

Lecture 2: Quantum state reduction and feedback stabilization

Nina Amini

CNRS-CentraleSupélec-L2S School 'Quantum Trajectories' ICTS

5th February, 2025

The closed-loop QED experiment²

Sampling time (\sim 100 μs) long enough for feedback computations.

¹Courtesy of Igor Dotsenko ²C. Sayrin et al., Nature, 1-September 2011

LKB photon box: Controlled Markov chain

Maximum of photon number in the cavity is n^{max}

•
$$M_g = \cos(\frac{\phi_R + \phi}{2} + N\phi)$$
 and $M_e = \sin(\frac{\phi_R + \phi}{2} + N\phi)$, where $N = a^{\dagger}a$ is the photon number operator, $N = (\operatorname{diag}(n))_{0 \le n \le n^{\max}}$, a is an upper-triagular matrix with $(\sqrt{n})_{1 \le n \le n^{\max}}$ as upper diagonal

D(α_k) is the displacement operator describing the coherent pulse injection D(α_k) = exp(α_k(a[†] − a)) with α_k a real parameter corresponding to the control input

Remark. Measurement operators are diagonal in the basis $|n\rangle \langle n|$, i.e., Quantum Non-Demolition (QND) measurements

Feedback stabilization

Aim. Stabilize a particular photon number state $\bar{\rho} = |\bar{n}\rangle \langle \bar{n}|$. Define $V(\rho_k) = 1 - tr(\bar{\rho}\rho_k)$.

Theorem (Mirrahimi, Dotsenko, Rouchon, 2009). Take the feedback controller

$$u_{n} = \begin{cases} \operatorname{argmax}_{\alpha \in [-\bar{\alpha},\bar{\alpha}]} \operatorname{tr} \left(\bar{\rho} D(\alpha) \rho_{k+1/2} D(-\alpha) \right) & \text{if } V(\rho) > 1 - \epsilon \\ c_{1} \operatorname{tr} \left([\bar{\rho}, \boldsymbol{a}^{\dagger} - \boldsymbol{a}] \rho_{k+1/2} \right) & \text{if } V(\rho) \leq 1 - \epsilon \end{cases}$$

Assume that for all $n \in \{0, \dots, n^{\max}\}$, we have that $\frac{\phi_R + \phi}{2} + n\phi \neq 0 \mod \pi/2$. For small enough $c_1 > 0$ and $\epsilon > 0$, the trajectories converge almost surely towards the target Fock state $\bar{\rho}$.

Sketch of the proof

- Step1: the trajectories starting within the set $\{\rho | V(\rho) > 1 \epsilon\}$ reach in one step the set $\{\rho | V(\rho) \le 1 2\epsilon\}$ with probability one
- Step 2: the trajectories starting within the set $\{\rho | V(\rho) \le 1 2\epsilon\}$ will never hit the set $\{\rho | V(\rho) > 1 \epsilon\}$ with a uniformly non-zero probability $\rho > 0$
- **Step 3**: quantum trajectories converge toward the state $\bar{\rho}$

Monte-Carlo simulations

A better convergence

The Markov model

The random evolution of the state ρ_k at time step k,

$$\rho_{k+1} = \mathbb{U}_{u_k}(\mathbb{M}_{\mu_k}(\rho_k))$$

- Consider a finite dimensional quantum system (the Hilbert space H ∈ C^d is of dimension d > 0) and D(H) := {ρ ∈ C^{d×d} | ρ = ρ[†], tr (ρ) = 1, ρ ≥ 0},
- $u_k \in \mathbb{R}$ is the control at step k,
- μ_k is a random variable taking values μ in $\{1, \dots, m\}$ with probability $p_{\mu,\rho_k} = \operatorname{tr} \left(M_{\mu} \rho_k M_{\mu}^{\dagger} \right)$,

- The set of Kraus operator satisfies the constraint $\sum_{\mu=1}^{m} M_{\mu}^{\dagger} M_{\mu} = I$,
- ▶ \mathbb{U}_u is the super-operator \mathbb{U}_u : $\mathcal{D}(\mathcal{H}) \ni \rho \mapsto U_u \rho U_u^{\dagger} \in \mathcal{D}(\mathcal{H})$ where $U_u = \exp(-iuH)$, where H is an Hermitian operator $H \in \mathbb{C}^{d \times d}$ with $H^{\dagger} = H$,

