Neutrino Astronomy : The Supernova Story (Lecture 1)

Sovan Chakraborty Indian Institute of Technology Guwahati

2-3, May 2024 <u>Understanding The Universe Through Neutrinos</u> ICTS-TIFR, Bengaluru.

Neutrino Astronomy

- Spin $\frac{1}{2}$
- Chargeless
- No bending in magnetic fields → Points back to the source
- Weakly interacting
- Minimal scattering → Arrive from regions opaque to light
- Excellent Astronomical Messenger!!
- Almost massless
 Neutrino Oscillations

Neutrino Sources

Supernova one of the most energetic events in nature:

Terminal phase of a massive star (M > 8~10 M_{\odot}), collapses & ejects the outer mantle in a shock wave driven explosion.

Energy & Time Scale:

99% energy (10⁵³ ergs) is emitted by neutrinos (Energy $\sim 10~{\rm MeV})$ in $\sim \! 10~{\rm s}$

Neutrino detection : (L1 & L3)

High-statistics of events $(10^5-10^6 \text{ event}/10 \text{ sec})$ for galactic SN

Neutrino detection : (L1 & L3)

High-statistics of events $(10^5-10^6 \text{ event}/10 \text{ sec})$ for galactic SN

Neutrino theory/phenomenology : (L2)

Neutrino Oscillations in extreme astrophysical environment.

Neutrino detection : (L1 & L3)

High-statistics of events $(10^5-10^6 \text{ event}/10 \text{ sec})$ for galactic SN

Neutrino theory/phenomenology : (L2)

Neutrino Oscillations in extreme astrophysical environment.

Neutrino astrophysics : (L1)

Crucial role of neutrino in the explosion mechanism.

Neutrino detection : (L1 & L3)

High-statistics of events $(10^5-10^6 \text{ event}/10 \text{ sec})$ for galactic SN

Neutrino theory/phenomenology : (L2)

Neutrino Oscillations in extreme astrophysical environment.

Neutrino astrophysics : (L1)

Crucial role of neutrino in the explosion mechanism.

Neutrino nuclear astrophysics :

Nucleosynthesis in supernovae is a neutrino-driven process

Supernova Neutrinos: HOW?

- Intial energy spectra
- Initial time spectra
- Initial Angular spectra

- Dense matter effect
- Shock wave, Earth effect
- New interactions

- Different interection channels
- Final energy spectra
- Final time spectra

Stellar Collapse and Supernova Explosion

Stellar Collapse and Supernova Explosion

Why No Prompt Explosion?

Why No Prompt Explosion?

"Neutrino-heating mechanism": Neutrinos revive stalled shock by energy deposition [Colgate & White, 1966, Wilson, 1982, Bethe & Wilson, 1985]

Convective processes & hydrodynamic instabilities enhance the heating mechanism

[Herant et al. 1992, 1994; Burrows et al. 1995, Janka & Müller 1994, 1996; Fryer & Warren 2002, 2004; Blondin et al. 2003; Scheck et al. 2004,06,08]

"Neutrino-heating mechanism": Neutrinos revive stalled shock by energy deposition [Colgate & White, 1966, Wilson, 1982, Bethe & Wilson, 1985]

Convective processes & hydrodynamic instabilities enhance the heating mechanism

[Herant et al. 1992, 1994; Burrows et al. 1995, Janka & Müller 1994, 1996; Fryer & Warren 2002, 2004; Blondin et al. 2003; Scheck et al. 2004,06,08]

Neutrino-Driven Supernovae

- Stalled accretion shock still pushed outward to ~150km as matter piles up on the PNS, then recedes again
- Heating or gain region develops some tens of ms after bounce
- Convective overturn & shock oscillations "SASI" enhance the efficiency of v-heating, which finally revives the shock
- Big challenge: Show that this works!

