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Cosmic Explorer

m Next-generation GW
observatory

m [wo L-shaped
detectors with arm
length 20 km and 40
Km

m We use only one 40
km CE for the study

(Credit: Angela Nguyen, Virginia Kitchen, Eddie Anaya, California State
University Fullerton) 3
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What would these detectors detect?
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What would these detectors detect?

Arbitrary amplitude
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Once the part of the data
with the signal is identified,
we can proceed to
parameter estimation.



Parameters like mass, spin, sky-

Parameter Estimation sestifon

m The observed signal has a GW and noise d(t) = h(t) £n(t)

m The noise distribution is assumed ~ 1 K .
stationary and gaussian and so we can £(9;d(t)) = exp (_2<d(t) — h(t, 6)ld(t) — ht, 9”)
define a likelihood function

m We need the distribution of parameters
given the data, or the posterior probability  p(6|d) =
density which can be obtained by Bayes
theorem

L(0;d)w ()
Z

a j—
We use a nested sampler to sample the posterior space and Flow Sn(f)
approximate the likelihood using Relative Binning.

df
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A change in speed of
gravity changes the
time-delay observed
between two detectors.

GWTC-3 constraint:
0.99 +/-0.02
(arXiv: 2307.13099)
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Measuring speed of gravity using 1 CE:
Detector Size

m LIGO:
~10 —1000Hz L. ~4km Zterm _ 00003 — 0.01
f arm

C

m CE:
f~5—2000Hz Ly, ~40km Ztem _001-0.2

Cc
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Measuring speed of gravity using 1 CE:
Detector Size

m LIGO:
~10 —1000Hz L. ~4km Zterm _ 00003 — 0.01
f arm

Cc

m CE:
f~5—2000Hz Ly, ~40km Z2m ~001-0.2

Cc

As the wavelength of a gravitational wave becomes comparable
to the size of detector arms, the photon in the detector moves in
a variable gravitational field.
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Measuring speed of gravity using 1 CE:
DeteCtor Slze A Photon reaches the receiver at

Length of the detector is comparable to the GW wavelength at the beam splitter. SPTM event 2
high frequencies. So, the static approximation that we currently 0%
use is not valid. /;é/.)
Let’s consider a photon in the x-arm of a detector. @b
(/,/)@
. % | Photon
_ © reaches the
Reqlsmft of a photon for the vo—vi 1 pip (h _ h0) receiver at the
uplink journey vy,  21-p-a- " Y & end of X-arm.
> SPTM event 1
O
\\0
Redshift of a photon for the v—vs 1 DY, ) N
downlink journey Vs 21+p-n- Y Y
Photon leaves the x arm (p) ’

beamsplitter.
SPTM event O
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Measuring speed of gravity using 1 CE:
DeteCtor Slze A Photon reaches the receiver at

the beam splitter. SPTM event 2
0%
0 . ~ ~
hij = hi(t) , he; = hy(f) /)//,‘)4
hij = hy (H U—(l—ﬁ"n)) R = exp (2mifLET P i () 2,
z F. T Y (Je /)@/
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receiver at the
(gﬁ end of X-arm.
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beamsplitter.
SPTM event O
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Measuring speed of gravity using 1 CE:
DeteCtor Slze Photon reaches the receiver at

T the beam splitter. SPTM event 2
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GW370817

m Simulated GW170817 like event
in a single 40 km Cosmic
Explorer.

m [he inclination angle however is
set to be edge on to amplify
higher modes of radiation and
decrease the SNR.

m The SNR of the injected signal is
1000.

Parameter ©Gwaros17
Chirp Mass (M) 1.20994 M,
Mass Ratio (q) 0.918
X1 0
X 0
Right Asc. (RA) 3.44616
Declination (Dec) -0.408084
Incl. Angle (6;,) /2
Pol. Angle (1) 2.212
Phase (¢) 5.180
Time at CE (tcg) 1187008882.45 s
Lum. Distance (dy) 46.395 Mpc
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What are higher-order modes?

GW polarizations are often written in terms ¢
of modes in spherical harmonic basis with "+ —thx = ; ZE—ZYEm(-ﬂ &) him |
the dominant mode being I=m=2. S

For face-on cases there are no higher
modes.
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What are higher-order modes?
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The waveform

h(t) = Fy(n(6), Y)X hy 14 (L5 61, ¢, ©) +
X(n(t) l/))z hl mxX (t 61, ¢Ci ®)

F.T.

h(f) =ZF,(n(t™(f)),¥) Ehym+(f; 01, ¢, 0) +
% F o (n(t™(f)), 1) Z hymx (f; 61, ¢c, ©)

We inject the waveform for GW370817 and see how well we can
recover the waveform. The injected GWs propagate at the speed of
light.



Results:; Uy
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Results:; Uy

1w e 7.1 Comparable to
1= inference using 41
o ] real GW events

D : lﬂh from GWTC-1 and
:E% o - }l Hl GWTC-2

=LA | ﬁ"u vy, =0.99 £ 0.02¢

i\ (arXiv: 2307.13099)
*
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Frequency-dependent dispersion relation

Most alternative theories predict a frequency dependent dispersion relation.

Use a phenomenological model

E? = p?c? + A,p%% a=0,0.51,15,25,3,35,4

m Massive Graviton a = 0.

m Multi-fractal Spacetime a = 2.5.

m Doubly special Relativity a = 3

m Extra-dimension, Horava-Lifshitz, standard model extension a = 4

m Also performed runs with « = 0.5, 1, 1.5, 3.5
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Assumptions

m Nochange in the local wave-zone.
m Effects arelinearin A4,

( a—1
L 272 (i) a#1
Effective phase correction a— 14T\ ¢ ’

0D, (f) = sign(Ay) | :
& Dy . (AGMtf
In , a=1
\/]-A,eﬁ" 63

Ag = hclAy|V@?

/?-A,eff =

(1+2)-2Dp, 1/ A+ ¢ (1+3)°22 )
AA Da' - dZ,
D, Hy 0 VQu(l +72)3+Qx

Terms in phase are constrained much better!!
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Results: Dispersion measurement in GW370817
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Comparison: Dispersion measurement in GWTC3

1.5
44 4 -
1.0 - m Our results are better by
C an order of magnitude
% 0.5- 2 2 when compared to
2. current constraints.
< 00+ =404+ =ft ===k} 0+~ - -
| m Note that we use only 1
=
= _05- ) ) event compared to 100
< | 1 in GWTC3!!
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arXiv: 2112.06861
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Conclusion

m We demonstrate that it is possible to obtain constraints (comparable to GWTC3
results) for speed of gravity and dispersion using one loud event in Cosmic Explorer.

m The framework developed for parameter estimation is very general and can be used

as long as one can generate h(f) efficiently. This framework will be made public very
soon.

m Beyond GR effects can be mimicked by errors in waveform modelling and
astrophysical approximations. Better understanding of these effects are required.
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Questions?

Thank You

Email: pbaral@uwm.edu
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