Understanding the initial steps of eukaryotic protein synthesis and its regulation

TANWEER HUSSAIN

Molecular Reproduction Development and Genetics (MRDG)

Indian Institute of Science, Bangalore

STATISTICAL BIOLOGICAL PHYSICS: FROM SINGLE MOLECULE TO CELL (ONLINE), DECEMBER 14, 2020

Ribosome: a sophisticated molecular machine

reads the genetic code (nucleotide codons in the mRNA) to form the cognate polypeptide

Translation: Protein synthesis

- Three steps:
- 1. Initiation
- 2. Elongation
- 3. Termination (and recycling)

Step-wise assembly of the ribosome at the start codon

Translation initiation in eukaryotes is more complex

Schematic of Eukaryotic translation initiation

40S-eIF1-eIF1A-eIF3 complex

Recruitment of ternary complex (eIF2-tRNA_i-GTP); 43S complex

Binding of mRNA-eIF4 complex; 48S (P_{OUT}) scanning complex

Recognition of start codon; 48S (P_{IN}) scanning-arrested complex

erri dissociates, Pri

Dissociation of eIF1 triggers downstream steps of release of factors and joining of 60S ribosomal subunit with the help of eIF5B to form elongation competent 80S

Cryo-EM grid preparation

Cryo-EM grid

Randomly oriented macromolecules

Cryo-EM pipeline from data to map

Strategy used to capture a 48S P_{IN} conformation

To use	Rationale	
Yeast system	Simpler system; Unstructured mRNA (with AUG) without 5' cap can assemble 48S without eIF4 and eIF3	
K. lactis	to make 48S at slightly lower pH (6.5) to minimize deacylation of tRNAi	
Sui3-2 mutant of eIF2 (eIF2β-S264Y)	stabilizing P _{IN} state	
tRNAi variant (U31•A39)	favouring P _{IN} state	
eIF5	shifts the equilibrium towards P _{IN} state	

Reconstitution of the yeast 48S complex:

 $40S + eIF1 + eIF1A + eIF3 + TC^* + eIF5 + mRNA(AUG)$

*TC= eIF2 (Sui3-2 variant) + GDPCP + tRNAi (U31•A39)

Two complexes of interest was obtained upon 3D classification

Hussain*, Llácer* et al. Cell (2014) 159: 597–607

Rotation of 40S head between the 40S-eIF1-eIF1A complex and py48S

Conformational rearrangement of the P site

Recognition of conserved GC bps in ASL

h29

tRNAi is bound deep in P site recognizing start codon

-1 and +4 interactions may allow scanning to pause

mRNA-codon

G1150

N-terminal tail (NTT) of eIF1A is conserved

NTT

S cerevisiae K lactis s pombe A oryzae C elegans B taurus X laevis H sapiens G gallus M musculus R norvegicus D rerio D discoideum D melanogaster A thaliana T thermophila P tetraurelia

MGKKNTKGGKKGRRGKNDSDGPKRELIYKEEGQEYAQIT MGKKNTKGGKKGRRGKNDSDGPKRELIYKEEGQEYAQIT MPKN#GKGGKNRRRGKNENENEKRELTYAEEGQMYAQVT MPKNKGKGGKNRRRGKNESDKEKRELVFKEEGQEYAQVV MPKNKGKGGKNRRRGKNENDFMKRELDLKEEGQEYGQVS MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVI MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVI MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVI MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVI MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVI MPKNKGKGGKNRRRGKNENEPEKRELVFKEDGQEYAQVI MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVI MPKNKGKGGKNRRRGKNENE-QKRELQFKEEGQEYAQVL MPKNKGKGGKNRRRGKNENEFEKRELIFKEDQOEYAOVT MPKNKGKGGKNRKRGKNEADDEKRELIFKEDGQEYAQVL MPKNKGRGGKNYRRGKNENE-TKRELVFKEEGMEYAQVI MPKNKGRGGKNYRRGKNENL-TKRQLETKEDGQDYAQVI **** ** ****

- NTT of eIF1A enhances start codon recognition
- Mechanism unknown
- NTT of eIF1A not observed in any structure

NTT of eIF1A stabilizes the codon-anticodon interaction

The NTT of eIF1A is observed for the first time in this complex

Conserved glycines help to bend the NTT at the codon-anticodon

it possible to contact mRNA

elF1 captured prior to release from 48S

elF1 in 40S-elF1-elF1A complex

Movement of β-hairpin loops of eIF1 away from tRNAi in 48S

eIF1 may promote fidelity of AUG recognition by destabilizing PIN

Partial 48S complex (without eIF3) from yeast

Hussain*, Llácer* et al. Cell (2014) 159: 597–607

Yeast 48S complexes with cognate and non-cognate start codon

Llácer*, Hussain* et al. Mol Cell (2015) 59: 399–412

New dataset: 48S-AUG (cognate codon)

- Wild type version of eIF2
- Again py48S, ~15% of the particles
- But, after further 3D classification, only 2% of particles

