Emergent electronic and magnetic response in antiferromagnet-proximitized SrIrO3 and Cu-based quasi 2D hybrid perovskites

Debakanta Samal

Institute of Physics (IoP), Bhubaneswar, India.

Outline

- **Antiferromagnetic proximity effect involving spin-orbit semimetal SrIrO**₃
- **Enhanced phase coherence length in SrCuO**₂/SrIrO₃
- **Emergent topological response in SrCuO**₂/SrIrO₃
- **Organic-inorganic hybrid perovskites: quasi-2D magnets**
- **Contrasting magnetism in Cu-based systems (** A_2CuX_4 **: X = Cl, Br)**
- **Possible non-collinear magnetic structure**

Acknowledgement

Subhadip Jana (IoP,Bhubaneswar) Sachin Sarangi Tapas Senapati (NISER, Bhubaneswar) Kartik Senapati Shwetha Bhat (IISc, Bangalore) Pujalin Biswal (IoP, Bhubaneswar) Sachin Sarangi Goutam Tripathy Diptikant Swain (ICT, Bhubaneswar) Ashis Kumar Nandy (NISER, Bhubaneswar) Sagar Sarkar (Uppsala University) S D Mahanti (Michigan State University)

Antiferromagnet proximitized SrIrO₃

Phys. Rev. B 107, 134415 (2023)

Cu-based quasi 2D hybrid perovskites (unpublished)

Generous funding

Spin-orbit coupling: a relativistic effect

$$\mathbf{B}' = -\frac{-\mathbf{v}}{c^2} \times \mathbf{E},$$

$$\begin{aligned} \mathbf{H}_{\rm so} &= -\boldsymbol{\mu}_{\rm S} \cdot \mathbf{B}' \\ &= -\left(-\frac{e\hbar}{2m}\boldsymbol{\sigma}\right) \cdot \left(-\frac{1}{c^2}(-\mathbf{v}) \times \mathbf{E}\right) \\ &= -\frac{e\hbar}{2m^2c^2}\boldsymbol{\sigma} \cdot (\mathbf{E} \times \mathbf{p}) \end{aligned}$$

 $\langle \psi | V_{SOI} | \psi \rangle_{nls} \sim \mathbf{Z}^4$

M Chapman and Carlo Sa de Melo Nature 471, 41-42 (2011)

Range of energies for various interactions present in solid

Hierarchy in spin-orbit coupling strength

Interaction	3d(e.g. Cu)	5d (e.g. Ir)
Coulomb intercation (U)	3-5 eV	1-2 eV
Spin-orbit coupling (λ)	0.01 eV	0.5 eV
Crystal field splitting	1-2 eV	1-4 eV

Figure Courtesy : Prof. Takagi

Spin-orbit Mott insulator Sr₂IrO₄

Rau et al. Annual Review of Condensed Matter Physics, 2016

Novel phases induced by strong spin-orbit coupling in iridates

W. Witczak-Krempa et al., An. Rev. Cond. Mat. 5,57 (2014)

B. Yang et al., PRL 112, 246402 (2014)

$SrIrO_{3} (Sr_{n+1}Ir_{n}O_{3n+1}, n=\infty)$

Ruddlesden-Popper (RP) phases

Liu et al., PRM 1, 075004 (2017)

S. J. Moon et al., PRL 101, 226402 (2008)

$SrIrO_{3}$ ($Sr_{n+1}Ir_{n}O_{3n+1}$; $n=\infty$): spin-orbit semimetal

J. Matsuno *et al.*, PRL 114, 247209 (2015)

10

Perovskite SrIrO₃: correlated spin-orbit semimetal

- Narrow band semimetal with steep linear dispersion (PRL 114,016401 (2015))
- Signature for Dirac fermion like quasi particles from magneto-transport measurements is not evident.
- "Antiferromagnetic proximity effect" induces emergent topological electron transport

Quenching of magnetic impurity scattering

K.Munakata *et al*.PRB 84, 161405(R) (2011)

SrCuO₂(antiferromagnet)/SrIrO₃ bilayer

13

Growth and structural characterization of SrCuO₂/SrIrO₃ bilayer

Magnetoconductance

Unusual B_{so} variation

Eliott-Yafet type spin-orbit scattering

$$\frac{1}{\tau_{so}^{EY}} = \left(\frac{\lambda_{so}}{\Delta E}\right)^2 \frac{1}{\tau_e}$$

