Accounting for IMPs

Ops. having identical constituents \& containing derivatives, can be related by IBP.

$$
\begin{aligned}
\text { e.g. } & =\left(\partial^{4} \varphi\right) \varphi^{\gamma-1}, O_{2}=\left(\partial^{3} \varphi\right)(\partial \varphi) \varphi^{\gamma-2} \\
\partial & {\left[\left(\partial^{3} \varphi\right) \varphi^{\gamma-1}\right] } \\
& =\left(\partial^{4} \varphi\right) \varphi^{\gamma-1}+\left(\partial^{3} \varphi\right)(\partial \varphi) \varphi^{\gamma-2}
\end{aligned}
$$

So, O_{1} \& O_{2} are same up to a total deriv. thus, they are not independent

* Start of an operation $\varphi^{r} \partial^{k}(k \geqslant r)$
* Find vie $\#$ of ways in which ' k ' can be partitioned into ' r ' parts

$$
\Rightarrow p(k ; \gamma)
$$

e. $\partial \quad \varphi^{5} \partial^{4} \rightarrow\left(\partial^{4} \varphi\right) \varphi^{4},\left(\partial^{3} \varphi\right)\left(\partial \varphi^{4}\right),\left(\partial^{2} \varphi\right)\left(\partial^{2} \varphi\right)^{4}$
so, $p=[4,0] ;[3,1] ;[2,2]$

* Relations among $P(K ; r)$ ops. Hough IBP are obtained by applying a total deriv. on $p(k-1 ; \gamma)$
eg

$$
\begin{gathered}
o_{1}=\left(\partial^{4} \varphi\right) \varphi^{\gamma-1} \equiv p(4, \gamma-1) \\
o_{2}=\left(\partial^{3} \varphi\right) \varphi^{\gamma-1} \equiv p(3, \gamma-1) \\
\partial[p(3, \gamma-1)]=p(4, \gamma-1)+\sum_{j} 0 ;
\end{gathered}
$$

\# of independent ops

$$
=p(k ; r)-p(k ; \gamma-1)
$$

* Performing the task at all orders we find the contribution of the following form $\left.\sum^{d}(-1)^{k} D^{k} T_{a}\left(n^{k}\right)^{\prime}\right)$ representation $k=0$
$\Rightarrow k$-form representation is obtained by the $K^{\mathbb{1}}$ exterior (anti symm) product of the vector (D) representation.
* Conformal character $50(d+2, C)$ is parametrize re $(r+1)$. dm trons,
$X_{[d ; l]}^{(d)}(a ; x)$ and $\bar{x}=\left(x_{1} \ldots, x_{f}\right)$ to the parianns of $\begin{aligned} & r=(d / 2\rfloor \text { bo variables } 9 \text { (sealing dim) } \\ & \text { and }\end{aligned}$ So (d) torus $\Rightarrow q=e^{i \theta_{q}} \quad \theta_{q} \in \mathbb{C}, \theta_{i} \in \mathbb{R}$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} q^{\Delta+n} x_{\operatorname{sym}^{n}(D)}^{(d)}(x) x_{l}^{(d)}(x) \\
& =q^{\Delta} x_{l}^{(d)}(x) p^{(d)}(q ; x)
\end{aligned}
$$

$X_{l}^{(d)}(x) \Rightarrow$ character of spin $-l$ rep n of $S O(d)$

$$
\begin{equation*}
p^{(d)}(q, x)=\sum_{n=0}^{\infty} q^{n} x_{\operatorname{sym}^{n}(D)}^{(d)} \tag{x}
\end{equation*}
$$

\Rightarrow momention generating f^{n}.
$q^{\Delta} x_{l}^{(d)}(x) \Rightarrow$ contribution from primary
block.
$p(d) \Rightarrow$ generates contributions from all the descendents.

In even-dmension $\Rightarrow d=2 \gamma$.
a group element $h \in S O(2 \gamma)$ in the vector rep=n has eigenvalues

$$
\begin{aligned}
& (2 r) \\
& h_{\square}
\end{aligned} \operatorname{diag}\left(x_{1}, x_{1}^{-1}, \ldots, x_{r}, x_{r}^{-1}\right)
$$

The rep on sym $^{(n)}(D)$ is formed by the $n^{\sqrt{n}}$ fully sym. products of vector comp.
Here, each distinct degree- n monomial formed by above eigenvalues should show up precisely once in $\chi_{\text {sym }^{(n)}(D)}^{(2 r)}$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \chi_{\text {sym }^{(m)}(0)}^{(2 r)}(x)=\sum_{\sum_{i=1}^{r} a_{i}=n}\left(x_{1}\right)^{a_{r}}\left(x_{1}^{-1}\right)^{a_{n}} \cdots\left(x_{r}\right)^{a_{r}}\left(x_{r}^{-1}\right)^{a_{r}}
\end{aligned}
$$

$$
\begin{aligned}
& p^{(d)}(a ; x)=\sum_{n=0}^{\infty}(-9)^{n} \underset{\text { anti-sym }^{(n)}(0)}{(2 r)}(x) \\
& =\prod_{i=1}^{r} \frac{1}{\left(1-q x_{i}\right)\left(1-q p x_{i}\right)} \\
& =\left[\operatorname{det}_{0}(1-g h(x))\right]^{-1} \\
& \operatorname{SO}(4, \mathbb{C}) \cong \operatorname{SU}(2)_{L} \times \operatorname{SU}(2) R \\
& q=D, x_{1}=\alpha \beta, x_{2}=\alpha / \beta \\
& p^{(4)}(D ; \alpha, \beta) \\
& \begin{aligned}
&=1 /\left[\begin{array}{l}
(1-D \alpha \beta)\left(1-\frac{D}{\alpha \beta}\right)
\end{array}\right.\left(1-D \frac{\alpha}{\beta}\right) \\
&\left.\left(1-D \frac{\beta}{\alpha}\right)\right]
\end{aligned} \quad\left\{\begin{array}{l}
\alpha \& \beta \text { are } \\
\text { torus cordinatcs } \\
\text { corresponding to } \\
\operatorname{SU}(2) \& \& \operatorname{SU}(2) Q .
\end{array}\right.
\end{aligned}
$$