Slide by B. Müller

Neutrino oscillation can influence the energy deposition due to different heating efficiency of the different **Flavors**

- Small mass stars: successful explosion even with spherical symmetry
- Shock looses energy :

Failed SN for $>10M_{SUN}$

- Small mass stars: successful explosion even with spherical symmetry
- Shock looses energy :

Failed SN for $>10M_{SUN}$

- Numerical explosions ok for broad mass range in 2D (axial symmetry)
- In 3D, mostly failed simulation

- Small mass stars: successful explosion even with spherical symmetry
- Shock looses energy :

Failed SN for $>10M_{SUN}$

- Numerical explosions ok for broad mass range in 2D (axial symmetry)
- In 3D, mostly failed simulation

EXTRA Heating???

- Oscillation give harder $\boldsymbol{\nu}_{\boldsymbol{e}}$ and $\boldsymbol{\overline{\nu}}_{\boldsymbol{e}}$ spectra
- $\overline{\boldsymbol{\nu}}_{\boldsymbol{e}}$ and $\boldsymbol{\nu}_{\boldsymbol{e}}$ dump energy more efficiently

- Small mass stars: successful explosion even with spherical symmetry
- Shock looses energy : Failed SN
- Failed within few 100 ms

Flavor conversion (few 100 km) behind the stalled shock in few 100 ms

road mass

EXTRA Heating???

- Oscillation give harder ν_e and ν_e spectra
- $\overline{\boldsymbol{\nu}}_{\boldsymbol{e}}$ and $\boldsymbol{\nu}_{\boldsymbol{e}}$ dump energy more efficiently

Multi messenger signals from SNe

Large Detectors for Supernova Neutrinos

- Neutrinos arrive several hours before light: Alert for Astronomers
- GW-neutrino timing correlation: Probing neutrino flight time, Triangulation

Neutrino Emission Phases

Neutronization burst ~ 50 ms Accretion: ~ 0.5 s

Cooling $\sim 10 \text{ s}$

• Shockbreakout

- powered by infalling matter
- Cooling by v diffusion

- De-leptonization of outer core layers
- Stalled shock

• Electron Capture

- v_e Burst and Accretion: Best phase to study oscillation.
- Cooling: Oscillation effects are negligible.
- Accretion: How to rejuvenate the stalled shock?

[Fischer et al. (Basel Simulations), A&A, 2010, 10. 8 M_{sun} progenitor mass]

SN V Flavor Transitions: Collective Oscillation

• Flavor Oscillation: In far separated regions, can be treated independently

SN V Flavor Transitions: Collective Oscillation

Extreme neutrino density close to the neutrino-sphere v-v interaction Collective oscillation ~ $10^1 - 10^2$ km "Linteraction (10, 100 km) Slow Collective Oscillations, V-Typically, \sim few 100 km sphere $\frac{\Delta m_{\rm atm}^2}{2E} = 10^{-10} \,\rm eV = 0.5 \,\rm km^{-1}$ Fast Collective Oscillations, Typically, ~ Close to v-sphere $\sqrt{2}G_{\rm F}n_{\rm v} = 10^{-5}{\rm eV} = 0.5~{\rm cm}^{-1}$ S.C, Hansen, Izaguirre & Raffelt, **JCAP** 2016

Sanduleak -69 202

Supernova 1987A 23 February 1987

The core collapse and v cooling mechanism confirmed!

<u>Neutrino Burst Observation :</u> First verification of stellar evolution mechanism

Friday, February 23, 2007

Supernova 1987A

23 February 1987,
7:35 UTAnomalously high neutrino counting rates observed in the
Kamiokande, IMB, and Baksan neutrino detectors23 February 1987,
10:30 UTRobert McNaught photographs the Large Magellanic Cloud. When
he develops the plate, a bright new star shows up.24 February 1987,
5:30 UTAstronomer Ian Shelton at the Las Campanas Observatory, Chile,
sees with his naked eyes a new star in the Large Magellanic Cloud.

OPEN Neutrino Astronomy

Energy Distribution of SN 1987A Neutrinos

Kamiokande-II (Japan) Water Cherenkov detector 2140 tons

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons

Interpreting SN1987A neutrinos

Mirizzi and G. Raffelt, PRD 72, 063001 (2005)

What could we see "tomorrow"?

SN 20XXA !

