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Geometric Langlands-correspondence

Schematically, the geometric Langlands-correspondence is often presented as relation

Lg-local systems on C ↔ D-modules on BunG(C)

• C: Riemann surface, compact, or with punctures.

• G: complex group1 with Lie algebra g.

• Lg: Langlands dual Lie algebra of g.

• Local systems: pairs (E ,∇), E holomorphic LG-bundle, ∇ connection on E .

• D-modules on BunG(C): Certain differential equations on BunG
(here from flat connection, and eigenvalue equations, see later parts)

By now there exist stronger and more general versions, especially due to Arinkin and

Gaitsgory. An important special case was first proven by Beilinson and Drinfeld, based

on a key result of Feigin and Frenkel for the special cases where (E ,∇) are opers.

1split, reductive
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Geometric Langlands-correspondence – case of opers

The work of Beilinson and Drinfeld restricted attention to a special class of local

systems (E ,∇) called opers. Mostly discuss case g = sl2 as an example. In this case:

• E = Eop: Unique up to isomorphism extension

0→ K
1
2 → Eop → K−

1
2 → 0.

[
transition functions ∼

(
λı ∂zλı
0 λ−1

ı

)]
.

• ∇ locally gauge equivalent to the form

∇ = dz

(
∂z +

(
0 t

1 0

))
, where t transforms as projective connection,

t(z) =
(
ϕ′(z)

)2
t̃
(
ϕ(z)

)
− 1

2
{ϕ, z}, {ϕ, z} :=

ϕ′′′

ϕ′
− 3

2

(
ϕ′′

ϕ′

)2

.

Extension to generic local systems is possible by considering meromorphic opers with

apparent singularities.

Results of Beilinson and Drinfeld still play an important role as foundations for many

subsequent generalisations of the geometric Langlands program (Gaitsgory et. al.).
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Conformal blocks – Key building blocks of conformal field theories.

Definitions customary in math and physics literature differ somewhat, roughly

M: spaces of (co-) invariants of VOAs like Virasoro algebra or affine Lie algebras,

P: functions satisfying differential equations called Ward identities.

We shall now briefly review the basic definitions and the relation between these points

of view for WZNW-like CFTs, starting on the side of physics.

The CFT’s of our interest are called WZW models. Start with compact WZW models

associated to G = SU(2), say. Basic objects: Space of states

H =
⊕
m,n

Rm ⊗ R̄n,

 [
vertex operators V(v ⊗ w̄; z, z̄), v ∈ Rm,

expectation values
〈
V(v ⊗ w̄; z, z̄)

〉
, w̄ ∈ R̄n,

]

where Rm, R̄n are representations of two copies of the affine algebra ĝk = ŝl2,k,

central extension of sl2 ⊗ C((z)), generators Jan ' T a ⊗ zn and J̄an ' T a ⊗ z̄n.[
Expansion into conformal

blocks Fr(v, z, C)

]
:
〈
V(v ⊗ w̄; z, z̄)

〉
=
∑
r,s

CrsFr(v, z, C)F̄s(w̄, z̄, C).
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Translation to mathematics

Let ĝk be the affine Lie algebra of level k. We shall consider a quadruple of data

(C,P, z,R), where C is a Riemann surface, P a point on C, z a coordinate defined

on a neighbourhood Uz of P which vanishes at P , and R a representation of ĝk.

A conformal block f is a linear map f : R→ C satisfying the invariance condition

f(J [η]v) = 0 for all η ∈ gout = g⊗ C[C \ P ], (1)

action of gout defined by Laurent expansion of η at P and replacing znηn, ηn ∈ g by

the operators representing ηn ⊗ zn ∈ ĝk on R.

Translation:

Fr(v, z, C) ≡ f(v).

Space of conformal blocks: Conf(C,R).
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Twisted conformal blocks

For given data (C,P, z) as before and a complex Lie group G one can consider a

holomorphic map g : Az → G from the annulus Az = Uz \ P to G. The cover

(U0, Uz) with U0 = C \ P , together with the transition function g : Az = U0 ∩ Uz
define a holomorphic G-bundle E ≡ Eg. When G is semi-simple, all G-bundles can be

represented in this way. This is the idea behind the Kac-Moody uniformisation

BunG ' Gout \G((t)) /G[[t]].

Define twisted conformal blocks fE by replacing gout by gEout in the condition (1).

Infinitesimal version: gEout \ g((t)) / g[[t]]  map g((t)) to tangent vectors ξ to BunG,

allowing one to define infinitesimal deformations of conformal blocks f via

δξfE(v) := fE(J [η]v).

