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The closed-loop QED experiment?

Sampling time (~ 100 us) long enough for feedback
computations.

"Courtesy of Igor Dotsenko
2C. Sayrin et al., Nature, 1-September 2011



LKB photon box: Controlled Markov chain

D(c) My, px M}, D(—axy)
tr(MHk Pk M;]:k )

> Pkl = with pu, = g or e.

» Maximum of photon number in the cavity is n™*

> My = cos(?5% + N¢) and M = sin(25f% + N¢), where
N = a'ais the photon number operator,
N = (diag(n))o<p< e » @i @n upper-triagular matrix with

(v/N)1<n<nma as upper diagonal
» D(ay) is the displacement operator describing the

coherent pulse injection D(ay) = exp(ak(a’ — a)) with ok a
real parameter corresponding to the control input

Remark. Measurement operators are diagonal in the basis
|n) (n|, i.e., Quantum Non-Demolition (QND) measurements



Feedback stabilization

Aim. Stabilize a particular photon number state p = |n) (n|.

Define V(pk) =1- tr(ﬁpk).

Theorem (Mirrahimi, Dotsenko, Rouchon, 2009). Take the
feedback controller

a€[—a,al

{ argmax tr (ﬁD(a)pk+1/gD(—a)) if V(p) >1—¢
Un ==
citr ([p, @ — alpis1/2) if V(p) <1—e¢

Assume that for all n € {0,--- , "™} we have that

281% 1 ng # 0 mod /2. For small enough ¢; > 0 and ¢ > 0,
the trajectories converge almost surely towards the target Fock
state p.



Sketch of the proof

» Step1: the trajectories starting within the set
{p| V(p) > 1 — €} reach in one step the set
{p| V(p) <1 — 2¢} with probability one

> Step 2: the trajectories starting within the set
{p| V(p) <1 — 2¢} will never hit the set {p| V(p) > 1 — €}
with a uniformly non-zero probability p > 0

» Step 3: quantum trajectories converge toward the state p



Monte-Carlo simulations

Detection (-1=g, +1=e). Total number of wrong clicks (red): 0
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A better convergence



The Markov model

The random evolution of the state p, at time step k,

pr+1 = Uy, (Muk (pk))

» Consider a finite dimensional quantum system (the Hilbert
space H € C% is of dimension d > 0) and
D(H):={peCH| p=pl, t(p)=1, p>0}

» u, € Ris the control at step k,

> 1 is a random variable taking values p in {1,--- , m} with
probability p,, ,, = tr <Mﬂple>,



The set of Kraus operator satisfies the constraint
Sy MM, =1,

U, is the super-operator

Uy: D(H) > p+s UspUj, € D(H) where Uy = exp(—iuH),
where H is an Hermitian operator H € C9*9 with Hf = H,
For each i, M, is the super-operator

. MMPMZ i
M,: p— tr(/\ﬂﬂpm) € D(H) defined for p € D(#H) such

that p,, , = tr (M#pl\/l;ﬂ) £ 0.



Assumption 1 (QND measurement)

The measurement operators M, are diagonal in the same
ortho-normal basis { |n) | ne {1,---,d}}, therefore

M, =39 . c.n|n) (n| with ¢, » € C.

Since 327, MiM, = I, we have Y"1, |G,.0|2 = 1 for all
ne{l,--- d}.

Assumption 2

Forall ny # nyin {1,--- ,d}, there exists a u € {1,--- , m} such
that [Cyp, > # |Cuny|?-



A fundamental theorm

Theorem (Kushner, 1971). Let X be a Markov chain on the
compact state space S. Suppose, there exists a non-negative
function V(X) satisfying

E (V(Xk+1)1Xk) = V(Xk) = Q(Xk),

where Q(X) is a positif continuous function of X, then the
w-limit set Q (in the sense of almost sure convergence) of X is
included in the following set

I:={X| QX)=0}.



Convergence of the open loop dynamics
When uy =0, Vk, the dynamics is simply given by

M,k M;,
st = M) =TTy
n

with the operator M,, = diag(C,,n)1<n<a-

Theorem (A., Rouchon, Mirrahimi, 2011) Consider a Markov
process px obeying the dynamics given in above with an initial
condition pg in D(#H). Then

» with probability one, px converges to one of the d states
|n) (njwithne {1,---,d}.

» the probability of convergence towards the state |n) (n|
depends only on the initial condition pg and is given by

tr(po [n) (nl) = (nl po |m) .



Elements of a proof:

» Step 1. Taking the following Lyapunov function

d
V(p) =~ _H(tr(In) (n]p)), where f(x)=2%.
n=1

» Step 2. Show that tr (|n) (n| px41) is a martingale.

E (tr (In) (1| pk1) lpk) = tr (In) (nl pk) -

» Step 3. The function —f being concave, thus V(p) is a
super-martingale

E(V(pk+1)lok) < V(pk)-



More precisely, we obtain
E (V(pr+1)lpx) — V(Pk) =

Ztr MpkMT tr (Ml,pkM:E) X

n=1 p,v

2
[Cunl®(nlpkln)  [CunlP(nlpkln) \ ._
<tr(M“kaCI):) a tr(M,/pkl’\.;f:f) > T Q1(pk)
The w-limit set Q is a subset of the following set

1CnlP(nlpos|n) _ |Cunl®(nlpos|n) _
{poo| t:(M}‘,pooMl) tr(M,,pooMl') - O}

= Assume 3ny #np € {1,...,d} : (M| psc|N1) > 0and
(M| poo |M2) > 0. Then

Vﬂa ’ I’l1 ’2 ‘C,u n2‘2



By Assumption 2, 3i € {1,---,m} : |c; 5|? # |Cap,|*. Then
there exists a unique n such that (1| p [N) # 0.