Typical problems in supernova neutrinos

Core Collapse

In brackets events for a "fiducial SN" at distance 10 kpc

Typical problems in supernova neutrinos

Core Collapse

Large Detectors for Supernova Neutrinos

Detector	Type	Mass (kt)	Location	Events	Flavors	Status
Super-Kamiokande	H_2O	32	Japan	7,000	$\bar{\nu}_e$	Running
LVD	$C_n H_{2n}$	1	Italy	300	$\bar{\nu}_e$	Running
KamLAND	$C_n H_{2n}$	1	Japan	300	$\bar{\nu}_e$	Running
Borexino	$C_n H_{2n}$	0.3	Italy	100	$\bar{\nu}_e$	Running
IceCube	Long string	(600)	South Pole	(10^6)	$\bar{\nu}_e$	Running
Baksan	$C_n H_{2n}$	0.33	Russia	50	$\bar{\nu}_e$	Running
MiniBooNE*	$C_n H_{2n}$	0.7	USA	200	$\bar{\nu}_e$	(Running)
HALO	Pb	0.08	Canada	30	ν_e, ν_x	Running
Daya Bay	$C_n H_{2n}$	0.33	China	100	$\bar{\nu}_e$	Running
$NO\nu A^*$	$C_n H_{2n}$	15	USA	4,000	$\bar{\nu}_e$	Turning on
SNO+	$C_n H_{2n}$	0.8	Canada	300	$\bar{\nu}_e$	Near future
MicroBooNE*	Ar	0.17	USA	17	ν_e	Near future
DUNE	Ar	34	USA	3,000	ν_e	Proposed
Hyper-Kamiokande	H_2O	560	Japan	110,000	$\bar{\nu}_e$	Proposed
JUNO	$C_n H_{2n}$	20	China	6000	$\bar{\nu}_e$	Proposed
RENO-50	$C_n H_{2n}$	18	Korea	5400	$\bar{\nu}_e$	Proposed
PINGU	Long string	(600)	South Pole	(10^{6})	$\bar{\nu}_e$	Proposed

Mirizzi, Tamborra, Janka, Saviano, Scholberg, <u>SC</u> et al., arXiv:1508.00785

Large Detectors for Supernova Neutrinos

Example of 0.4 Mton WC detector

Mirizzi, Tamborra, Janka, Saviano, Scholberg, SC et al., arXiv:1508.00785

Supernova neutrino signal at detectors

SN neutrinos arrive several hours before photons: Alert Astronomers •Energy Sepctra: http://snews.bnl.gov

Spectral split, Earth matter effect

•Time Spectra:

Neutronization Burst, SASI Modes, Bound on Neutrino velocity, Shock wave effect, earth effect, Rise Time Analysis etc..

Energy and Flavor Identification

- WC (SK/HK): \overline{v}_e average energy can be reconstructed to ~ 6-10 % accuracy, can measure flux, spectrum and angular distributions vs time.
- Liquid Ar: v_e crucial flavor for Neutronization Burst. GDSK, GDHK??
 [Nikrat, Laha, Horiuchi, 1711.0008]
- V_x ?? Large scintillator spectral technique? [Beacom, Farr, Vogel, hep-ph/0205220, Dasgupta and Beacom, 1103.2768]

Direct Dark Matter detector?

Bandopadhaya, Bhattacharya, SC, Kar PRD 2014, Lang, McCabe, Reichard, Selvi & Tamborra, arXiv:1606.09243

Simulated Supernova Signal: Super-Kamiokande

[Nikrat, Laha, Horiuchi, 1711.0008]

Parameter	SK	SK+Gd	HK	HK+Gd	DUNE
$\langle E_{\nu_e} \rangle$	$\pm 50\%$	$\pm 40\%$	$\pm 15\%$	$\pm 10\%$	$\pm 10\%$
$E_{\nu_e}^{\text{tot}}$	$\pm 30\%$	$\pm 20\%$	$\pm 10\%$	$\pm 7\%$	$\pm 20\%$
α_{ν_e}	N/A	$\pm 110\%$	$\pm 50\%$	$\pm 30\%$	$\pm 30\%$