Representatives η of ξ can be chosen such that (i) variations δξ preserve the defining

invariance property (1), and (ii) [δξ1, δξ2] = 0. Then δξ  flat connection on BunG.

Conformal blocks: D-modules!
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KZB equations I

Sugawara construction:

S(z) :=
1

2
: Ja(z)J

a(z) :=
∑
n∈Z

Snz
−n−2, [Sn, J

a
m] = −m(k + h∨)Jan+m,

[Sn, Sm] = (k + h∨)
(
(n−m)Sn+m + δn,−m

k
12 dim(g)

)
,

which means that Ln = (k + h∨)−1Sn generate the Virasoro algebra inside U(ĝk).

Note the Virasoro uniformisation theorem,

T (C) = Vect(C\P ) \ Vect(Uz\P ) /Vect(Uz).

 map from vector fields χ on Uz\P to complex structure deformations δζ. Define

δζfE(v) := fE(T [χ]v), where T [χ] =
∑
n

Lnχn if χ(z)
∂

∂z
=
∑
n

zn+1χn
∂

∂z
,

a projectively flat connection on Conf(C,R) – now for variations of complex structure

of C rather than bundle E .
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KZB equations II

Representing T [χ] in terms of Jam yields

δζfE(v) := KζfE(v),

with Kζ: Second order differential operator on a line bundle L⊗k on BunG.

Picking local coordinates q = (q1, . . . , qh) on M(C) and x = (x1, . . . , xd) on BunG,

we can represent the KZB equations explicitly in the form

(k + h∨)
∂

∂qr
Ψ(x,q) = Kr(x,q)Ψ(x,q),

[
Kr , Ks

]
= 0.

Upshot: There is a relation between

a) spaces of affine algebra conformal blocks, and

b) spaces of solutions to the KZB-equations.

In good cases: One-to-one!

Remark: Precise relation can be subtle in general. May depend on types of

representations. Ψ(x, t) analytic where? Allow certain singularities?
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Critical level I

Reconsider

S(z) :=
1

2
: Ja(z)J

a(z) :=
∑
n∈Z

Snz
−n−2 [Sn, J

a
m] = −m(k + h∨)Jan+m

[Sn, Sm] = (k + h∨)
(
(n−m)Sn+m + k

12 dimg δn,−m
)

at the critical level k = −h∨. Sn generate large center z(g) inside of U(gk)
∣∣
k=−h∨.

 ∃ Families of representations Rχ labelled by maps χ : z(g)→ C.

Such maps are characterised by their values χ(Sn) = tn, or the generating function

t(z) :=
∑
n∈Z z

−n−2tn called classical energy-momentum tensor.

Notation Rt ≡ Rχ. Generators Sn in Rt represented by multiplication with tn.

Generalisation to general Lie algebra g: Theorem of Feigin and Frenkel:

The center z(g) is canonically isomorphic (as Poisson-vertex algebra) to the

algebra of Lg-opers on the formal disc.
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Critical level II

Reconsider definition of conformal blocks: Note that for k 6= −h∨ the invariance

conditions defining conformal blocks ⇔ expectation values

〈 Ja(z) 〉 := f(Ja(z)vt), 〈T (z) 〉 := f(T (z)vt),

have analytic continuations defining holomorphic g-connections and projective c-

connections2 on C, respectively (proof uses strong residue theorem).

For k = −h∨ one may consider S(z) instead of T (z), defining

〈S(z) 〉 := f(S(z)v).

But f(S(z)vt) = t(z)f(vt) ⇒ conformal blocks f can only exist if

t(z) is the restriction to Uz of a globally defined oper on C.

2modify the 1
2 in transformation law of t(z) to c

12
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Critical level III

Putting things together:

• Given an oper t(z) which is globally defined on C,

there exist conformal blocks fE of ĝk at k = −h∨.

• Such conformal blocks naturally define a D-module on BunG.

This is an essential part of the version of the geometric Langlands correspondence

established by Beilinson and Drinfeld. Furthermore, S(z) =
1

2
:Ja(z)J

a(z) :

fE(J [η]v) = δξfE(v)

 ⇒
t(z)fE(vt) = fE(S(z)vt)

= S(z)fE(vt),

where S(z): Second order differential operator on L−h∨ ' K1/2
Bun over BunG.

