

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Gravitational Waves as a Probe of Particle Dark Matter

Sulagna Bhattacharya

Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai 02/01/2025

HEARING BEYOND THE STANDARD MODEL WITH COSMIC SOURCES OF GRAVITATIONAL WAVES 30/12/2024-10/01/2025

Dark Matter (DM-χ)

Candidates

Ultra-Light Fuzzy Wave like...GeV particles....black holes & macroscopic

https://www.darkenergysurvey.org/the-des-project/science/

Direct Detection	Indirect Detection	Collider Search		
$\chi + \mathrm{SM} \rightarrow \chi + \mathrm{SM}$	$\chi + \chi \rightarrow SM + SM$	$SM + SM \rightarrow \chi + \chi$		

Non-annihilating Heavy DM particles with some non-gravitational interaction with SM particles

DM Capture

DM Capture

DM Capture

 $m_{\chi} = 10^5 \,\text{GeV}, \sigma_{\chi n} = 10^{-45} \,\text{cm}^2, \text{T} = 2.1 \times 10^6 \,\text{K}, \text{M}_{\text{NS}} = 1.35 \,\text{M}_{\odot}$

Captured DM mass $\approx 4.9 \times 10^{42} \,\text{GeV} \approx 10^{-15} \,\text{M}_{\odot}$

The dark core collapses and forms a tiny black hole

DM thermalisation

The dark core collapses and forms a tiny black hole

forms a tiny black hole

DM thermalisation $r_{\rm th} \propto \sqrt{\frac{T_{\rm NS}}{m_{\chi}}} \sim 5 \,{\rm cm}$

Dark core collapse & micro-BH formation

$$N_{\chi}^{\rm BH} = \max\left[N_{\chi}^{\rm self}, N_{\chi}^{\rm Cha}\right]$$

$$N_{\chi-\text{fermion}}^{\text{Cha}} = \left(\frac{M_{\text{pl}}}{m_{\chi}}\right)^3 \& N_{\chi-\text{boson}}^{\text{Cha}} \simeq \left(\frac{M_{\text{pl}}}{m_{\chi}}\right)^2$$
$$M_{\text{pl}} = 1.2 \times 10^{19} \,\text{GeV}$$

Put, 1 GeV as neutron mass, neutron being fermion we get, $M_{
m BH} \sim 10^{57}\,{
m GeV} \simeq 1\,{
m M}_{\odot}$

$$\tau_{\text{collapse}} = 4.8 \times 10^8 \text{ years} = C^{-1} N_{\chi}^{\text{BH}}$$

The dark core collapses and forms a tiny black hole

DM thermalisation
$$r_{\rm th} \propto \sqrt{\frac{T_{\rm NS}}{m_{\chi}}} \sim 5 \,{\rm cm}$$

Dark core collapse & micro-BH formation

$$N_{\chi}^{\rm BH} = \max\left[N_{\chi}^{\rm self}, N_{\chi}^{\rm Cha}\right]$$

$$N_{\chi-\text{fermion}}^{\text{Cha}} = \left(\frac{M_{\text{pl}}}{m_{\chi}}\right)^3 \& N_{\chi-\text{boson}}^{\text{Cha}} \simeq \left(\frac{M_{\text{pl}}}{m_{\chi}}\right)^2$$
$$M_{\text{pl}} = 1.2 \times 10^{19} \,\text{GeV}$$

Put, 1 GeV as neutron mass, neutron being fermion we get, $M_{\rm BH} \sim 10^{57}\,{\rm GeV} \simeq 1\,{\rm M}_{\odot}$

$$\tau_{\text{collapse}} = 4.8 \times 10^8 \text{ years} = C^{-1} N_{\chi}^{\text{BH}}$$

Heavy DM particles are the reason for this minuscule BH!!

Growth of the micro BH & it eats the host star

Mass of the micro BH ~ $10^{-16} M_{\odot}$

 $\tau_{\rm swallow} = 3 \times 10^4 \, {\rm years}$

Growth of the micro BH & it eats the host star

Mass of the micro BH ~ $10^{-16} M_{\odot}$

 $\tau_{\rm swallow} = 3 \times 10^4 \, {\rm years}$

 $\tau_{\text{transmutation}} = (\tau_{\text{collapse}} + \tau_{\text{swallow}}) < (t_0 = 13.8 \times 10^9 \,\text{yrs})$

Growth of the micro BH & it eats the host star

Mass of the micro BH ~ $10^{-16} M_{\odot}$

 $\tau_{\rm swallow} = 3 \times 10^4 \, {\rm years}$

 $\tau_{\text{transmutation}} = (\tau_{\text{collapse}} + \tau_{\text{swallow}}) < (t_0 = 13.8 \times 10^9 \,\text{yrs})$

Growth of the micro BH & it eats the host star

Mass of the micro BH ~ $10^{-16} M_{\odot}$

 $\tau_{\rm swallow} = 3 \times 10^4 \, {\rm years}$

 $\tau_{\text{transmutation}} = (\tau_{\text{collapse}} + \tau_{\text{swallow}}) < (t_0 = 13.8 \times 10^9 \,\text{yrs})$

Non detection of these low mass black hole mergers sets constraints on DM parameter space.