Channel	Super-K	Hyper-K	DUNE
ν_e scattering	300	3,500	260
$\bar{\nu}_e$ scattering	84	970	73
ν_x scattering	41	480	36
$\bar{\nu}_x$ scattering	31	370	28
$^{16}\mathrm{O}$	110	$1,\!300$	
IBD	$9,\!800$	110,000	
$^{40}\mathrm{Ar}$			2,200

Accretion phase in a Direct Dark Matter detector

Coherent Elastic Neutrino-Nucleus Scattering (CENNS) Neutral current: Measure of mu and tau flavor neutrinos

S.C, P. Bhattacharjee & Kamales Kar PRD, 2014

Lang,McCabe, Reichard, Selvi & Tamborra, arXiv:1606.09243

Deuterated liquid scintillator detector (DLS)

Neutral current: Measure of mu and tau flavor neutrinos

$$\nu + d \to \nu + n + p$$

$$\bar{\nu} + d \to \bar{\nu} + n + p$$

Few 100 events for Galactic SNe

Chauhan, Dasgupta & Datar, JCAP 2021

Simulated Supernova Signal: IceCube

- Reconstruction of the electron anti-neutrino light curve.
- Possible to distinguish the different post-bounce phases.

Mirizzi, Tamborra, Janka, Saviano, Scholberg, S.C et al., arXiv:1508.00785

Short Time Variations In SN neutrino Signal

Convective overturn & shock oscillations "SASI" enhance the efficiency of v-heating, which finally revives the shock

Convective motions lead to large amplitude oscillations of the stalled shock with a period of $\sim 10 \text{ ms}$

Necessary high statistics and high time resolution: IceCube

Tamborra, Hanke, Müller, Janka & Raffelt, arXiv:1307.7936

Diffuse SN Neutrino Background (DSNB)

Neutrino astronomy at cosmic distances !

Neutrino Astronomy

- Spin $\frac{1}{2}$
- Chargeless
- No bending in magnetic fields → Points back to the source
- Weakly interacting
- Minimal scattering → Arrive from regions opaque to light
- Excellent Astronomical Messenger!!
- Almost massless
 Neutrino Oscillations

Heavy mass loss (up to 10 M_{0} /yr) prior to explosion creates a Dense Circumstellar Medium (CSM), mostly protons.

Shock-CSM interaction: Accelerates protons to up to 10-100 PeV, initiating hadronic channels for neutrinos and gamma ray's

Fluxes at source:

$$\phi_{\nu/\gamma}^S(E_{\nu/\gamma},r) \propto n_{CSM}(r) N_p(E_p,r) F_{\nu/\gamma}(E_p,E_{\nu/\gamma})$$

(P. Sarmah, S.C, I Tamborra, K. Auchettl, JCAP 2022, PRD 2023

 $e \nu_e \nu$

 $v_e v_\mu v$

Fluxes at source:

$$\phi_{\nu/\gamma}^S(E_{\nu/\gamma},r) \propto n_{CSM}(r) N_p(E_p,r) F_{\nu/\gamma}(E_p,E_{\nu/\gamma})$$

Gamma rays are lost in source and cascade to low energies

• Gamma rays are attenuated due to EBL, important for 100 Mpc

Fluxes at detector:

$$\phi_{\nu/\gamma}^S(E_{\nu/\gamma},r) \propto n_{CSM}(r) N_p(E_p,r) F_{\nu/\gamma}(E_p,E_{\nu/\gamma}) f_a(E_\gamma)$$

(P. Sarmah, <u>S.C</u>, I Tamborra, K. Auchettl, JCAP 2022, PRD 2023)

D. Brethauer et. al. 2020, 2022

Example: SN 2014C:

- > Re-brightens after about a few hundred days.
- > Due to interaction with a CSM far away from the progenitor (6 x 10^{16} cm).

> The CSM profile is not well understood.