Picking a reference projective connection t0, and a basis for H0(C,K2) yields

Hr fE(vt) = Er fE(vt).

t(z)− t0(z) =
∑
r

ErQr(z),

S(z)− t0(z) =
∑
r

HrQr(z).
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Critical level limit

Picking local coordinates x = (x1, . . . , xd) on BunG, and setting Ψ(x,q) = fEx(vt)

we can represent the eigenvalue equations explicitly in the form

Hr(x,q)Ψ(x,q) = ErΨ(x, t),
[

Hr , Hs
]

= 0.

Relation to the KZB-equations: (k + h∨)
∂

∂qr
Ψ(x, t) = Kr(x, t, k)Ψ(x,q) ?

Observation (Reshetikhin-Varchenko): For b−2 = −k − h∨ → 0, there exist solutions

as formal series in b−2 of the form

Ψ(x,q) = e−b
2S(t)ψ(x,q)(1 +O(b−2)),

 ∂

∂qr
S(q) = Er(q),

Hr(x, t)ψ = Er(q)ψ.


Eigenvalue equations for commuting Hamiltonians Hr(x, t) ≡ Kr(x, t,−h∨)!
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Relation to the Hitchin system

Hitchin moduli space MHit(C):

Space of pairs (E , ϕ), E : holomorphic bundle on C, ϕ ∈ H0(C,End(E)⊗K).

MHit(C) has canonical Poisson structure from Serre-duality between tangent space

H1(C,End(E)) to BunG at E and H0(C,End(E)⊗K).

Integrability: Let θ := 1
2tr(ϕ2) ∈ H0(C,K2). We have

θ(z) =

3g−3+n∑
r=1

HrQr(z), {Hr, Hs} = 0.

⇒ Hamiltonians Hr define integrable structure on MHit(C).

Observation:
Differential operators Hr represent a

quantisation of the Hamiltonians Hr!

Indeed, one may note that the symbols of the DOs Hr introduced before are global

functions on BunG, homogenous in degree 2. Hitchin has proven that the algebra of

such functions is generated by the Hamiltonians Hr.
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Hecke functors – informally I

Crucial refinement provided by the Hecke functions. Key ingredients:

• Hecke modifications: Take bundle E , open set U in a cover representing E ,

P ′ ∈ U , replace U by (U ′ = U \ P ′, D′), with D′ ⊂ U open disk around P ′.

Specify new transition function on U ′, possibly singular at P ′  new bundle E ′.

• Space of Hecke modifications: Grassmannian Gr = G((t)) /G[[t]].

• Hecke modifications can relate two different parameterisations of BunG, labelled

by points on G[[t]]-orbits Grλ = G[[t]] · λ(t) /G[[t]] in Gr, where λ: weight of LG.

• Due to the fact that BunG is a quotient of Gr, Hecke modifications induce

transformations of differential equations (functors of D-modules) on BunG,

• and therefore transformations between spaces of conformal blocks.

Key observation: The Hecke transformation of conformal blocks at a point P can

be described by the insertion of a particular representation (vertex operator) at P –

modifies the differential equations in the same way.
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Hecke functors – informally II

The more precise description (Beilinson-Drinfeld) uses

• A realisation of ĝ−h∨-modules as spaces of global sections Γ(Gr,S).

• The geometric Satake correspondence: Relation between cohomologies of

certain sheaves ICλ on Gr and representations of LG.

At the critical level one has (Beilinson-Drinfeld):

Wλ = Γ
(
Gr, ICλ ⊗ L⊗k

)
' Vλ ⊗ V−h∨(g).

Combining these results yields the crucial Hecke eigenvalue property:

HP ′λConf(C,R) ' Conf(C \ {P ′}, R⊗Wλ) ' Vλ ⊗ Conf(C,R).

Furthermore: Part of the D-module structure yields pair (Eop,∇op) characterising

infinitesimal changes of P ′ ∈ C  recover local system!

It will be useful to keep in mind that ∇op

(
χ1
χ2

)
= 0, ∇op = dz

(
∂z +

(
0 t
1 0

))
, implies

(∂2
z − t(z))χ2(z) = 0.
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Part 2:

Analytic Langlands correspondence
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Starting point: GL reinterpreted

Note that D-modules appearing in GL ∼ eigenvalue equations for quantized Hitchin’s

Hamiltonians  integrable model interpretation:

GL organises the “haystack” within which

we can look for actual eigenfunctions.

Next step: Impose further conditions:

a) Single-valuedness?

b) Square-integrability?

