* Proof of non-vanishing theorem

Haruzo Hida
UCLA, Los Angeles, CA 90095-1555, U.S.A.
ICTS hybrid conference Bengaluru, August, 2022.

^{*}We give a sketch of the proof of the non-vanishing theorem. To study Zariski density in $\mathbb{G}_m^d(\overline{\mathbb{Q}}_\ell)$, we consider a discrete valuation ring $W_\ell \subset \mathbb{C}_\ell$ finite over $W(\overline{\mathbb{F}}_\ell)$. Recall $\mathcal{X} = \mathcal{X}_v := \{\chi | \int_{Cl_n^-} \chi \psi d\varphi_f \neq 0 \text{ for some } n, \ v(\chi) = v \}$ and the sequence $\underline{n} := \{\min(m) | \chi \text{ factors through } \Gamma_m \text{ for } \chi \not\in \mathcal{X} \}$ defines $\Xi = \{s(\mathcal{A}) | [\mathcal{A}] \in \bigsqcup_{n \in \underline{n}} \operatorname{Ker}(\Gamma_n \to \Gamma_j) \}$ for some $j \geq r$. We show that \underline{n} contains an arithmetic progression if $\dim \overline{\mathcal{X}} < d$ for the Zariski closure $\overline{\mathcal{X}}$ in \mathbb{G}_m^d .

§0. Case $\dim \overline{\mathcal{X}} = 0$ (and $\Gamma \cong \mathbb{Z}_{\ell}$). We can take j := r for r given by $\ell^r \| |\mathbb{F}_p[f,\lambda,\psi,\mu_{\ell}]^{\times}|$. If the Zariski closure $\overline{\mathcal{X}}$ has dimension 0, it is a finite set stable under $t \mapsto t^P$ ($\mathbb{F}_P = \mathbb{F}_p[f,\lambda,\psi,\mu_{\ell}]$); so, there exists an integer N such that if the order of χ is larger than ℓ^N , we have $\int_{Cl_n^-} \chi \psi d\varphi_f = 0$ for all n. Let $0 < m_0 \in \mathbb{Z}$ be the minimal integer such that $\ell^m = \ell^m =$

Assume $0 < \dim \overline{\mathcal{X}} < d$; so, $O_{\mathfrak{l}} \neq \mathbb{Z}_{\ell}$ and $\dim \overline{\mathcal{X}} < d$. We have $\chi^{\sigma^m} = \chi^{P^m} \in \mathcal{X}$ if $\chi \in \mathcal{X}$; i.e., \mathcal{X} is σ -stable.

- 1. we may not have lower bound ℓ^N of the order of $\chi \in \mathcal{X}$,
- 2. the Galois action $\chi \mapsto \chi^{P^m}$ $m \in \mathbb{Z}$ only covers 1-dimensional segment starting with χ . In other words, $\mathrm{Tr}_{\mathbb{F}_P[\chi]/\mathbb{F}_P} \circ \chi$ only factor through $\mathrm{Ker}(\chi|_{\Gamma_n}) \Gamma_n[\ell^r]$ whose order grows dependent on n (not a finite bounded sum of $f|\alpha(u/\varpi_1^r)([\mathcal{A}])$ over $u \in O/\mathfrak{l}^r$.

These are two points of difficulty which have to be addressed.

§1. Rigidity of torus.

Let W_{ℓ} be a discrete valuation ring finite flat over $W(\overline{\mathbb{F}}_{\ell})$. We state the following theorem, which is a key to show that \underline{n} contains arithmetic progression.

Rigidity Theorem. Let $X = \operatorname{Spf}(T)$ be a closed formal subscheme of $\widehat{G} = \widehat{\mathbb{G}}^n_{m/W_\ell}$ flat geometrically irreducible over W_ℓ (i.e., $T \cap \overline{\mathbb{Q}}_\ell = W_\ell$). Suppose there exists an open subgroup U of \mathbb{Z}_ℓ^\times such that X is stable under the action $\widehat{G} \ni t \mapsto t^u \in \widehat{G}$ for all $u \in U$. If X contains a Zariski dense subset $\Omega \subset X(\mathbb{C}_\ell) \cap \mu_{\ell^\infty}^n(\mathbb{C}_\ell)$, then there exist $\omega \in \Omega$ and a formal subtorus T such that $X = T\omega$.

If time permits, we describe a sketch of the proof at the end (see my papers: JAMS **24** (2011) Rigidity lemma and Contemporary Math. **614** (2014) Lemma 4.1).