Growth of the micro BH & it eats the host star

Mass of the micro BH ~ $10^{-16} M_{\odot}$

 $\tau_{\rm swallow} = 3 \times 10^4 \, {\rm years}$

 $\tau_{\text{transmutation}} = (\tau_{\text{collapse}} + \tau_{\text{swallow}}) < (t_0 = 13.8 \times 10^9 \,\text{yrs})$

Non detection of these low mass black hole mergers sets constraints on DM parameter space.

These are termed as Transmuted Black Hole (TBH)

LVK Search for Low-Mass BH

LVK concludes null detection of low mass BH mergers hence they put upper limits on the merger rate with 90% confidence.

 $\mu_{90} = R_{90} \langle VT \rangle \ge 2.303$ excluded

 $\langle VT \rangle$ is the detector sensitivity.

TBH Merger Rate

Dasgupta, Laha, Ray, PRL(2021)

$$R_{\text{TBH}} = \int dr \frac{df}{dr} \int_{t_*}^{t_0} dt_f \frac{dR_{\text{BNS}}}{dt_f} \times \Theta \left[t_0 - t_f - \tau_{\text{trans}} \left[m_{\chi}, \sigma_{\chi n}, \rho_{\text{ext}}(r, t_0) \right] \right]$$

BNS Merger rate & its spatial distribution

Assures transmutation happens within the age of the universe

 t_f = binary formation time t_s = time at z = 10 τ_{trans} = transmutation time of the BNS $\frac{dR_{\text{BNS}}}{dt_f}$ = differential BNS merger rate

TBH Merger Rate

Dasgupta, Laha, Ray, PRL(2021)

$$R_{\text{TBH}} = \int dr \frac{df}{dr} \int_{t_*}^{t_0} dt_f \frac{dR_{\text{BNS}}}{dt_f} \times \Theta \left[t_0 - t_f - \tau_{\text{trans}} \left[m_{\chi}, \sigma_{\chi n}, \rho_{\text{ext}}(r, t_0) \right] \right]$$

BNS Merger rate & its spatial distribution

Assures transmutation happens within the age of the universe

 t_f = binary formation time t_s = time at z = 10 τ_{trans} = transmutation time of the BNS $\frac{dR_{\text{BNS}}}{dt_f}$ = differential BNS merger rate

DM parameters for which, $R_{\text{TBH}}(m_{\chi}, \sigma_{\chi n}, R_{\text{BNS}}, m_c) \langle \text{VT} \rangle > 2.303$ are excluded.

Results

Priors for Bayesian Analysis

$$m_{\chi} \in \left[10^4 - 10^8 \,\text{GeV}\right]$$

$$\sigma_{\chi n} \in \left[10^{-50} - 10^{-44} \,\text{cm}^2\right]$$

$$R_{\text{BNS}} \in \left[10 - 1700 \,\text{Gpc}^{-3} \,\text{yr}^{-1}\right]$$

Hybrid Analysis

No priors on DM parameters.