These conditions will be called “quantisation conditions”. Conditions of type b) define

the spectrum im quantum mechanics. However, it turns out that conditions a)3 and

b)4 will single out the same discrete subset of Opg(C).

3J.T., arXiv:1707.07873; Troy Figiel and J.T., in preparation.
4Etingof, Frenkel, Kazhdan arXiv:1908.09677, arXiv:2103.01509, arXiv:2106.05243
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Single-valuedness condition

For given pair (χ, χ̄), where χ ∈ Op(X), χ̄ ∈ Op(X), we may consider the pair of

complex conjugate eigenvalue equations

H Ψ = χ(H)Ψ, ∀ H ∈ D,

K̄ Ψ = χ̄(K̄)Ψ, ∀ K̄ ∈ D̄.
(2)

The Hitchin Hamiltonian have singularities at wobbly bundles admitting nilpotent

Higgs fields (cf. lectures by Ana Peon-Nieto). Bunvs
G: moduli space of stable bundles

which are not wobbly.

We may then look for smooth solutions on Bunvs
G locally of the form

Ψ(x, x̄) =
∑
r,s

Crsψr(x)ψ̄s(x̄),
Hψr(x) = χ(H)ψr(x), ∀ H ∈ D,

K̄ ψ̄s(x̄) = χ̄(K̄)ψ̄s(x̄), ∀ K̄ ∈ D̄,

which are single-valued.

This requires that the nontrivial monodromies that the local sections ψr(x) and ψ̄s(x̄)

will generically have (e.g. around wobbly loci) cancel each other.

– Typeset by FoilTEX – 18



Separation of variables I – making GL explicit

For surface C with g = 0, 1 there exist5 explicit integral transformations of the form

Ψ(x, x̄) =

∫
dudū K(x, x̄ |u, ū)Φ(u, ū), (3)

u = (u1, . . . , uD), ū = (ū1, . . . , ūD), such that (2) is equivalent to

(∂2
ur − t(ur))φ(ur, ūr) = 0, (∂̄2

ūr − t̄(ūr))φ(ur, ūr) = 0, ∀r.

The proof uses a technique from the theory of quantum integrable models called

Separation of Variables (SOV; Sklyanin). It follows that

Φ(u, ū) =

D∏
r=1

φr(ur, ūr),
(∂2
ur − t(ur))φr(ur, ūr) = 0,

(∂̄2
ūr − t̄(ūr))φr(ur, ūr) = 0.

(4)

The transformation (3) is invertible. Single-valuedness of the kernel K implies that the

functions φr(ur, ūr) are single-valued. It will turn out that the single-valued solutions

to (4) are unique up to normalisation, so φr(u, ū) = φ(u, ū) for all r.

5Sklyanin, Frenkel ’95, Enriquez-Feigin-Rubtsov, Felder-Schorr, Ribault-J.T., Frenkel-Gukov-J.T.,....
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Separation of variables II – making GL explicit

For g > 1: Frenkel (’95) has interpreted the first geometric construction of a Langlands

correspondence by Drinfeld as a variant of the SOV, based on

Mn
2,1 SmX

in
↙

j∨n
↘

jn
↙

Mn
2 Jacn

• Mn
2,1: Space of pairs (E ,L) defining extensions 0→ O → E → L → 0.

• Fibre of j∨n : Space of extension classes PH1(L−1), fibre of jn: PH0(C,K ⊗ L).

• (Serre-) duality between fibres ∼ map from D-modules on SmX to Mn
2 .

Use to relate Hitchin-eigenvalue equations to equations (4):

• Represent solutions ΨE as homogenous functions ΨE(x, x̄) on H1(L−1).

• Fourier-transformation w.r.t. x  functions ΦE(p, p̄) on H0(C,K ⊗ L).

• Conjecture/claim: Expressing p in terms of zeros uk of ϕ− ∈ H0(C,K ⊗ L)

 equations (4).
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Single-valuedness

The separation of variables maps single-valued solutions of pairs of complex-conjugate

Hitchin eigenvalue equations to

(∂2
u − t(u))φ(u, ū) = 0, (∂̄2

ū − t̄(ū))φ(u, ū) = 0.

It is possible to show that smooth solutions can be represented in the form

φ(u, ū) = χ(u) · C · χ†(ū), χ(u) = (χ1(u), χ2(u)), (∂2
u − t(u))χ(u) = 0.

The matrix C can be brought to diagonal form by a change of basis. It can be shown

that up to changes of C induced by changes of basis the only choice of C which

gives single-valued solutions φ(u, ū) is C = diag(1,−1). This is single-valued if the

monodromy is in SU(1, 1), which is conjugate to SL(2,R).