Parameters	Early phase	Typical value (LT)	Uncertainty (LT)	
$v_{\rm sh}~({\rm km~s^{-1}})$	2×10^4	10^{4}	$(4-45) \times 10^4$	
$r_{\rm i} ({\rm cm})$	$3 imes 10^{11}$	6×10^{16}	$(5.5-6) \times 10^{16}$	
$r_{\rm o}~({\rm cm})$	$6 imes 10^{16}$	2.5×10^{17}	$(1-2.5) \times 10^{17}$	
$n_{\rm CSM}~({\rm cm}^{-3})$	$2 imes 10^{12}$	2×10^{6}		
ε _p	10^{-1}	5×10^{-2}	$10^{-2} - 10^{-1}$	
ε _B	10^{-2}	1.5×10^{-2}	$10^{-3} - 10^{-2}$	
$D_{\rm L}$ (Mpc)	14.7	14.7	14.1 - 15.3	
Onset time	180 s	250 days	(100–400) days	
Declination	34 ^o			

(P. Sarmah, <u>S.C</u>, I Tamborra, K. Auchettl, JCAP 2022, PRD 2023)

D. Brethauer et. al. 2020, 2022

Example: SN 2014C:

- > Re-brightens after about a few hundred days.
- > Due to interaction with a CSM far away from the progenitor (6 x 10^{16} cm).
- > The CSM profile is not well understood.

Parameters	Early phase	Typical value (LT)	Uncertainty (LT)	
$v_{\rm sh}~({\rm km~s^{-1}})$	2×10^4	10^{4}	$(4-45) \times 10^4$	
$r_{\rm i} ({\rm cm})$	$3 imes 10^{11}$	6×10^{16}	$(5.5-6) \times 10^{16}$	
$r_{\rm o}~({\rm cm})$	$6 imes 10^{16}$	2.5×10^{17}	$(1-2.5) \times 10^{17}$	
$n_{\rm CSM}~({\rm cm}^{-3})$	$2 imes 10^{12}$	2×10^{6}		
ε _p	10^{-1}	5×10^{-2}	$10^{-2} - 10^{-1}$	
€B	10^{-2}	1.5×10^{-2}	$10^{-3} - 10^{-2}$	
$D_{\rm L}$ (Mpc)	14.7	14.7	14.1 - 15.3	
Onset time	180 s	250 days	(100–400) days	
Declination	34 ^o		_	

D. Brethauer et. al. 2020, 2022

Classification of CCSNe

(P. Sarmah, <u>S.C.</u>, I Tamborra, K. Auchettl, JCAP 2022)

Diffuse Flux

Ref: arXiv:1006.3899, 1601.06806

Supernova Neutrinos: HOW?

- Intial energy spectra
- Initial time spectra
- Initial Angular spectra

- Dense matter effect
- Shock wave, Earth effect

Thank you!

• New interactions

- Different interection channels
- Final energy spectra
- Final time spectra

Simulated Supernova Signal at IceCube

[Dighe, Keil and Raffelt, hep-ph/0303210]

Possible to reconstruct the SN lightcurve with current detectors.

Rise time Analysis: Hierarchy Determination

Garching group, 2011

- High degeneracy of v_e and e, suppresses \overline{v}_e production.
- $\overline{\nu}_{e}$ more in equilibrium with environment than ν_{x}

Consistent feature in wide variety of simulations

Flux of v_x rises faster than \overline{v}_e

NH:
$$F_{\bar{\nu}_e} = \cos^2 \vartheta_{12} (F^0_{\bar{\nu}_e} - F^0_{\nu_x}) + F^0_{\nu_x}$$

IH:
$$F_{\bar{\nu}_e} = F_{\nu_x}^0$$

Flux in IH $(\mathbf{v}_{\mathbf{x}})$ rises faster than NH $(\mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{e}})$

[Serpico, <u>S.C</u>, Fischer, Hüdepohl, Janka & Mirizzi PRD 85:085031,2012]

Rise time analysis: Hierarchy determination

P. Serpico, <u>S.C.</u>, T. Fischer, L. Hüdepohl, T. Janka & A. Mirizzi PRD, 2012 P. Sarmah, A. Medhi, D. Bose, <u>S.C</u> & M. Devi, in preparation

Sky Map of Lepton-Number Flux (11.2 M_{SUN} Model)

Lepton-number flux $(v_e - \overline{v}_e)$ relative to 4π average Deleptonization flux into one hemisphere, roughly dipole distribution

(LESA – Lepton Emission Self-Sustained Asymmetry)

Tamborra et al., arXiv:1402.5418