» Step 4. The probability measure of the random variable pk
converges to Zg:1 pnd(|n) (n|), where,
> §(|ny (n|) denotes the dirac distribution at |n) (n].

» pj, is the probability of convergence towards |n) (n| .
In particular,
E (tr (px ) (7)) — P

But tr (|n) (n| pk) is a martingale and
E (tr (|n) (nl px)) = E (tr (1n} (1 po)) Then pn = (1] po |n)



Feedback Stabilization

Recall:
pk+1 = Uy, (Muk (o))

Goal. Design a feedback law that globally stabilizes the Markov
chain p towards a target state |n) (n| withne {1,--- ,d}.

Astuce. Construction of a strict Lyapunov function which is
based on the connectivity of the graph attached to H and
inverting a Laplacian matrix derived from H.



Lemma (A., Rouchon, Mirrahimi, 2011). Consider the d x d
real matrix R, defined by

Ry np = 2| (M| H |n2) |2 — 265, n, (M| H? ) .

Then R" is a Laplacian matrix. Assume the graph G of the
Laplacian matrix R" is connected, Then,

for any positive reals A\, n € {1,...,d}, n # n, there exists a
vector o = (opn)nef,...qy Of R? such that R = A where A is the

vector of R of components A, for n # fand A = — 3 5 An-



Now choose ¢ by R"& = X\ and construct the function
Wo(p) = 329_, on (n| p|n) , we have

52 n)(n J
P LA | ™ 5 (H ) (lH 1) ()

u=0 1

Since,

tr ([H, [n) (nll[H, [1) (1) = Ry,
Thus

&PWo (Uu(Im)(n)))
ou?

d
H
= Z Rn’/O'/ = )\n.
u=0

Then W, is convex for n # n and concave for n = n.



The global stabilizing feedback

Consider the controlled Markov chain py 1 = Uy, (M, (pk))-
Construct W.(p) = 3°9_, (a,, (nlp|n) +e((nl p |n>)2) , where
the parameter ¢ > 0 should be not too large to ensure that
vne {1,....d}/{n}, A\n+e(((n|H|n))? — (n| H? |n)) > 0.
Theorem (A., Rouchon, Mirrahimi, 2011) Denote by
Prs1 = My, (pk)- Take U > 0 and consider the following

2
feedback law

Uk = K(pyyy) = argmax(WS(Uu(pk%))),

ue[—u,U]

Then, for any po € D(H), the closed-loop trajectory pi
converges almost surely to the pure state |n) (n|.



Elements of a proof

E (We(pr+1)lpi) — We(pi) := Qi (pi) + Qo(pk)-
With
Z P, pi ( M, Pk)) We(pk))v

and

Qelpk) = X, P (X (We(U(Mu(p))) ) — W (ML (o) )

These functions are both positive continuous functions of p.
Then, the w-limit set Q is included in the following set

{p e D(H)| Qi(p) =0} N {p € D(H)| Qa(p) = 0}

> Qi(p) =0 = p=n)(n]
> (Qi(p) = 0) + (Qulp) = 0) = p = |71) (7.



The control Lyapunov function used for the LKB photon box

Coefficient o, of the Lyapunov function

251 O i

\
o
1.5¢ ‘ \ ]

photon number n

W.(p) =32, (e(n o] Y2 + o (1] p |n>> with e = 0 in fact



LKB photon box

vy

vVvvyVvVvVvVvyyy

Here # = C"™™+1

Take 6 /= irrational (then assumption there exists p such
that |, n,|? # |Cuny|? is verified)

The Hamiltonian is H = i(a’ — a)

The graphs G" is connected (and consequently RM)
Rb,=4n+2 Ry, =-2nand R, =-2n-2
Take n=3

Take \p =1foranyn#n

Take € < grmkry

For u small enough, by Baker-Campbell-Hausdorff:

Uu(p) = p — iulH, p] — U*[H. [H. p]] + O(|uf’).



Convergence toward the goal state |3) (3|

Fidelity between p and the goal Fock state
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LKB photon box: imperfections 3
_ ¢in (pn)
P (@, (0n)

with ®;(p) = Y;cy, 71 VjpV]'. The elements 7; of the correlation
matrix for i,j € {no, g, e, gg, ge, ee} is

‘ i\Jj ‘ no ‘ g ‘ e ‘ g8 ‘ ee ‘ ge or eg ‘
no | 1 1—¢ 1-¢& (1—¢&4)" (1 7&,)2 (1—¢4)
g | 0 [ea(l—mp) | eme [2ea(1—gg)(1—ng) | 2e4(1—€1)7e ea(1—£4) (1-1g+Me)
e | 0 £aMg e (1—1ne) 2e4(1—€4) Mg 2e4(1—€4)(1—1n,) ea(l—€g)(1—1n.+nyg)
88| 0 0 0 & (1—1,) gn; £ne (1—ng)
ge |0 0 0 26,1 (1= 1) 2eqme(L—1e) | 5 (1=7) (1—7e) + NeNe)
ee |0 0 0 e3n; & (1—1.) e3n (1-1.)

Vno = v/Pol, Vg = /picosoy, Ve=+/Ppisingy
Vg = \/'(TZCOSZ ON,  Vge = Vog = /P2 cos g sin ¢,
Vee = \/piZSin.2 (ZsNa

3See the proof of robustness in Amini et al., Automatica, 2013.




Experimental data

An open-loop trajectory
starting from coherent
state with an average of
3 photons relaxes
towards vacuum
(decoherence due to
finite photon life time
around 70 ms) and a
closed-loop trajectory

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

Truncation to 9 photons

Stabilization around 3-photon state

ny = 3 photons
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Thank you !
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