Subtlety: May allow solutions defined up to a sign, corresponding to solutions φ(u, ū)

defined on a cover of C.
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Real opers I

A real oper is an oper with real monodromy. Opers are in one-to-one correspondence

to projective structures on C. Indeed, one may use the ratios

A(z) =
χ1(z)

χ2(z)
, χi(z) : linearly independent solutions of (∂2

z − t(z))χi(z) = 0,

to define new local coordinates w = A(z) on C. Features:

• Oper represented by t̃(w) = 0,

• Changes of coordinates w′(w): Möbius transformations

An atlas {Uı; ı ∈ I} for C with transition functions represented by Möbius trans-

formations defines a projective structure, allowing one to represent C as a cover of

a fundamental domain in C.

Example:

Monodromy Fuchsian

 uniformisation

e.g. C = C1,1 :
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Real opers II – Grafting (Surgery on projective structures)

Grafting:

Cut figure on bottom

left open along γ,

insert multiple copies

of the annulus,

reglue along red curves.

Result depicted in the

figure on bottom right.
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Real opers III – Goldman’s classification

All real opers can be constructed in this way:

Integer-measured laminations Λ: Homotopy classes of finite collections of simple

non-intersecting noncontractible closed curves on S with integral weights, such that

• The weight of a curve is non-negative unless the curve is peripheral.

• A lamination containing a curve of weight zero is equivalent to the lamination

with this curve removed.

• A lamination containing two homotopic curves of weights k and l ∼ a lamination

with one of the two curves removed and weight k + l assigned to the other.

The set of all such laminations on C is denoted as MLC(Z). Half-integer measured

laminations Λ ∈MLC(1
2Z) can be defined in an analogous way.

Theorem (Goldman ’87): Real projective structures are in one-to-one correspondence

to half-integer measured laminations Λ ∈MLC(1
2Z).

In other words: All real projective structures can be obtained from the

uniformising projective structure by grafting along a Λ ∈MLC(1
2Z).
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The work of Etingof, Frenkel and Kazhdan

The work6 of Etingof, Frenkel and Kazhdan (EFK) deepens the story considerable by

introducing harmonic analysis aspects into analytic GL.

Up to now: Solution to eigenvalue problem restricted to single-valuedness only.

EFK introduce a smooth algebraic moduli space Bunrs
G(C) by considering the

stack of bundles Bun◦G(C) with automorphisms in the center of G, and forgetting

automorphisms. On Bunrs
G(C) introduce

• Line bundle of half-densities Ω
1/2
Bun := |K1/2

Bun |, where |L| = L ⊗ L̄,

• SG space of smooth compactly supported sections of Ω
1/2
Bun, and

• define a Hermitian form 〈., .〉 by

〈v, w〉 :=

∫
Bunrs

G

v w̄, v, w ∈ SG.

• Hilbert space HG: Completion of SG with respect to 〈., .〉.
6arXiv:1908.09677, arXiv:2103.01509, arXiv:2106.05243
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The work of Etingof, Frenkel and Kazhdan II

EFK formulate a set of conjectures and prove them in some cases, leading to the

following picture:

• The eigenspaces Hχ,χ̄ generated by single-valued solutions to the pair of

eigenvalue equations with eigenvalues (χ, χ̄) are contained in HG, at most

one-dimensional, and non-vanishing only if χ̄ is complex conjugate to χ.

• The Hilbert spaces HG admit an orthogonal decomposition into the spaces Hχ,χ̄
(completeness)

EFK furthermore introduce a family of integral operators called Hecke operators,

roughly of the form

(Hλf)(E) :=

∫
Zλ(E,P ′)

q∗1(f),

• Zλ(E , P ′) – space of all possible λ-Hecke modifications of bundle E at point P ′,

isomorphic to closure Grλ of orbit Grλ = G[[t]] · λ(t) /G[[t]].

• q∗1(f) pull-back of f under correspondence between bundles defined by Hecke

modifications.
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The work of Etingof, Frenkel and Kazhdan III

EFK conjecture and prove in some cases that

• the Hecke operators extend to a family of commuting compact normal operators

on HG,

• HG decomposes into eigenspaces of the Hecke operators,

• the eigenspaces coincide with the eigenspaces Hχ,χ̄ of the Hitchin Hamiltonians,

• and the eigenspaces Hχ,χ̄ are non-trivial only if χ is a real oper.