Forecast with $50 \times \langle VT \rangle$

Results

BNS Vs Low-Mass BBH

	BNS NSBH		BBH	NS-Gap	BBH-gap	Full	
	$m_1 \in [1, 2.5] M_{\odot}$	$m_1 \in [2.5, 50] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [2.5, 5] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [1, 100] M_{\odot}$	
	$m_2 \in [1,2.5] M_{\odot}$	$m_2 \in [1,2.5] M_{\odot}$	$m_2 \in [2.5, 100] M_{\odot}$	$m_2 \in [1, 2.5] M_{\odot}$	$m_2 \in [2.5,5] M_{\odot}$	$m_2 \in [1, 100] M_{\odot}$	
PDB (pair)	170^{+270}_{-120}	27^{+31}_{-17}	$25^{+10}_{-7.0}$	19^{+28}_{-13}	$9.3^{+15.7}_{-7.2}$	240^{+270}_{-140}	
PDB (ind)	44^{+96}_{-34}	73^{+67}_{-37}	$22^{+8.0}_{-6.0}$	$12^{+18}_{-9.0}$	$9.7^{+11.3}_{-7.0}$	150^{+170}_{-71}	
\mathbf{MS}	$660\substack{+1040 \\ -530}$	49^{+91}_{-38}	37^{+24}_{-13}	$3.7\substack{+35.3 \\ -3.4}$	$0.12\substack{+24.88\\-0.12}$	$770\substack{+1030 \\ -530}$	
BGP	$98.0\substack{+260.0\\-85.0}$	$32.0\substack{+62.0\\-24.0}$	$33.0^{+16.0}_{-10.0}$	$1.7\substack{+30.0 \\ -1.7}$	$5.2^{+12.0}_{-4.1}$	$180.0\substack{+270.0\\-110.0}$	
Merged	10 - 1700	7.8 - 140	16-61	0.02-39	$9.4 imes 10^{-5} - 25$	72-1800	

LVK-arXiv:2111.03634

To distinguish low-mass BH mergers from Neutron Star mergers

Possible Approach

- 1) Tidal Deformability (Singh et.al. PRD(2023))
- 2) Waveform Analysis (With Basudeb Dasgupta, Shasvath Kapadia)

Waveform Analysis

l=2 m=-l

In Preparation with Dasgupta, Kapadia

Fitting Factor

Noise-Weighted Inner Product,
$$\langle h_1(f) | h_2(f) \rangle = 2 \int_{f_{\min}}^{f_{\max}} \frac{\left(h_1^*(f)h_2(f) + h_1(f)h_2^*(f)\right)}{S_n(f)} df$$

 $S_n(f)$ is the power spectral density of the detector.

Fitting factor = $\langle \hat{h}_{\rm BBH}(f) | \hat{h}_{\rm BNS}(f) \rangle$ lies between 0 and 1

EOS	norm (Ins)	norm (PM)	$\mathrm{FF}_{\mathrm{Ins}}^{\mathrm{BBH/BNS}}$	$\mathrm{FF}_{\mathrm{PM}}^{\mathrm{BBH/BNS}}$	$\mathrm{FF}_{\mathrm{total}}^{\mathrm{BBH/BNS}}$	$\mathrm{BF}_{\mathrm{Ins}}$	BF _{PM}
2H	14.76	3.05	0.974	0.603	0.96	2414	20.7
MS1b	15.45	2.96	0.983	0.82	0.978	138.9	4.6
H4	16.07	3.64	0.986	0.738	0.975	65.85	8.72
$\mathbf{BHB}\Lambda\phi$	9.41	3.2	0.77	0.83	0.76	too large	4.2
ALF2	16.5	2.9	0.992	0.788	0.986	11.05	6.06
SLy	17.35	2.74	0.9949	0.8815	0.992	4.63	2.89
2 B	17.87	2.71	0.9971	0.995	0.997	2.39	1.04

With Einstein Telescope, $D_L=350$ Mpc, $m_1=m_2=1.35\,M_\odot$

Modified Merger Rates

Upto 400 Mpc BNS mergers can be identified with strong evidences but with higher luminosity distances bayesian evidence decreases and it becomes inconclusive.

Take Home

- **GW observations can shed light into particle dark matter theory** and can even do better than the terrestrial experiments in future.
- Given confirmed GW events like GW230529, GW190814, GW190425, lowmass BH scenario has become a viable explanation and hence needs to be explored.
- Without an electromagnetic counterpart it is still hard to conclude whether two Neutron stars or low-mass BHs merged. We are trying to distinguish BNS mergers from low-mass BBH merger by analysing their full waveform (Inspiral + Postmerger).

Questions & Comments sulagna@theory.tifr.res.in

Work in Collaboration with

Prof. Basudeb Dasgupta

Prof. Ranjan Laha

Dr. Anupam Ray

Prof. Shasvath J. Kapadia

Useful References

This work is based on <u>Bhattacharya</u>, <u>Dasgupta</u>, <u>Laha</u>, <u>Ray PRL(2023)</u>

The other one is in preparation with Dasgupta, Kapadia

McDermott, Hai-Bo-Yu, Zurek, PRD(2012)

Garani, Genolini, Hambye, JCAP(2018)

- Dasgupta, Laha, Ray PRL(2021)
- Takhistov, Fuller, Kusenko, PRL(2021)
- ✤ <u>GW190425 ApJL(2020)</u>
- ✤ <u>GW190814 ApJL(2020)</u>
- ✤ <u>GW230529</u>
- Singh, Gupta, Berti, Reddy, Sathyaprakash PRD(2023)