• For each
$$\mu$$
, \mathbb{M}_{μ} is the super-operator
 $\mathbb{M}_{\mu}: \quad \rho \mapsto \frac{M_{\mu}\rho M_{\mu}^{\dagger}}{\operatorname{tr}(M_{\mu}\rho M_{\mu}^{\dagger})} \in \mathcal{D}(\mathcal{H})$ defined for $\rho \in \mathcal{D}(\mathcal{H})$ such that $p_{\mu,\rho} = \operatorname{tr}\left(M_{\mu}\rho M_{\mu}^{\dagger}\right) \neq 0.$

Assumption 1 (QND measurement)

The measurement operators M_{μ} are diagonal in the same ortho-normal basis $\{ |n\rangle | n \in \{1, \dots, d\} \}$, therefore $M_{\mu} = \sum_{n=1}^{d} c_{\mu,n} |n\rangle \langle n|$ with $c_{\mu,n} \in \mathbb{C}$. Since $\sum_{\mu=1}^{m} M_{\mu}^{\dagger} M_{\mu} = I$, we have $\sum_{\mu=1}^{m} |c_{\mu,n}|^2 = 1$ for all $n \in \{1, \dots, d\}$.

Assumption 2

For all $n_1 \neq n_2$ in $\{1, \dots, d\}$, there exists a $\mu \in \{1, \dots, m\}$ such that $|c_{\mu,n_1}|^2 \neq |c_{\mu,n_2}|^2$.

A fundamental theorm

Theorem (Kushner, 1971). Let X_k be a Markov chain on the compact state space *S*. Suppose, there exists a non-negative function V(X) satisfying

$$\mathbb{E}\left(V(X_{k+1})|X_k\right) - V(X_k) = Q(X_k),$$

where Q(X) is a positif continuous function of X, then the ω -limit set Ω (in the sense of almost sure convergence) of X_k is included in the following set

$$I := \{X | Q(X) = 0\}.$$

Convergence of the open loop dynamics

When $u_k = 0$, $\forall k$, the dynamics is simply given by

$$ho_{k+1} = \mathbb{M}_{\mu_k}(
ho_k) = rac{M_\mu
ho_k M_\mu^\dagger}{\mathrm{tr}ig(M_\mu
ho_k M_\mu^\daggerig)},$$

with the operator $M_{\mu} = \text{diag}(c_{\mu,n})_{1 \le n \le d}$.

Theorem (A., Rouchon, Mirrahimi, 2011) Consider a Markov process ρ_k obeying the dynamics given in above with an initial condition ρ_0 in $\mathcal{D}(\mathcal{H})$. Then

- ▶ with probability one, ρ_k converges to one of the *d* states $|n\rangle \langle n|$ with $n \in \{1, \dots, d\}$.
- the probability of convergence towards the state |n⟩ ⟨n| depends only on the initial condition ρ₀ and is given by

$$\operatorname{tr}\left(
ho_{0}\left| n
ight
angle \left\langle n
ight|
ight) =\left\langle n
ight|
ho_{0}\left| n
ight
angle .$$

Elements of a proof:

Step 1. Taking the following Lyapunov function

$$V(\rho) := -\sum_{n=1}^{d} f(\operatorname{tr}(\ket{n} \langle n | \rho)), \text{ where } f(x) = \frac{x^2}{2}.$$

Step 2. Show that tr
$$(|n\rangle \langle n| \rho_{k+1})$$
 is a martingale.

$$\mathbb{E}\left(\operatorname{tr}\left(\left|n\right\rangle\left\langle n\right|\rho_{k+1}\right)\left|\rho_{k}\right\rangle=\operatorname{tr}\left(\left|n\right\rangle\left\langle n\right|\rho_{k}\right).$$