It seems quite remarkable that the conditions of single-valuedness and χ̄ being the

complex conjugate of χ turn out to be equivalent to single-valuedness and square-

integrability in this case.

The work of EFK uses many results from previous work on geometric Langlands as

groundwork or input for the functional-analytic extension studied in their work.

Expect further fruitful interplay between algebro-geometric and analytic aspects.
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Analytic Langlands correspondence: A brief summary

Analytic Langlands correspondence:

Real opers ↔

{
single-valued

L2-normalisable

}
Hitchin eigen-D-modules

Intepretation from the perspective of integrable models:

Analytic Langlands

D-modules

Hecke operators

Uniformising oper

Grafting

Quantum Integrable models

Local IM: Commuting Hamiltonians

Non-local IM: Baxter Q-operators

Ground state

Creation operators
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Part 3:

Quantum Analytic Langlands correspondence

and the relation to

N = 2, d = 4 supersymmetric field theories
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Quantum geometric Langlands correspondence

One-parameter deformations of the geometric Langlands correspondence

have been proposed both in mathematics7 and physics8.

Such deformations are sometimes called quantum geometric Langlands

correspondence.

Although less well developed at this point, they offer the attractive perspective to

understand the geometric Langlands correspondence as a limiting case of a theory in

which the Langlands duality is realised in a more transparent way.

As a basic feature of the quantum geometric Langlands correspondence one may

expect to find on top of the usual “magnetic” Hecke functors labelled by weights λ

of Lg a dual family of “electric” Hecke functors labelled by weights λ̌ of g.

Natural question: Is there an analytic version of the quantum geometric

Langlands correspondence?

7Frenkel ’05; Gaitsgory ’07
8Kapustin-Witten ’06; J.T. ’10
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The H+
3 -WZNW model I – Physics perspective

The path integral defining the correlation functions of the H+
3 WZNW model9 can be

represented schematically as

〈 n∏
k=1

Φjr(xr|zr)
〉

WZWκ

:=

∫
h:C→H+

3

D[h] e−SWZ[h]
n∏
r=1

φjr(h(zr);xr),

where

SWZ[h] =
κ

π

∫
dx
(
∂φ∂̄φ+ |∂̄γ|2e2φ

)
, h =

(
e−φ + |γ|2eφ γ̄eφ

γeφ eφ

)
,

and the fields Φj(x|z) get represented by the functions φj(h;x) defined as

φj(h;x) =
2j + 1

π

(
(1,−x) · h ·

(
1

−x̄

))2j

.

9K. Gawedzki ’89
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The H+
3 -WZNW model II – Translation to a math problem

The space of states is believed to be HH+
3

=

∫
R+

dj Pj, where Pj: principal series

representation of ŝl(2,C)κ ∼ ŝl
l

2,−κ ⊕ ŝl
r

2,−κ, with

ŝl
l

2,−κ generated by current Ja(z) =
∑
n

Janz
−n−1,

ŝl
r

2,−κ generated by current J̄a(z̄) =
∑
n

J̄anz̄
−n−1.

This can be used to argue10 that the correlation functions
〈∏n

r=1 Φjr(xr|zr)
〉

WZWκ

(i) satisfy the KZB equations for ŝl2,−κ, and their complex conjugates,

(ii) are single-valued and real analytic away from wobbly loci,

(iii) have only rather mild singular behaviour near boundary of M(C).

〈 n∏
k=1

Φjr(xr|zr)
〉

WZWκ

= Single-valued tempered conformal block of ŝl(2,C)κ

10J.T. ’97, J.T. ’99, and work in progress with Duong Dinh
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Quantum analytic Langlands correspondence

in the H+
3 -WZNW model

Recap:

• Analytic GL  find single valued eigenfunctions of Hitchin Hamiltonians

• KZB – natural deformation of Hitchin eigenvalue equations, in the sense thatKrΨ(x,q) = (k + h∨)
∂

∂qr
Ψ(x,q)

Ψ(x,q) = e−b
2S(q)ψ(x,q)(1 +O(b−2))

 ⇒
b−2=−k−h∨

 ∂

∂qr
S(q) = Er(q),

Hrψ = Er(q)ψ.


So correlation functions of H+

3 – natural deformations of Hitchin eigenfunctions.

Immediate puzzles:

• Do these guys exist mathematically?

