmnqhpxq

The general group case is given in the same way, fixing

the locus of the singularities, and at each point of these, a

co-character. Let O denote this data, analogous to a divisor.
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• Have a symplectic moduli space NGpX,Oq.

• Hitchin Hamiltonians given by the invariant polynomials;

Casimirs are the locations of the singularities.

• A W -invariant spectral curve living in a pP1qr-bundle V

over X , compactifying X ˆ h˚.

• Build on V a naturalW -invariant h˚-valued log-symplectic

form Ω, with poles along 0,8

• Pull-back via via Abel map gives Ω.
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Local set-up

Suppose:

• A family U of W -invariant curves Σu

• An integrable system of Prym varieties Pr “ pJbZ χq
W

over U , with a symplectic form ω.

Remark: W does not have to be a Weyl group. Works for

”classical Pryms” W “ Z{2, χ “ sign representation, curves

with involution.

Set V “ CbZχ and r “ dimpV q. On the associated family

J of Jacobians, the associated V ˚-form ωJ. Embed the family

of curves S into J via the Abel map A˚.

Definition 1. The system is of rank two iffA˚pωV q^A
˚pωV q “

0 (i.e. the components A˚pωV qi ^ A
˚pωV qj “ 0)

Theorem. Under reasonable genericity assumptions:

1) There is an r`1 dimensional W -invariant variety X

into which the curves Su embed. It has a natural V ˚ valued

2 form ΩV , invariant under W .

2) For r ą 2, there is an invariant codim 1 foliation of

X such that the quotient by the foliation and by W is a

curve Σ.

3) The curves Su thus have a constant quotient Σ “

Su{W .
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A K3 example- bundles on an elliptic K3. (Donagi)

K3 surface Y Ñ P1, elliptic fibers.

MG “ G´ bundles on Y , degree zero.

On each elliptic curve Ez, reduce generically to the torus

H , and give a W -orbit in E˚ bZ χ.

Varying z, get a curve in the fiber product over P1 which

replaces Ez with E˚z bZ χ.

One gets, in addition an element of the Prym over the spec-

tral curve., and an integrable system of Prym varieties.

(Roughly speaking, the curve tells you what the bundle is

over each Ez, and the Prym element fits them together.)

Interesting- not given by a spectral construction, but by a

Fourier-Mukai transform.
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