Step 3. The function -f being concave, thus $V(\rho)$ is a super-martingale

$$\mathbb{E}\left(V(\rho_{k+1})|\rho_k\right) \leq V(\rho_k).$$

More precisely, we obtain

$$\begin{split} \mathbb{E}\left(V(\rho_{k+1})|\rho_{k}\right) - V(\rho_{k}) &= \\ &- \frac{1}{4} \sum_{n=1}^{d} \sum_{\mu,\nu} \operatorname{tr}\left(M_{\mu}\rho_{k}M_{\mu}^{\dagger}\right) \operatorname{tr}\left(M_{\nu}\rho_{k}M_{\nu}^{\dagger}\right) \times \\ &\left(\frac{|C_{\mu,n}|^{2}\langle n|\rho_{k}|n\rangle}{\operatorname{tr}\left(M_{\mu}\rho_{k}M_{\mu}^{\dagger}\right)} - \frac{|C_{\nu,n}|^{2}\langle n|\rho_{k}|n\rangle}{\operatorname{tr}\left(M_{\nu}\rho_{k}M_{\nu}^{\dagger}\right)}\right)^{2} := Q_{1}(\rho_{k}). \end{split}$$

The ω -limit set Ω is a subset of the following set

$$\{\rho_{\infty}|\quad \frac{|C_{\mu,n}|^2 \langle n|\rho_{\infty}|n\rangle}{\operatorname{tr}(M_{\mu}\rho_{\infty}M_{\mu}^{\dagger})} - \frac{|C_{\nu,n}|^2 \langle n|\rho_{\infty}|n\rangle}{\operatorname{tr}(M_{\nu}\rho_{\infty}M_{\nu}^{\dagger})} = 0\},$$

 $\implies \text{Assume } \exists \bar{n}_1 \neq \bar{n}_2 \in \{1, \dots, d\} : \langle \bar{n}_1 | \rho_{\infty} | \bar{n}_1 \rangle > 0 \text{ and } \langle \bar{n}_2 | \rho_{\infty} | \bar{n}_2 \rangle > 0. \text{ Then}$

$$\forall \mu, \quad |\mathbf{C}_{\mu, \overline{n}_1}|^2 = |\mathbf{C}_{\mu, \overline{n}_2}|^2.$$

By Assumption 2, $\exists \bar{\mu} \in \{1, \cdots, m\} : |c_{\bar{\mu}, \bar{n}_1}|^2 \neq |c_{\bar{\mu}, \bar{n}_2}|^2$. Then there exists a unique \bar{n} such that $\langle \bar{n} | \rho_{\infty} | \bar{n} \rangle \neq 0$.

Step 4. The probability measure of the random variable ρ_k converges to $\sum_{n=1}^{d} p_n \delta(|n\rangle \langle n|)$, where,

• $\delta(|n\rangle \langle n|)$ denotes the dirac distribution at $|n\rangle \langle n|$.

• p_n is the probability of convergence towards $|n\rangle \langle n|$. In particular,

 $\mathbb{E}\left(\operatorname{tr}\left(\rho_{k}\left|n\right\rangle\left\langle n\right|\right)\right)\longrightarrow\boldsymbol{p}_{n}.$

But tr $(|n\rangle \langle n| \rho_k)$ is a martingale and $\mathbb{E} (\operatorname{tr} (|n\rangle \langle n| \rho_k)) = \mathbb{E} (\operatorname{tr} (|n\rangle \langle n| \rho_0))$ Then $p_n = \langle n| \rho_0 |n\rangle$.

Feedback Stabilization

Recall:

$$\rho_{k+1} = \mathbb{U}_{u_k}(\mathbb{M}_{\mu_k}(\rho_k)).$$

Goal. Design a feedback law that globally stabilizes the Markov chain ρ towards a target state $|\bar{n}\rangle \langle \bar{n}|$ with $\bar{n} \in \{1, \dots, d\}$.

Astuce. Construction of a strict Lyapunov function which is based on the connectivity of the graph attached to H and inverting a Laplacian matrix derived from H. Lemma (A., Rouchon, Mirrahimi, 2011). Consider the $d \times d$ real matrix R^{H} , defined by

$$R_{n_{1},n_{2}}^{H} = 2|\langle n_{1}| H | n_{2} \rangle|^{2} - 2\delta_{n_{1},n_{2}} \langle n_{1}| H^{2} | n_{2} \rangle.$$

Then R^H is a Laplacian matrix. Assume the graph G^H of the Laplacian matrix R^H is connected, Then, for any positive reals λ_n , $n \in \{1, ..., d\}$, $n \neq \bar{n}$, there exists a vector $\sigma = (\sigma_n)_{n \in \{1,...,d\}}$ of \mathbb{R}^d such that $R^H \sigma = \lambda$ where λ is the vector of \mathbb{R}^d of components λ_n for $n \neq \bar{n}$ and $\lambda_{\bar{n}} = -\sum_{n \neq \bar{n}} \lambda_n$.