• How to construct correlation functions classified by integer laminations?
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Relation to Liouville theory I

The solutions to this problem can be represented in the following form11〈 n∏
r=1

Φjr(xr|zr)
〉

WZWκ

=

∫
du Kκ(x,u; z)Z(u, z, b) , (5)

with Kκ(x,u; z) being an explicitly known kernel, if Z(u, z, b) is a solution of the

BPZ-equations12(
b2
∂2

∂u2
r

− Tr(ur)

)
Z(u, z, b) = 0, b−2 = κ− 2 = −k − 2,

with Tr(ur) being certain first order differential operators in ∂ul and ∂zr. Z(u, z, b)

satisfies the conditions of single-valuedness and real-analyticity away from the

singularities of Tr(ur) with mild singular behavior there and near ∂M(C).

The transformation in (5) intertwines KZB-equation and BPZ-equations satisfied by

Liouville correlation function. It is a deformation of the SOV-transformation, and

the differential operators b2 ∂
2

∂u2 − Tk(u) are quantum opers, canonical deformations

of the opers ∂2

∂u2 − t(u)!

11Feigin-Frenkel-Stoyanovsky; Ribault-J.T. ’05; Frenkel-Gukov-J.T.
12BPZ: Belavin-Polyakov-Zamolodchikov
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Relation to Liouville theory II

The deformed SOV-transformation could map single-valued solutions to BPZ to single

valued solutions Z(u, z, b) of KZB with certain singularities.

Single-valued solutions to BPZ with the necessary properties exist:

Z(u, z, b) =

〈 n∏
r=1

Vαr(zr)

h∏
l=1

V−1/2b(ul)

〉
Liou

,

where



〈 n∏
r=1

Vαr(zr)

〉
Liou

:=

∫
φ:C→R

D[φ] e−SL[φ]
n∏
r=1

e2αrφ(zr),

SL =
1

4π

∫
C

d2x
(
|∇φ(x)|2 + 4πµe2bφ(x)

)
.

 (6)

The path integral in (6) has been constructed rigorously13. The result of this

construction satisfies the BPZ equations together with the conditions of single-

valuedness and mild singular behaviour14 which are necessary for producing single-

valued solutions to the KZB equations via quantum SOV.

13David, Kupiainen, Rhodes, Vargas 2014
14Kupiainen, Rhodes, Vargas ’15-’17; Guillarmou, Kupiainen, Rhodes, Vargas ’20
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Hecke operators

Beilinson and Drinfeld had identified certain representations of ĝk as the objects

representing Hecke functors in conformal blocks,

Wλ = Γ
(
Gr, ICλ ⊗ L⊗k

)
, λ : weight of Lg.

These representations exist away from the critical level k = −h∨. They coincide with

the irreducible highest-weight modules of ĝk with highest weight −(k + h∨)λ.

The representations Wλ have null-vectors. If g = sl2 and λ = 1
2, one has J−−1wλ = 0,

for example.

In the H+
3 -WZW model there are fields Φ−(k+h∨)λ associated to the representation

Wλ. These fields satisfy additional differential equations (null vector decoupling) on

top of the KZB-equations. Such fields are usually called degenerate.

The quantum SOV transformation maps these fields to degenerate fields of the

Virasoro algebra of type (1, n) satisfying the BPZ-equations.15 Such fields will be

called “magnetic” in the following.

15J.T. 2011
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Magnetic line operators and Hecke eigenvalue property

Following E. Verlinde one can define certain operators on spaces of conformal blocks

by pair creation of degenerate fields (bubbling), analytic continuation of the position

of one of them along a closed curve, and pair annihilation (fusion). It is known that

Verlinde line operators generate an algebra representing a quantisation of the

algebra of functions on the character variety of flat PSL(2)-connections.

Applying this sequence of operations to degenerate fields of type (1, n) of Liouville

theory (the (pre-)images of the Hecke fields Wλ under the SOV transformation) yields

magnetic Verlinde line operators. In the critical level limit k → −h∨, one recovers

the commutative algebra of functions on the character variety.
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Electric line operators and grafting

There is another family of degenerate ŝl2,k representations, associated to the fields

Φj, 2j ∈ Z+ in the H+
3 -WZNW model. The SOV transformation maps them to

Virasoro degenerate fields of type (m, 1), called “electric”.16

One can again define Verlinde line operators using electric VOs. Such line operators

will leave a strong effect on the correlation functions in the limit k → −h∨.

The definition is easily generalised from simple closed curves to integer-measured

laminations Λ.

We have evidence17 for the following claim:

Insertion of an electric Verlinde line operator associated to a lamination Λ yields

for k → −h∨ the eigenfunction of the Hitchin Hamiltonians associated to Λ.