F. Simon et al., PRL 101, 177003 (2008)

Flat electronic continum extending at least up to 1000 cm⁻¹ (~125 meV) Strange semimetal dynamics in SrIrO₃

K. Sen et al., Nat. Comm. 11,4270 (2020)

$$au_{FL}^{-1} \propto \frac{1}{\varepsilon_F} \Big(\varepsilon^2 + k_B^2 T^2 \Big); \ au_{NFL}^{-1} \propto \left[\Big(\varepsilon^2 + k_B^2 T^2 \Big) \right]^{lpha}; \ au_{MFL}^{-1} \propto \Big(\frac{\varepsilon + k_B T}{\log(\omega_c/T)} \Big)$$

Antiferromagnetic proxmity enhances marginal FL behaviour

Longitudinal magnetoconductance (B III)

Chiral anomaly induced positive magnetoresistance

20

Summary -I

Antiferromagnetic proximity effect paves an avenue to preserve the nontrivial quantum phenomena in complex materials by circumventing the detrimental effect of unintended magnetic impurity scattering.

It will be useful as an effective way to control undesired spin relaxation by magnetic impurity scattering in the field of spintronics.

Role of spin dimensionality on magnetic ordering in 2D systems

Mermin-Wagner theorem forbids spontaneous symmetry breaking at finite temperature for 2D <u>isotropic Heisenberg</u> system with <u>short range interaction</u> (**PRL 17,1133 (1966)**)

Note: Anisotropy, long range interaction (e.g. dipolar)

Quasi 2D Heisenberg Magnet

- Quasi-2D magnets are those magnetic materials where the magnetic interactions are strong within the plane, but extremely weak interlayer coupling (either by large separations or by competing exchange pathways).
- □ Quasi-2D magnets are not limited to vdW layered magnets (Ruddlesden-Popper perovskite magnets $(K_2NiF_4La_2CuO_4)$
- For a Quasi 2D Heisenberg magnet, 2D magnetic correlation is expected to exist in each layer at higher temperature and upon cooling the correlation length grows exponentially with 1/T and an effective 3D long range magnetic ordering emerges at lower temperature.
- The 3D long range magnetic order in quasi 2D limit is closely linked with the strength of interlayer coupling and/or the underlying magnetic anisotropy.

Quasi 2D magnetic Organic-inorganic hybrid perovskites (OIHPs)

 $J'/J \approx 10^{-2} - 10^{-6}$

Adv. Funct. Mater. 2207988 (2022)

 $M = Cu^{2+}, Cr^{2+}, Mn^{2+}, Fe^{2+}, Co^{2+}, and X = CI, Br$

Natural Superlattice

Cu based-Quasi 2D hybrid perovskites: Orbital ordering

Anti-ferrodistortion in A_2CuX_4 Orbital ordering of $d_x^2 - \frac{2}{z}^2$ and $d_y^2 - \frac{2}{z}^2$

PRB 94,184404 (2016) Annu. Rev. Mater. Res. 48,111 (2018) Chem. Mater. 24, 133 (2012)

Cross-type orbital ordering in (C₆H₅CH₂CH₂NH₃)₂CuCl₄

Crystal Structure of A_2CuX_4 (A= C_7H_9NBr , X = Cl, Br)

Monoclinic structure with polar space group Cc

(Inversion asymmetry)

Cu-Cu Distance	A ₂ CuCl ₄	A ₂ CuBr ₄
Intralayer	5.335 Å	5.524 Å
Interlayer	16.99 Å	16.67 Å

Contrasting Magnetism in A_2CuX_4 (X = Cl, Br)

 $IP:H \parallel c, OP:H \perp bc$

Underlying Dominant Ferromagnetic Interaction

Curie-Weiss law : $\chi = \chi_o + \frac{C}{T - T_{CW}}$

Orientations	χ ₀ (emu mol ⁻¹ Oe ⁻¹)	C (emu mol ⁻¹ Oe ⁻¹ K)	T _{cw} (K)	Т _с (К)
IP (A ₂ CuCl ₄)	-3.6×10 ⁻⁴	0.42	20	7
OP (A ₂ CuCl ₄)	2×10 ⁻³	0.54	22	7
IP (A ₂ CuBr ₄)	-2.9×10 ⁻⁴	0.45	37	12.5
OP (A ₂ CuBr ₄)	1.5×10 ⁻³	0.53	34	12.5