Now choose σ by $R^{H}\sigma = \lambda$ and construct the function $W_{0}(\rho) = \sum_{n=1}^{d} \sigma_{n} \langle n | \rho | n \rangle$, we have

$$\frac{\partial^2 W_0(\mathbb{U}_u(|n\rangle\langle n|))}{\partial u^2}\bigg|_{u=0} = \sum_{l=1}^d \sigma_l \operatorname{tr}\left([H, |n\rangle\langle n|][H, |l\rangle\langle l|]\right).$$

Since,

 $\mathsf{tr}\left(\left[H,\left|n\right\rangle\left\langle n\right|\right]\!\left[H,\left|l\right\rangle\left\langle l\right|\right]\right)=R_{n,l}^{H}$

Thus

$$\frac{\partial^2 W_0(\mathbb{U}_u(|n\rangle\langle n|))}{\partial u^2}\bigg|_{u=0} = \sum_{l=1}^d R^H_{n,l}\sigma_l = \lambda_n$$

Then W_0 is convex for $n \neq \bar{n}$ and concave for $n = \bar{n}$.

The global stabilizing feedback

Consider the controlled Markov chain $\rho_{k+1} = \mathbb{U}_{u_k}(\mathbb{M}_{\mu_k}(\rho_k))$. Construct $W_{\epsilon}(\rho) = \sum_{n=1}^{d} \left(\sigma_n \langle n | \rho | n \rangle + \epsilon \left(\langle n | \rho | n \rangle \right)^2 \right)$, where the parameter $\epsilon > 0$ should be not too large to ensure that $\forall n \in \{1, \dots, d\}/\{\bar{n}\}, \ \lambda_n + \epsilon \left((\langle n | H | n \rangle)^2 - \langle n | H^2 | n \rangle \right) > 0$. Theorem (A., Rouchon, Mirrahimi, 2011) Denote by $\rho_{k+\frac{1}{2}} = \mathbb{M}_{\mu_k}(\rho_k)$. Take $\bar{u} > 0$ and consider the following feedback law

$$u_{k} = \mathcal{K}(\rho_{k+\frac{1}{2}}) = \operatorname*{argmax}_{u \in [-\bar{u},\bar{u}]} \Big(\mathcal{W}_{\epsilon} \big(\mathbb{U}_{u} \big(\rho_{k+\frac{1}{2}} \big) \big) \Big),$$

Then, for any $\rho_0 \in \mathcal{D}(\mathcal{H})$, the closed-loop trajectory ρ_k converges almost surely to the pure state $|\bar{n}\rangle \langle \bar{n}|$.

Elements of a proof

$$\mathbb{E}\left(W_{\epsilon}(\rho_{k+1})|\rho_{k}\right) - W_{\epsilon}(\rho_{k}) := Q_{1}(\rho_{k}) + Q_{2}(\rho_{k}).$$

With

$$Q_1(\rho_k) := \sum_{\mu} p_{\mu,\rho_k} \Big(W_{\epsilon} \big(\mathbb{M}_{\mu}(\rho_k) \big) - W_{\epsilon}(\rho_k) \Big),$$

and

$$Q_2(\rho_k) := \sum_{\mu} p_{\mu,\rho_k} \Big(\max_{u \in [-\bar{u},\bar{u}]} \Big(W_{\epsilon} \big(\mathbb{U}_u(\mathbb{M}_{\mu}(\rho_k)) \big) \Big) - W_{\epsilon} \big(\mathbb{M}_{\mu}(\rho_k) \big) \Big).$$

These functions are both positive continuous functions of ρ_k . Then, the ω -limit set Ω is included in the following set

 $\{\rho \in \mathcal{D}(\mathcal{H}) | \ \boldsymbol{Q}_1(\rho) = \boldsymbol{0}\} \ \cap \ \{\rho \in \mathcal{D}(\mathcal{H}) | \ \boldsymbol{Q}_2(\rho) = \boldsymbol{0}\}.$

$$\blacktriangleright Q_1(\rho) = 0 \Longrightarrow \rho = |n\rangle \langle n|$$

$$\blacktriangleright (Q_1(\rho) = 0) + (Q_2(\rho) = 0) \Longrightarrow \rho = |\bar{n}\rangle \langle \bar{n}|.$$

