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Quantum fluctuations of a scalar field + inflation



uantum fluctuations of a scalar field + inflation

Anisotropy maps are unique windows into inflationary physics



Common origin of known datasets

Current observations tell us that density perturbations in all Standard Model (SM) species

and Dark Matter (DM) originate from the same inflationary fluctuation (e.g. the inflaton).
Planck,1807.06211

Current observations (CMB) already constrain the prospect of seeing new inflationary
physics in future datasets based on SM and DM species (line-intensity, large scale
structure).

Can we think of a fluctuation map that could be very different from the CMB?



What’s the messenger?

 (Copiously produced in the early universe
* Free-streaming (does not thermalize with SM and DM)

 Could be detectable with the technology that we have today
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GGravitational waves!



Case 1: Gravitational waves from a phase transition
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Extensions of SM have PTs at 7. ~ 1 — 1000 TeV. Frequency of GW from such PTs would be redshifted

to 10~* — 10~ 'Hz today, which is the target frequency range of many proposed space-based
experiments such as LISA, BBO, etc.
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Recap: CMB anisotropies
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GWB anisotropies
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Isocurvature GWB anisotropy
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Multi-field inflation: Inflaton + ALP (y)
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A model of isocurvature GWB

Geller, Hook, Sundrum, Tsai 1803.10780
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A model of isocurvature GWB
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The tradeoft
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The tradeoff
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Can the PT sector be dominant during phase transition?

AB, R. Sundrum: JHEP 06 (2023) 029
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PT sector dominates
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No suppression at production

Relative dilution from eMD
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Improvement in the GWB signal

Dashed lines: Simple model

Solid lines:; eMD model

Sgw ~ 107%, for ~ 107"
Sgw ~ 107%, fop ~ 107

Sgw ~ 1071, for ~ 1074



Detectability of large anisotropy
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Another possibility

Matter domination followed by a period of kination: rotating ALP field
Induced gravitational waves from large scalar perturbations at small scales
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Rotating ALP field

K. Harigaya, R. Co 1910.02080

Xint > Js

| : matter phase

Il : kKination phase

Fig. from Y. Gouttenoire et al. 2111.01150
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Case 2: Induced secondary-GW

Matter domination followed by a period of kination: rotating ALP field
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In progress...
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In progress...

BBO
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Summary

There can be new cosmological fluctuation maps significantly different from CMB.
Such maps can be realized in GWB (first-order phase transition, induced secondary-GW).

GWB with large (large scale) fluctuations are interesting both experimentally and
theoretically.

Modified post-inflationary cosmologies play an important role in the observability of
these highly anisotropic GWB.
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Summary

There can be new cosmological fluctuation maps significantly different from CMB.
Such maps can be realized in GWB (first-order phase transition, induced secondary-GW).

GWB with large (large scale) fluctuations are interesting both experimentally and
theoretically.

Modified post-inflationary cosmologies play an important role in the observability of
these highly anisotropic GWB.

Thank you!
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Back-up slides
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Bubbles are unresolvable

%1 Caution: Zoomed in!

> 10!% bubble collisions/arcsec?

—> Bubbles are unresolvable
sources . getting a course
grained picture of GWB
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Earlier production + free-streaming of GW — large range of scales is unaltered by sub-horizon

physics
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http://PTPlot.org

Energy density in GWB from PT (2)
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Astrophysical foregrounds in mHz range

Inspiraling stellar-mass BH

LISA
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Giulia Cusin-, Irina Dvorkin, Cyril Pitrou, Jean-Philippe Uzan: 1904.07757v2

Also see: 2201.08782v from LISA working group
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