Notural unit:
$$h = c = 1$$

 $M = L^{-1} = T^{-1}$
In d-dim.
action. $S = \int d^{d}x R$
 L Le Ragrangian density
Measure (M)
(onsider $d = 2 + 1$
 $M [M] = 4$, $M [X] = -4$ as $M [S] = 0$
(Light) DoF: Scalar (cp). Fermion (4).
Gonge field (Ap). Field Strength tender
(Fpr), (orradiant dedirative (Dp))

internal Spheritte
(non-compact 1)
global Local (parage)
*
$$\chi = \sum_{i=1}^{\infty} d_i 0_i$$

* $\chi = \sum_{i=1}^{\infty} d_i 0_i$
* $\chi = \sum_{i=1}^{\infty} d_i 0_i$
* $\varphi \Rightarrow \text{ peal singlet Scalar}$
 $\chi = \frac{1}{2} (\partial_{\mu} \varrho) (\partial^{\mu} \varrho) - k_1 \varphi - k_2 \varphi^2 - k_3 \varphi^3$
 $- k_4 \varphi^4 \quad (\text{upts } i = 4).$
* Impose $\varphi \Rightarrow -\varphi$ symmetry (\mathbb{Z}_2)
 $\chi' = \frac{1}{2} (\partial_{\mu} \varrho) (\partial^{\mu} \varrho) - k_2 \varphi^2 - k_4 \varphi^4$
* $\varphi = (\partial_{\mu} \varphi) (\partial^{\mu} \varrho) - k_2 \varphi^2 - k_4 \varphi^4$
* $\varphi = (\partial_{\mu} \varphi) (\partial^{\mu} \varrho) - k_2 \varphi^2 - k_4 \varphi^4$
* $\varphi = (\partial_{\mu} \varphi)^* (\partial^{\mu} \varrho) - k_2 (\varphi^2 - k_4 (\varphi^2 - \varphi^2))$

(wp to i:4)=> D^M, D²X excluded.

We're working on a manifold yout boundary => No boundary ups. >> fotal derivatives are excluded (NO physical impact)

So,
$$\chi' = \chi'' + total derivative ops.$$

=) $\chi' = \chi''$

Category	Invariant Polynomial	Operators
Scalar DAINTIA	epn (n 24)	မ ¹ မ, (ဗ ¹ ဗ) ²
Sealar Kinetie term	بر _ک	(Dra) (Dra)
Fermion Konetie term	¥ ² D	iΨØ4
Gouge kinetie term	×2	×pr ×m
Tukanda Interaction	4 ² cp	$\left\langle \overline{\Psi}_{i}, \varphi \Psi_{j} \right\rangle$

Invariant Polynomial (Internal Symm.)

Hilbert Series => infinite series consisting
of all invariants.
H(q,q*) =
$$\sum_{n=0}^{\infty}$$
 Cn $(q*q)^n$
N=0 Ly multiplicity of
invariants for each n'
ex/ Z cli, d2 Z=pred singlet sedans
then at n=2, we have $Z cl_1^2, q_2^2, cl, q_2^2$
so $C_2 = 3$ (assuming $q_1 q_2 = q_2 q_1$)

$$J_{1}(q, q^{w}) \Rightarrow geometric series (1-q^{w}q)^{-1}$$

$$J_{1}(q, q^{w}) = \frac{1}{2\pi} \int_{2\pi}^{2\pi} \frac{d\theta}{(1-qe^{i\theta})(1-q^{w}e^{-i\theta})}$$

$$considering 2 = e^{i\theta} \Rightarrow (21=1)$$

$$J_{1}(q, q^{w}) = \frac{1}{2\pi i} \oint_{12i=1}^{2\pi} \frac{d2}{2} \frac{1}{(1-q^{2})(1-q^{w}e^{-i\theta})}$$

$$(1-q^{2})(1-q^{w}2^{-1})^{-1}$$

$$= [1+(q^{w}q)+(q^{w}q)^{2}+(q^{w}q)^{2}+(q^{w}q)^{3}+\cdots]$$

$$+ \frac{1}{2}[q^{2}+q^{2}(q^{w}q)+\cdots]$$

$$+ \frac{1}{2}[q^{w}+q^{w}(q^{w}q)+\cdots]$$

$$+ \frac{1}{2}[q^{w}^{2}+q^{w}(q^{w}q)+\cdots]$$

$$+ \frac{1}{2}[q^{w}^{2}+q^{w}(q^{w}q)+\cdots]$$

Again,

$$\begin{bmatrix} (1-q^2)(1-q^* 2^{-1}) \end{bmatrix}^{-1} \\
= exp \begin{bmatrix} -log(1-q^2) - log(1-q^* 2^{-1}) \end{bmatrix} \\
= exp \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \\
= exp \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \\
= exp \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \\
= exp \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \\
= exp \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \\
= exp \begin{bmatrix} 2 \\ -1 \end{bmatrix} \\
= exp \\
= exp \\
= exp \\
= exp \\
= exp$$