The control Lyapunov function used for the LKB photon box

LKB photon box

• Here
$$\mathcal{H} = \mathbb{C}^{n^{\max}+1}$$

- Take θ/π irrational (then assumption there exists μ such that |c_{μ,n1}|² ≠ |c_{μ,n2}|² is verified)
- The Hamiltonian is $H = i(a^{\dagger} a)$
- The graphs G^H is connected (and consequently R^H)

►
$$R_{nn}^{H} = 4n + 2$$
, $R_{n-1,n}^{H} = -2n$, and $R_{n+1,n}^{H} = -2n - 2$

Take *n* = 3

• Take
$$\lambda_n = 1$$
 for any $n \neq \overline{n}$

• Take
$$\epsilon < \frac{1}{2n^{\max}+1}$$

For u small enough, by Baker-Campbell-Hausdorff:

$$\mathbb{U}_{u}(\rho) = \rho - iu[H,\rho] - u^{2}[H,[H,\rho]] + \mathcal{O}(|u|^{3})$$

Convergence toward the goal state $\left|3\right\rangle\left\langle 3\right|$

LKB photon box: imperfections ³

$$\rho_{n+1} = \frac{\mathbf{\Phi}_{i_n}(\rho_n)}{\operatorname{tr}\left(\mathbf{\Phi}_{i_n}(\rho_n)\right)}$$

with $\Phi_i(\rho) = \sum_{i \in \mathcal{Y}} \eta_{i,j} V_j \rho V_j^{\dagger}$. The elements η_{ij} of the correlation matrix for $i, j \in \{no, g, e, gg, ge, ee\}$ is

$i \setminus j$	no	g	е	88	ee	ge or eg
no	1	$1 - \varepsilon_d$	$1 - \varepsilon_d$	$(1 - \varepsilon_d)^2$	$(1 - \varepsilon_d)^2$	$(1 - \varepsilon_d)^2$
8	0	$\varepsilon_d (1 - \eta_g)$	$\epsilon_d \eta_e$	$2\varepsilon_d(1-\varepsilon_d)(1-\eta_g)$	$2\varepsilon_d (1-\varepsilon_d) \eta_e$	$\varepsilon_d (1 - \varepsilon_d) (1 - \eta_g + \eta_e)$
е	0	$\epsilon_d \eta_g$	$\varepsilon_d (1 - \eta_e)$	$2\varepsilon_d (1-\varepsilon_d) \eta_g$	$2\varepsilon_d (1-\varepsilon_d)(1-\eta_e)$	$\varepsilon_d \left(1 - \varepsilon_d\right) \left(1 - \eta_e + \eta_g\right)$
88	0	0	0	$\varepsilon_d^2 (1-\eta_g)^2$	$\epsilon_d^2 \eta_e^2$	$\varepsilon_d^2 \eta_e (1-\eta_g)$
ge	0	0	0	$2\varepsilon_d^2\eta_g(1-\eta_g)$	$2\varepsilon_d^2\eta_e(1-\eta_e)$	$\varepsilon_d^2 \left((1 - \eta_g) \left(1 - \eta_e \right) + \eta_g \eta_e \right)$
ee	0	0	0	$\epsilon_d^2 \eta_g^2$	$\varepsilon_d^2 (1-\eta_e)^2$	$\epsilon_d^2 \eta_g (1 - \eta_e)$

$$\begin{split} V_{no} &= \sqrt{p_0} I, \quad V_g = \sqrt{p_1} \cos \phi_N, \quad V_e = \sqrt{p_1} \sin \phi_N \\ V_{gg} &= \sqrt{p_2} \cos^2 \phi_N, \quad V_{ge} = V_{eg} = \sqrt{p_2} \cos \phi_N \sin \phi_N, \\ V_{ee} &= \sqrt{p_2} \sin^2 \phi_N, \end{split}$$

³See the proof of robustness in Amini et al., Automatica, 2013.

Experimental data

Stabilization around 3-photon state

An open-loop trajectory starting from coherent state with an average of 3 photons relaxes towards vacuum (decoherence due to finite photon life time around 70 ms) and a closed-loop trajectory

Detection efficiency 40% Detection error rate 10% Delay 4 sampling periods

Truncation to 9 photons

Thank you !