Strength of Intralayer Ferromagnetic Exchange

Interactions (meV)	J (experiment)	J (U = 4 eV)	J ₂	MAE (K _{II})	К _{ьс}
A ₂ CuCl ₄	1.8	1.94	0.05	0.025	0.002
A ₂ CuBr ₄	2.93	3.12	0.09	0.027	0.001

Contrasting Magnetism in A_2CuX_4 (X = Cl, Br)

 $IP:H \parallel c, OP:H \perp bc$

Examining the presence of Dzyaloshinskii-Moriya Interactions

Example helix along b-axis

Estimation of intraplane DMI

A₂CuCl₄ : spiral propagation direction along c- axis

 \mathbf{e}_{rot} = rotation axis along cartesian axis ; $\Delta E = E_{CW} - E_{ACW}$ (*meV*) ; \mathbf{D}_{nn} = nearest neighbour |**D**| (*meV*)

Strength of DMI and its Effect on local spin

$A_2 CuCl_4 : D_b = 0.026 meV$
$A_{2}CuCl_{4}: D_{b} = 0.034 \text{ meV}$
D _{OP} = 0.027 meV

A_2CuCl_4						
spin spiral along b			spin spiral along c			
e _{rot}	$\Delta E \ (meV)$	D (meV)	\mathbf{e}_{rot}	$D \ (meV)$		
(1,0,0)	0.035	0.001	(1,0,0)	0.002	0.000	
(0,1,0)	0.007	0.000	(0,1,0)	0.826	0.026	
(0,0,1)	0.062	0.002	(0,0,1)	0.007	0.000	
$\vec{\mathbf{D}} = 0.001\hat{\mathbf{i}} + 0.000\hat{\mathbf{j}} + 0.002\hat{\mathbf{k}}$ $\vec{\mathbf{D}} = 0.000\hat{\mathbf{i}} + 0.026\hat{\mathbf{j}} + 0.000\hat{\mathbf{k}}$						
A_2CuBr_4						
spin spiral along b			spin spiral along c			
\mathbf{e}_{rot}	$\Delta E \ (meV)$	D (meV)	\mathbf{e}_{rot}	$\Delta E \ (meV)$	D (meV)	
(1,0,0)	0.874	0.027	(1,0,0)	0.035	0.001	
(0,1,0)	0.012	0.000	(0,1,0)	1.100	0.034	
(0,0,1)	0.164	0.005	(0,0,1)	0.033	0.001	
$\vec{\mathbf{D}} = \underline{0.027\hat{\mathbf{i}}} + 0.000\hat{\mathbf{j}} + 0.005\hat{\mathbf{k}}$ $\vec{\mathbf{D}} = 0.001\hat{\mathbf{i}} + \underline{0.034\hat{\mathbf{j}}} + 0.001\hat{\mathbf{j}}$					$\hat{\mathbf{j}} + 0.001\hat{\mathbf{k}}$	

Proposed Spin structure

 $J+K \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$ $J+D \longrightarrow \swarrow \swarrow \checkmark \land \land \land \land$

 A_2CuCl_4 : Cu (easy axis along c-direction) $J_1 = 1.94$ meV MCA (K₁) = 0.025 meV/Cu $D_b = 0.026$ meV

 A_2CuBr_4 : J= 3.12 meV $K_{bc} = 0.001 \text{ meV}, D_{OP} = 0.027 \text{ meV}$ MCA (K₁) = 0.027 meV, D_b = 0.034 meV

(Conical spiral spin structure)

A₂CuCl₄: AC susceptibility measurements

A₂CuBr₄: AC susceptibility measurements

A₂CuBr₄: AC susceptibility measurements

Our results so far....

We propose a canted and conical spiral (CS) magnetic ground state for CI and Br analogues respectively.

 Our study essentially provides a paradigm to understand the occurrence of noncollinear magnetism and its ligand tunability in the realm of Cu based quasi 2D OIHPs.

Thank you for your attention!