§2. Use of rigidity. Let, for a class $v \in O/\mathbb{I}^j$ for $j \geq r$, $\mathcal{X} = \mathcal{X}_v := \{\chi \in \operatorname{Hom}(\Gamma, \mu_{\ell^\infty}) | \int_{Cl_n^-} \chi \psi d\varphi_f \neq 0 \ \exists n, v(\chi) = v \}$ $\mathcal{Z} = \mathcal{Z}_v := \{\chi \in \operatorname{Hom}(\Gamma, \mu_{\ell^\infty}) | \int_{Cl_n^-} \chi \psi d\varphi_f = 0 \ \forall n, v(\chi) = v \}$ Write $\widehat{\mathcal{X}}$ for the formal Zariski closure of \mathcal{X} in $\widehat{\mathbb{G}}^d_{m/W_\ell}$. Assume $\dim_{W_\ell} \widehat{\mathcal{X}} < d$ which leads to absurdity. Note $\dim_{W_\ell} \widehat{\mathcal{X}} = \dim \overline{\mathcal{X}}$.

Overcoming reducibility: Since $\chi \in \mathcal{X} \Rightarrow \chi^{\sigma} \in \mathcal{X}$ for $\sigma = \operatorname{Frob} \in \operatorname{Gal}(\mathbb{F}/\mathbb{F}_{p^r})$, σ permutes irreducible components of $\widehat{\mathcal{X}}$. Thus each irreducible component is fixed by some $\tau := \sigma^m$ for m > 0. Note $\sigma(x) = x^P$ for $P = p^r$, and put $P = P^m$. Since $P \equiv 1 \mod \ell^r$ with r > 0, we have $P \equiv 1 \mod \ell$. Since each irreducible component is formal, it is stable under $\tau^{\mathbb{Z}_\ell}$ which is an open subgroup of \mathbb{Z}_ℓ^\times . By Rigidity Theorem, each irreducible component of $\widehat{\mathcal{X}}$ is of the form ωT for a subtorus T. Then $\widehat{\mathcal{X}} = \bigcup_{j \in J} \omega_j T_j$ for a finite index set J with $\omega_j \in \Omega$ and subtori T_j . The argument has been given if $\dim_{W_\ell} \widehat{\mathcal{X}} = \dim \overline{\mathcal{X}} = 0$; so, assume $0 < \dim_{W_\ell} \widehat{\mathcal{X}} < d$.

§3. Tubular neighborhood. Replacing $\widehat{\mathbb{G}}_m^d$ by $\widehat{\mathbb{G}}_m^d/\langle \omega_j \rangle_j$, we may assume that $\omega_j = 1$ for all j. Let V_j be the \mathbb{Q}_ℓ -span of the Tate module of T_j as a subspace of $V := \mathbb{Q}_\ell(1)^d$. Since $0 < \dim V_j < d$, we claim to find a basis $B := \{e_1, \ldots, e_d\}$ of $\mathbb{Z}_\ell(1)^d$ such that $B' := B \cup \{e := \sum_j e_j\}$ is outside $\bigcup_j V_j$. Since d > 1, the set $\{B \in \operatorname{GL}_d(\mathbb{Z}_\ell) | B' \cap \bigcup_j V_j \neq \emptyset\}$ is a proper closed subset of $\operatorname{GL}_d(\mathbb{Z}_\ell)$ of dimension $d^2 - \max_j (\dim V_j) < d^2 = \dim \operatorname{GL}(d)$. This shows a plenty of the choice B.

Let $\Gamma_{\mathbf{P}} = \mathbf{P}^{\mathbb{Z}_{\ell}}$. Then $U := \Gamma_{\mathbf{P}} e_1 + \cdots + \Gamma_{\mathbf{P}} e_d$ is an open tubular neighborhood of the line $\mathbb{Z}_{\ell} \cdot e$. By replacing \mathbf{P} by its power (i.e., shrinking U), the image Cone(U) of $\bigcup_{u \in U} \mathbb{Q}_{\ell} \cdot u$ in $(\mathbb{Q}_{\ell}(1)/\mathbb{Z}_{\ell}(1))^d$ is disjoint from $\mathcal{X}[\ell^{N'}]^{\times} = \mathcal{X}[\ell^{N'}] - \mathcal{X}[\ell^{N'-1}]$ for all sufficiently large N' > 0.

§4. Proof of non-vanishing theorem.

