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Outline

• Random active (non-equilibrium) forces acting on cell membranes: active noise

• Directed active (non-equilibrium) forces acting on cell membranes: pattern 
formation



We start with the random forces 
acting on a cell membrane

The simplest example: 
the Red-Blood Cell



The “flickering” of the RBC membrane was first 
observed 45 years ago.

However, only in the past 20 years it was realized 
that these are not purely thermal fluctuations:

Park, YongKeun, Catherine A. Best, Thorsten Auth, Nir S. Gov, Samuel A. Safran, Gabriel 
Popescu, Subra Suresh, and Michael S. Feld. "Metabolic remodeling of the human red blood 
cell membrane." PNAS 107, no. 4 (2010): 1289-1294.



The simplest model:
independent motors



Lets remember the continuum model for the bending energy 
of a membrane:

{

Where the mean curvature is the mean of the two principle 
curvatures:

Helfrich-Canham-Evans free energy

The bending modulus:
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Consider the Monge-gauge (small deformations), along one 
dimension only:

The local tangent is given by:

The local curvature is given by:

ℎ(𝑥𝑥, 𝑦𝑦)



Bending and membrane tension:

The area element is given by:

𝜅𝜅

ℎ(𝑥𝑥, 𝑦𝑦)



The energy up to second order terms:
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To find the membrane shape we need to minimize the 
energy, using variation of the shape:
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The equation of motion of the membrane can be 
written as:

Note: we need to write equations of motion and 
calculate the dynamics, in order to include 

non-equilibrium forces.
In equilibrium, we could use thermodynamics



Oseen hydrodynamic interaction kernel.

Fourier-transform the equation of motion in space:



Thermal forces are given by:

So that the thermal modes obey the Fluctuation-
Dissipation theorem:
The mean-square fluctuations:

The response function (to external drive):

ℎ̇𝑞𝑞 = −𝜆𝜆𝑞𝑞ℎ𝑞𝑞 + 𝒪𝒪𝑞𝑞𝐹𝐹𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡

Where the response is defined as:

ℎ𝑞𝑞(𝑡𝑡) = 𝜒𝜒𝑞𝑞(𝑡𝑡)𝐹𝐹𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡



The response function (after Fourier):

Fluctuation-Dissipation theorem:

The overall amplitude of the fluctuations: do not depend on 
dynamical variables, such as viscosity.

𝜒𝜒𝑞𝑞 𝜔𝜔 =
𝒪𝒪𝑞𝑞

−𝑖𝑖𝜔𝜔 + 𝜆𝜆𝑞𝑞

𝑇𝑇 =
|ℎ𝑞𝑞2|

2𝐼𝐼𝐼𝐼 𝜒𝜒𝑞𝑞



The active forces have typical amplitude and time-scale:

With areal density of active motors n.
We can consider “direct” force motors, or “bending” motors 
that couple to the local curvature:

So that the mean-square fluctuations become:

Direct motor Bending motor

We will assume that the thermal and active fluctuations are uncorrelated



The response function remains the same:

Generalized Fluctuation-Dissipation theorem:

𝜒𝜒𝑞𝑞 𝜔𝜔 =
𝒪𝒪𝑞𝑞

−𝑖𝑖𝜔𝜔 + 𝜆𝜆𝑞𝑞

However, experimental verification took a long time…



Some experimental work pointed the way:

But the overall amplitude is not enough: ATP modifies also the 
elastic moduli of the cell



The time-dependent displacement-displacement correlation 
function is obtained, for each deformation mode:



The activity appears as a qualitatively new mode:

The ratio of the two modes is predicted 
by the model, and allows to distinguish 
between the “direct” and “curvature” 
motors.



