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A "Solvable” model : What ?

™ “Particle”

e S Interaction

in some limit.....
for some observables.....
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A "Solvable” model : Who ?

-All Models:

2 Solvable cases:

Sachdev-Ye-Kitaev model |

Quantum p— spin glass
® — Spins

O —  Particle
— [nteraction

In general, not solvable!
Phys. Rev. D 94, 106002
Maldacena and Stanford (2016)

J. Stat. Mech. (2021) 113101
Anous and Haehl (2021)



A "Solvable” model : Why ?
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A "Solvable” model : Why ?

Sachdev-Ye-Kitaev Model: . H = Z JITI N fermions
/

A Solvable Model, but what . .
exactly does it mean?

Thermal Partition function (Z), = (Tr(e ")), = (Z)(G, X)

Limit: N —» oo fermions
Green’s function ¢__

Self energy —ou—___ 1 = s — 2ga-l |



Why Chaotic? AR, AURELIA AND ADOLEG

Mean Level-

. . . . Spacing ratio:
Chaotic = looks like a Gaussian Random Matrix pacing

looks like a GLaussian kandom Mdatrix ~ 0.53 (GOE)
. S S — ~ 0.60 (GUE)
. _ _ = ( min , 0
Short-range correlations: Sk = Exy1 — B k= 11,..., N} ' St S o708
~ 0.35 (Poission)

| PDF of s for Gaussian and Poission

12 — K(t)
| — Kc(t)
| --- RMT
- — p=1 .
_ 4.,  Long-range correlations: Plateau

- — 2=+ Spectral Form Factor ~ |~°Toaton
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A New Model

SYK -

. The same SYK configuration:
o o
. . H = Z VR H
)i [ ll,lz, lq AR D) lq ‘
O ® 119129
e ° SYKﬂ:()
wwwww PDFforf=6=0andy=2
where Y itsinee iy C,(v, P, 0) — Lévy Dist.
o N
0.05 | =20 N2 N p
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0.00 | / zq q
Univariate St;ble Distribution Usual SYK for y = 2

John. P. Nolan



A New Model
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SYK -

. The same SYK configuration:
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0.00 ] / zq q
Univariate St;ble Distribution Usual SYK for u = 2
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Scaling of 1 with system size

The Spectrum - Short Range

Mean level-spacing ratio
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The Spectrum - Long Range

SFF for N = 30
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The Underlying Mechanism

.. : : : .. Chaotic
All this is fine, but what is really leading to chaotic transition?  Transition!!
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The Underlying Mechanism

All this is fine, but what is really leading to chaotic transition?
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Univariate Stable Distribution

Solving the model o p nor

1,2 .
The main issue: i, i 7)) = 0 —> Usual approach fails outright

The saviour:

In the SYK model:  H = ZJ,\P, - Z ZF ROV SR Z ZF VIR

i I o=1 o=1 1



The main issue:

The saviour:

In the SYK model:

LSYK

Solving the model

John. P. Nolan

Univariate Stable Distribution

1,2 . .
( |Ji1,i2,...,iq‘ ) = —> Usual approach fails outright
H = Z‘]I‘PI %ZZF U’”JIG _)ZZF UMJIG
I/ I o=1

G'=0,-%

an infinite series of correlated Gaussmn SYK!

T

p
S(7) = ff% (J ﬁf%Gq(f’)df’)
q 0

(In large— N limit)
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Conclusions

We construct a model that has a chaotic transition and can be solved!

N

Other models such as

Binary SYK, SUSY SYK etc.

l SYI(/,{:Z Chaotic l

Other models such as

Sparse SYK, SYK on Graphs etc.

Not Solvable due Almost equivalent
to additional y to Gaussian SYK
structure. by CLT.

o
SYK,

=0 Non-chaotic




What more can we do?

1. Actually capture the transition analytically — ~ correction to SD eqns.

2. Different scaling other than large— N ? Double-Scaled? Triple-scaled ?

3. Dynamics ? Higher-point functions ? Entanglement ? Mobility edge ? Localization ? .........

JHEP 01 (2024) 094
BB, Cao, Nandy and Pathak
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4. Dissipative Lévy SYK ?

2.1

s. Lévy SYK quantum batteries? Sk

2.0 r

lL.ots'1o Do!!!
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