Let $Cone(U)[\ell^M]^{\times}$ be the set of order ℓ^M elements in Cone(U) and χ_i be the order ℓ^M element corresponding to $\frac{1}{\ell^M}e_i$. Write $\mathbf{P}=p^j$ $(j\geq r)$ and define $\mathcal{Z}=\mathcal{Z}_v$ for $v\in O/\mathfrak{l}^j$. Then for $M\geq N'$, writing $m:=\dim_{\mathbb{F}_{\mathbf{P}}}\mathbb{F}_{\mathbf{P}}[\mu_{\ell^M}]$

$$Cone(U)[\ell^M]^{\times} = \{\prod_{i=1}^d \chi_i^{u_i} | u_i \in \Gamma_{\mathbf{P}}\} = \{\prod_{i=1}^d \chi_i^{\mathbf{P}^{m_i}} | 0 \le m_i \le m-1\} \subset \mathcal{Z}.$$

Thus if $\chi|_{\Gamma_n[\ell^j]} = \chi_v$ for $v \in O/\mathfrak{l}^j$,

$$\sum_{\chi \in Cone(U)[\ell^M]^\times} \chi = \prod_{i=1}^d \operatorname{Tr}_{\mathbb{F}_{\mathbf{P}}[\mu_{\ell^M}]/\mathbb{F}_{\mathbf{P}}}(\chi_i) \stackrel{\operatorname{Trace rel.}}{=} [\mathbb{F}_{\mathbf{P}}[\mu_{\ell^M}] : \mathbb{F}_{\mathbf{P}}]^d \chi_v,$$

where $\chi_v = 0$ outside $\Gamma_n[\ell^j]$. This j depends on \mathfrak{l} and Ξ contains $\underline{n} = \{n \in \mathbb{Z} | n \geq N'\}$. Thus if $a(\xi, f) \neq 0$ for $(\xi \mod \mathfrak{l}^j) = -v$, we get the contradiction.

§5. Preliminary to the proof of Rigidity Theorem. The regular locus of X° is open dense in the generic fiber $\operatorname{Spec}(\mathcal{T})_{/K}$ (for the field $K = \operatorname{Frac}(W)$ for $W = W_{\ell}$). Then $\Omega^{\circ} := X^{\circ} \cap \Omega$ is Zariski dense in $\operatorname{Spec}(\mathcal{T})_{/K}$. Write $X^{s} := \operatorname{Spec}(\mathcal{T})_{/K} - X^{\circ}$ (the singular locus). The stabilizer U_{ζ} of $\zeta \in \Omega$ in U is an open subgroup of U. By $t \mapsto t\zeta^{-1}$, we assume that the identity $1 \in \Omega^{\circ}$.

By adding subscript an, X_{an} denotes the rigid analytic spaces associated to X. Then $X_{an}^{\circ} = X_{an} - X_{an}^{s}$ is an open rigid analytic subspace of X_{an} . Apply the logarithm $\log: \widehat{G}^{an}(\mathbb{C}_{\ell}) \to \mathbb{C}_{\ell}^{n} = Lie(\widehat{G}_{/\mathbb{C}_{\ell}}^{an})$ sending $(t_{j})_{j} \in \widehat{G}^{an}(\mathbb{C}_{\ell})$ to $(\log_{\ell}(t_{j}))_{j}) \in \mathbb{C}_{\ell}^{n}$ for the ℓ -adic logarithm map $\log_{\ell}: \mathbb{C}_{\ell}^{\times} \to \mathbb{C}_{\ell}$. Then for each smooth point $x \in X^{\circ}(W)$, taking a small analytic open ball G_{x} centered at x in \widehat{G}_{an} so that $V_{x} = G_{x} \cap X^{\circ}(W)$ for a d-dimensional open ball in $X^{\circ}(W)$ centered at $x \in X^{\circ}(W)$. Then $\log(X^{\circ}(W))$ contains the origin $0 \in \mathbb{C}_{\ell}^{n}$. Take $\zeta \in \Omega^{\circ}$. Write T_{ζ} for the Tangent space at ζ of X. Then $X_{\zeta} \cong W^{d}$ for $d = \dim_{W} X$. The space $T_{\zeta} \otimes_{W} \mathbb{C}_{\ell}$ is canonically isomorphic to the tangent space T_{0} of $\log(V_{\zeta})$ at 0.