The power-spectrum fits the model, using the parameters fitted 
to the correlation function:



What was still missing was a direct measure of breakdown of 
thermal equilibrium: FDT



Measurement of free fluctuations:

Stiff traps 15mW

Weak trap 50µW

Measurement of response function (applied for 80 frequencies between 0.1 - 1000 
Hz):

Stiff traps 15mW

Stiff trap 15mW Response function:
In phase deformation: 
elastic response

Out of phase 
deformation: dissipative 
response

Power-spectral-
density

Experimental tour-de-force:

𝐼𝐼𝐼𝐼 𝜒𝜒𝑞𝑞



ATP-depleted cells exhibit agreement with FDT:

The model predicts:
But normal cells do not:

This is independent of 
the elastic parameters !



What are the “motors” in the RBC membrane ?

• The spectrin filaments are 
stretched when connected.

• ATP-induced 
detachments/unfolding 
releases the stress.

• At curved regions, this 
release of in-plane stress 
converts to normal force 
component.

• These same active 
processes also control the 
cell’s overall stiffness, and 
shape. The fluctuations may 
be a side-effect.

c



The analytic model, with randomly softening tangential stress, 
reproduced the experimental results:



Conclusions

• Active noise is qualitatively 
different from thermal noise

• Gives rise to new dynamical 
features and breakdown of FDT

• Simple models allow to 
predict many specific features 
and general properties



So far we saw membranes with a 
uniform distribution of random 

active forces (“active noise”)

Now we’ll look at membranes 
with a non-uniform distribution of 

non-random active forces



www.mshri.on.ca

Cells come in a variety of shapes:
What mechanisms can produce them ?

Engler, Bacakova, Newman, Hategan, Griffin & Discher, Biophys J., 2004;
Discher, Janmey & Wang, Science, 2005.

The cytoskeleton !



3 components

Fluid membrane, with bending and effective tension elasticity



Protrusive force due to actin
polymerization near the membrane:



Contractile forces result from myosin motors 
pulling on anti-parallel actin filaments in 
opposite directions:

Pollard et. al., JCB (2006)Forscher et. al., Nature Cell Biol. (2006)



Spontaneous curvature

Note: any adsorption to the membrane breaks the symmetry 
and induces some curvature !



Self-organization → feedback between the 3 components

Cell membrane deformation

Active forces due to the cytoskeleton

Curved membrane activators of the 
cytoskeleton respond to the membrane 
shape.



It all started over 10 years ago…

Ajay Gopinathan

What are the dynamics of membrane that have on 
them curved proteins that recruit actin polymerization ?

Convex + actin protrusive force
→ Instability, protrusions

Concave + actin protrusive force
→ Damped waves



Convex protein curvature can drive spontaneous 
initiation of protrusions

“Turing” instability:
→ Regularly spaced, static fingers

λ=2π/q

qmax



The model:
The free energy, now with density of curved membrane proteins (MP), 
𝜙𝜙:

The equation of motion for the membrane deformation:

Where: 𝑓𝑓 𝜙𝜙 𝑟𝑟, 𝑡𝑡 − 𝜙𝜙0 describes the protrusive force due to actin 
polymerization. We also assume local hydrodynamics for simplicity.



The model:
The equation of motion for the density field of the curved MP, 𝜙𝜙, is 
given by the mass-conservation equation:

The equations of motion are then expanded up to linear order, Fourier 
transformed, and linear stability analysis is performed (per mode).

qmax qmax



At the time of our paper there we no known convex 
proteins that recruit actin, that can serve to initiate 
protrusions according to our mechanism.



Recent studies of the convex proteins:



More recent findings support this mechanism:



Recent findings support this mechanism:



HIV budding: driven by actin

Gladnikoff, Micha, et al. "Retroviral assembly and budding occur through 
an actin-driven mechanism." Biophysical journal 97.9 (2009): 2419-
2428.



Without actin’s help, budding at high 
membrane concentration of coat proteins

Gladnikoff, Micha, et al. "Retroviral assembly and budding occur through 
an actin-driven mechanism." Biophysical journal 97.9 (2009): 2419-
2428.



The actin-curvature feedback explains this:

Gladnikoff, Micha, et al. "Retroviral assembly and budding occur through 
an actin-driven mechanism." Biophysical journal 97.9 (2009): 2419-
2428.

Color shows 
increasing 
rate of 
growth of 
the unstable 
mode



What about highly non-linear shapes ?