Different components used to reconstitute 48S complex with non-cognate start codon

Component	Non-cognate	Cognate
mRNA	Unstructured mRNA with AUC	Unstructured mRNA with AUG
tRNAi	Wild type tRNAi	tRNAi variant (U31•A39) (favouring P _{IN} state)
eIF5	NONE	YES (shifts the equilibrium towards P _{IN} state)
eIF3	Recombinant eIF3 expressed in bacteria (hence free of eIF5)	eIF3 expressed in yeast (may contain co-purified eIF5)

Reconstitution of the yeast 48S-AUC complex:

```
40S + eIF1 + eIF1A + eIF3 + TC + mRNA(AUC)
```

TC= eIF2 + GDPCP + tRNAi

48S complex with non-cognate AUC codon at 6.0 Å

Comparison between 48S- AUG and AUC complexes

Llácer*, Hussain* et al. Mol Cell (2015) 59: 399–412

40S head movement from 48S- AUC to AUG complex

elF1 and elF1A movements

The NTT of eIF1A is only present in the 48S-AUG complex

Major conformational changes between 48S-AUC and 48S-AUG complexes

elF3 seems to encircle the 40S

eIF3b and eIF3i relocate together to the ribosomal subunit interface during translation initiation and modulate start codon selection

elF3b beta-propeller in density

Mutational analysis of eIF3b ressidues

elF3b/3i relocates to subunit interface from its position on solvent interface

How eIF3 interacts with eIF1 and eIF2?

eIF3 subunit binds close to eIF2 $\!\gamma$

N-terminal region of eIF3c in contact with eIF1

Can the OPEN conformation of 48S discriminate between cognate, near-cognate and non-cognate codons?

In collaboration with Prof. Prabal Maiti Department of Physics, IISc

Selection of start codon during mRNA scanning in eukaryotic translation initiation Ipsita Basu, Biswajit Gorai, Thyageshwar Chandran, Prabal K. Maiti, Tanweer Hussain bioRxiv 2020.11.06.371484; doi: https://doi.org/10.1101/2020.11.06.371484

What these structures have revealed about the mechanism of initiation

48S (open, scanning)

48S (P_{IN}, closed, Scanning-arrested)

Where does elF5 bind?

- eIF5 is a GTPase activating protein (GAP)
- Stimulates the hydrolysis of GTP in eIF2 complex
- Contains two domains: N and C-terminus domains (NTD and CTD)
- Arg15 is important for GAP activity
- CTD interacts with eIF1

48S PIC with eIF5 (NTD) at 3 Å

Llácer, Hussain et al. eLife 2018;7:e39273.

48S PIC with eIF5 (NTD)

Fitting of eIF5-NTD in map

Llácer, Hussain et al. eLife 2018;7:e39273.

elF5-NTD binds near P site in P_{IN} state of 48S

eIF5-NTD occupies the position left vacant by eIF1 after start codon recognition

elF3 leaves the subunit interface and returns to solvent interface

What these structures have revealed about the mechanism of initiation **1**A **5**-6° 5' 3' GUA **MANA GDP** 40S-elF1-elF1A-elF3 43S (P_{OUT}) 48S (open, scanning)

48S (P_{IN}, closed, Scanning-arrested) 48S (P_{IN}, closed, Scanning-arrested)

1

What these structures have revealed about the mechanism of initiation **1**A **5**-6° 5' 3' GUA **MANA GDP** 40S-elF1-elF1A-elF3 5 43S (P_{OUT}) 48S (open, scanning) 48S (P_{IN}, closed,

Scanning-arrested)

48S (P_{IN}, closed, Scanning-arrested)

Translational control

Fundamental to all biological processes

Translation Initiation is the target of most regulation Understanding the detailed mechanism of regulation of translation initiation is essential

Eukaryotic Translation Initiation

Biochemistry

Perspective

Subscriber access provided by JRD Tata Memorial Library I Indian Institute of Science

The mRNA recruiting eIF4 factors involved in protein synthesis and its regulation

Rishi Kumar Mishra, Ayushi Datey, and Tanweer Hussain

Biochemistry (2020): 59, 34-46. doi: 10.1021/acs.biochem.9b00788.

Take home message

• Large scale conformational changes guide the ribosomal PIC along the initiation pathway

Advanced Center for Cryo-Electron Microscopy Facility (ACCEM-IISc) at IISc Bengaluru

Acknowledgement

IISc Start-up Grant DBT-IISc Partnership Programme

DBT-Wellcome India Alliance Fellowship

MRDG & My Lab members

Jose Llacer, IBV-CSIC, Spain Yuliya Gordiyenko, MRC-LMB, UK Dong J, NIH, USA Alan Hinnebusch, NIH, USA

Venki Ramakrishnan, MRC-LMB, UK

Ipsita & Biswajit, Physics, IISc Prof. Prabal Maiti, Physics, IISc

Thank you