§6. Proof in case: $\dim_W X = 1$. If $\dim_W X = 1$, there exists an infinite order element $t_1 \in X(W)$. We write $U = (1 + \ell^m \mathbb{Z}_\ell)$ for $0 < m \in \mathbb{Z}$. Then X is the (formal) Zariski closure $\overline{t_1^U}$ of

$$t_1^U = \{t_1^{1+\ell^m z} | z \in \mathbb{Z}_{\ell}\} = t_1\{t_1^{\ell^m z} | z \in \mathbb{Z}_{\ell}\},$$

which is a coset of a formal subgroup Z. Since t_1^U is an infinite set, we have $\dim_W Z > 0$. From irreducibility and $\dim_W X = 1$, we conclude $X=t_1Z$ and $Z\cong\widehat{\mathbb{G}}_m$. Since X contains roots of unity $\zeta \in \Omega \subset \mu_{\ell^{\infty}}^n(W)$, we confirm that $X = \zeta Z$ for $\zeta \in \Omega \cap \mu_{\ell^{m'}}^n$ for $m'\gg 0$. Replacing t_1 by $t_1^{\ell^m}$ for m as above if necessary, we have the translation $\mathbb{Z}_\ell
ightarrow s the stranslation <math>\mathbb{Z}_\ell
ightarrow s the stranslation for the stranslation of the$ $\mathbb{Z}_{\ell} \ni s \mapsto t_1^s$. Thus we have $\log(t_1) = \frac{dt_1^s}{ds}|_{s=0} \in T_{\zeta}$, which is sent by "log: $\widehat{G} \to \mathbb{C}^n$ " to $\log(t_1) \in T_0$. This implies that $\log(t_1) \in T_0$ and hence $\log(t_1) \in T_{\zeta}$ for any $\zeta \in \Omega^{\circ}$ (under the identification of the tangent space at any $x \in \widehat{G}$ with $Lie(\widehat{G})$). Therefore T_{ζ} 's over $\zeta \in \Omega^{\circ}$ can be identified canonically.

- §7. Proof in case $\dim_W X > 1$. Consider the Zariski closure Y of t^U for an infinite order element $t \in V_\zeta$ (for $\zeta \in \Omega^\circ$). Since U permutes finitely many geometrically irreducible components, each component of Y is stable under an open subgroup of U. Therefore $Y = \bigcup_j \zeta_j \mathbb{T}_j$ is a union of formal subtori \mathbb{T}_j of dimension ≤ 1 , where ζ_j runs over a finite set inside $\mu_{\ell^\infty}^n(\mathbb{C}_\ell) \cap X(\mathbb{C}_\ell)$. Since $\dim_W Y = 1$, we can pick \mathbb{T}_j of dimension 1 which we denote simply by \mathbb{T} . Then \mathbb{T} contains t^u for some $u \in U$. Applying the argument in the case of $\dim_W X = 1$ to \mathbb{T} , we find $u \log(t) = \log(t^u) \in T_\zeta$; so, $\log(t) \in T_\zeta$ for any $\zeta \in \Omega^\circ$ and $t \in V_\zeta$. Summarizing our argument, we have found
- (T) The Zariski closure of t^U in X for an element $t \in V_\zeta$ of infinite order contains a coset $\xi \mathbb{T}$ of one dimensional subtorus \mathbb{T} , $\xi^{\ell^{m'}} = 1$ and $t^{\ell^{m'}} \in \mathbb{T}$ for some m' > 0;
- (D) Under the notation as above, we have $\log(t) \in T_{\zeta}$. Moreover, the image \overline{V}_{ζ} of V_{ζ} in \widehat{G}/\mathbb{T} is isomorphic to (d-1)-dimensional open ball.

§8. Induction on d. If d > 1, therefore, we can find $\overline{t}' \in \overline{V}_{\zeta}$ of infinite order. Pulling back \overline{t}' to $t' \in V_{\zeta}$, we find $\log(t), \log(t') \in T_{\zeta}$, and $\log(t)$ and $\log(t')$ are linearly independent in T_{ζ} . Inductively arguing this way, we find infinite order elements t_1,\dots,t_d in V_ζ such that $\log(t_i)$ span over the quotient field K of W the tangent space $T_{\zeta/K} = T_{\zeta} \otimes_W K \hookrightarrow T_0$ (for any $\zeta \in \Omega^{\circ}$). We identify $T_{1/K} \subset T_0$ with $T_{\zeta/K} \subset T_0$. Thus the tangent bundle over $X_{/K}^{\circ}$ is constant as it is constant over the Zariski dense subset $\hat{\Omega}^{\circ}$. Therefore X° is close to an open dense subscheme of a coset of a formal subgroup. See Contemporary Math. 614 (2014) Lemma 4.1 for more details to conclude that X° is indeed an open dense subscheme of a coset of a formal subgroup.