Aleš Iglič Miha Fošnarič

Samo PeničVeronika Iglič

Mitja Drab



Recently published:



MC simulations

Active proteins: 
protrusive normal  force



Passive curved proteins: phase-separation

Linear-stability critical 
temperature 
(spinodla) for 
budding.

Simulation line for: 𝑁𝑁𝑐𝑐𝑐𝑐 ~2

The budding 
transition depends on 
the force, and 
spontaneous 
curvature of the 
curved active 
proteins. 



Passive curved proteins: phase-separation

Critical temperature 
(spinodal) for a 
mean-field model of 
pearled-chains 
aggregation.



Some funny shapes:

Which were predicted 
using analytic theory:

Ales Iglič et al., Eur Biophys J (2017) 46:705–718



And may even exist in cells:



And seen in 
experiments:

Artificial vesicles

Veronika Kralj-Iglič
et al., J. Phys. A: 
Math. Gen. 35 
(2002) 1533–1549

And RBC’s:

Kralj-Iglič, V., et al. 
Physical Review 
E 61.4 (2000): 4230.



Passive case: only one transition temperature

Data collapse using the critical temperature scale:



With activity:
Phase separation at 
higher T and lower ρ

(HIV budding…)

A new, unexpected, 
pancake-like phase:



It’s a sharp 
transition

What is the 
mechanism 

driving this new 
transition ?



For almost flat membrane, the active force 
acts to push outwards, with respect to the 

spherical vesicle:

This deforms the membrane in a similar 
way as the curved proteins, driving their 

faster aggregation and budding.



However, when the aggregates are highly 
budded out, the active force acts to 

destabilize them:

At a critical aggregate size, the side-ways 
force is too large and the isolated 

aggregates are destabilized.



And a new stable configuration is found:

In this way all the active 
forces act to maintain the 
shape, and the proteins 

form a stable rim-localized 
aggregate.

+



Due to the high spontaneous curvature of 
the proteins, the rim forms small-scale 

undulations:

+



Below a critical amount of 
proteins, there are not 
enough to form a closed 
rim: Two flat aggregates 
form, connected by a 
~cylindrical part.



Could this be the mechanism maintaining 
the flat lamellipodia ?



Fritz-Laylin, Lillian K., et al. "Actin-based protrusions of migrating 
neutrophils are intrinsically lamellar and facilitate direction 
changes." Elife 6 (2017): e26990.

Could this be the mechanism maintaining 
the flat lamellipodia ?



Fritz-Laylin, Lillian K., et al. "Actin-based protrusions of migrating 
neutrophils are intrinsically lamellar and facilitate direction 
changes." Elife 6 (2017): e26990.

Could this be the mechanism maintaining 
the flat lamellipodia ?

Example of ‘rosette’ pseudopods 
built by cells crawling through 
polymerized collagen networks.






Could this be the mechanism maintaining 
the flat lamellipodia ?

Are there convex complexes that activate 
actin at the lamellipodia edge ?

Recent work reports the role of I-BAR 
proteins at the lamellipodia edge, and 

shows that they are essential to initiate the 
protrusive activity of the lamellipodia.

Begemann, I., et al. 
"Mechanochemical self-organization determines search pattern in migratory cells.“

Nature Physics(2019): 1.

Milos 
Galic
(Munster)



Is the activity alone driving the flat shape ?

No,
another phase, 
characterized 
by long tether-

like shapes 
appears:

Flat active 
proteins:



Above a critical aggregate size, the active 
force is able to pull “tethers”

+



The radius of the protrusions is given by 
force balance:



The radius of the protrusions is given by 
force balance:



Above a critical spontaneous curvature, the 
pancake shapes appear



Conclusions

• Protrusive activity + convex 
curvature drives faster budding 
(HIV).

• Above a critical cluster size, they 
can drive ruffle and lamellipodia-
looking  structures.

• Flat complexes that recruit 
protrusive activity can drive tether 
(or filopodia)-like structures.



Thank you !

To be continued…
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