16Frenkel-Gukov-J.T.
17Work in progress, based on previous computations of Verlinde line operators by Alday-Gaiotto-Gukov-Tachikawa-Verlinde

and Drukker-Gomis-Okuda-J.T., and analysis of critical level limit using CFT bootstrap methods.
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Gauge theory interpretation I

The AGT-correspondence relates the conformal blocks of Liouville theory to instanton

partition functions of supersymmetric gauge theories of class S. Such gauge theories

Gg(C) are labelled a Lie algebra g and a possibly punctured Riemann surface C.

Restricting attention to g = sl2 allows us to abbreviate to G(C).

There are various extensions that have been proposed and sometimes proven by now,

obtained by introducing defects of various types.

Of particular interest are partition functions on squashed four-spheres E4
ε1ε2

x2
0 + ε21|w1|2 + ε22|w2|2 = 1, w1 = x1 + ix2, w2 = x3 + ix4.

Based on important work of V. Pestun, AGT predicted that18

ZG(C)(E
4
ε1ε2

) '
〈 n∏

r=1

Vαr(zr)

〉
L

,

assuming a suitable dictionary between the parameters involved.

18' means equality up to a boring factor.
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Gauge theory interpretation II

Interesting generalisations are concerned with certain defects. Surface defects with

support on the ellipsoids E2
ε1

= {x ∈ E4
ε1ε2

;w2 = 0} or Ě2
ε2

= {x ∈ E4
ε1ε2

;w1 = 0}
will be denoted by Dε1 and Ďε2, respectively.

Surface defect type I - points on C: There is evidence for the following conjecture:

ZG(C)

(
E4
ε1ε2

, DI
ε1

(u), ĎI
ε2

(v)
)
'
〈 n∏

k=1

Vαk(zk)

l∏
i=1

V−1/2b(ui)

m∏
j=1

V−b/2(vj)

〉
L

Surface defect type II - wrapped on C: There is evidence19 for

ZG(C)

(
E4
ε1ε2

, DII
ε1

(x)
)
'
〈 n∏

k=1

Φjr(xr|zr)
〉Ex

W

with parameters x being related to singular behaviour of gauge fields near E2
ε1

.

Line defects: Supports can be S1
ε1

= {x ∈ E2
ε1

;x0 = 0} or Š1
ε2

= {x ∈ Ě2
ε2

;x0 = 0}.
Such line defects are represented by Verlinde line operators in Liouville theory.20

19Alday-Tachikawa; Kozcaz-Pasquetti-Wyllard; Nawata; Frenkel-Gukov-J.T.; Nekrasov; Nekrasov-Tsymbaliuk;....
20Alday-Gaiotto-Gukov-Tachikawa-Verlinde; Drukker-Gomis-Okuda-J.T.; Gomis-Okuda-Pestun; Ito-Okuda-Taki,....
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Gauge theory interpretation III

Proposal: It makes sense to consider simultaneously surface defects DII
ε1

(x) on E2
ε1

and line defects Ľε2(Λ) on Š1
ε2

– no intersection of supports. The known results

immediately suggest the following conjecture:

Conjecture: The partition functions ZG(C)

(
E4
ε1ε2

, DII
ε1

(x), Ľε2(Λ)
)

are

ZG(C)

(
E4
ε1ε2

, DII
ε1

(x), Ľε2(Λ)
)
'
〈 n∏

k=1

Φjr(xr|zr)
〉Ex

W,Λ

where
〈
. . .
〉Ex

W,Λ
is obtained from

〈
. . .
〉Ex

W
by the action of electric Verlinde line

operators.

– Typeset by FoilTEX – 41



Gauge theory interpretation IV

The emerging picture looks particularly appealing from the point of view of the

Nekrasov-Shatashvili program relating SUSY-QFTs to integrable models:

Analytic Langlands

Uniformising oper

D-modules

Hecke operators

Grafting

Potential for opers

Integrable models

Ground state

Hamiltonians

Q-operators

Creation operators

Yang-Yang-function

SUSY QFT

Surface defect DII
ε1

only

Local observables

Surface defect DI
ε1

Line defects on Š1
ε2

Free energy Fε1(z; Λ),

where Fε1(z; Λ) = lim
ε2→0

ε2 logZG(C)(E
4
ε1ε2

, Ľε2(Λ))

The integrable structures of N = 2, d = 4 SUSY QFTs becomes

fully visible through the interplay of various defect observables.
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