Invariant operator => taking tensor products of representations. leading to construct a "Singlet" under all the "considered" symmetries 303= 5 + 3 + 1 $sv(3): \overline{3}\otimes\overline{3}=\overline{6}\oplus 3_n$ 383 = 8€1 $8 \otimes 8 = 1 \oplus 27 \oplus 10 \oplus 10 \oplus 8 \oplus 8 \oplus 8$ > Dictates which representation to choose to create a "Singlet" 7 Taking tensor products of these representations amount to character multiplication.

Compact Lie Groups and Torry Torus (more specifically maximal torus) subogroups play esucial role in the representation theory of compact Lie groups (c L G) * A torus in a cLG to a compact, connected abelian subgroups of CLG - maximal when maximal among subgroups.

* Romk of CLG = dimension of maximal torows. > monximal number of diagonal genesators > equals to the number of nodes in Dynkin diagram * Unitating group U(N) has subgroups of all diagonal matrices as maximal torus.

* Special Unitaty group SU(N) has maximal torus TIN-1 as TIN-1 diag 2 eight, ei (02:01) -, e-DN-13

Consider an irreducible rep? MESU(N) character corresponding to M[D(V)] \$\Rightarrow XD(V) = Tr D(V)

Weyl character is given as $\chi_{(N(\epsilon))}^{(N(\epsilon))} = \frac{\left[\epsilon^{r_1}, \epsilon^{r_2}, \dots, \epsilon^{r_{N-1}}, L\right]}{\left[\epsilon^{N-1}, \epsilon^{N-2}, \dots, \epsilon, L\right]}$

where,

$$M(E) = diag(E_1, E_2, \dots, E_N)$$

 $M = \prod_{n=1}^{N} E_n = J,$

In case of
$$SU(N)$$
, the rank is $(N-1)$.
Maximal torrus TI^{N-1} is given as
 $(N-1)$ copies of $U(L)$
Each $U(L)$ is represented by a unimodular
complex variable $2 = e^{10}$
 $T^{N-1} \equiv U(L) \times U(L) \times - \cdots \times U(L)$
 $(N-1)$
* Ea's are related to $2i's$ Han?
Two bases : $\frac{1}{2}Ea_{2}^{2} \Rightarrow \frac{1}{2}i^{2}$
 $A = 1, \dots, N;$
 $i = 1, \dots, N;$

* Finding relation between
$$Ca \in 2$$
;
 $T[N^{-1} = ding \int e^{i\theta_1}, e^{i(\theta_2 \cdot \theta_1)}, e^{i(\theta_2 \cdot \theta_2)}$
 $\dots, e^{-i\theta_{N-1}} \int_{(N \times N)}$
Hete, θ_1 's parametrizes the coordinates
of torus.
Cartan matrix of $SV(N)$
 $A_{SV(N)} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{N-1} \end{pmatrix} \qquad Dywkin-diagram$
 $(N-1) # of blobs,$
 $= \begin{pmatrix} 2 & -1 & 0 & --- \\ -1 & 2 & -1 & --- \\ -1 & 2 & -1 & --- \\ -1 & 2 & 0 \\ 0 & 2 - 1 \\ -1 & 2 \end{pmatrix}$

*
$$SU(N)$$
 has $(N-1) # d$ Fundamental Rep²(FR)
DynKin label of FR is given as
 $(O^{a_1} I^{a_2} O^{a_3})$, where $a_1 + a_2 + a_3$
 $= (N-1)$

Define,

$$L_{1} = (1, 0, 0, ..., 0)$$

$$Weight$$

$$tree$$

$$L_{2} = L_{1} = (-1, 1, 0, -.., 0)$$

$$L_{3} = L_{2} - \alpha_{2}, \quad \mathbf{k} = L_{K-1} - \alpha_{K-1}$$

$$L_{N} = L_{N-1} - \alpha_{N-1}$$

$$= (0, 0, ..., 0, -1)$$

generic def^{*} of
$$(N-1)$$
 tupple Li an
Li = $(L_{1}^{(1)}, L_{1}^{(2)}, L_{1}^{(3)}, \dots, L_{1}^{(N-1)})$
then relat^{*} bet^{*} Ea and Z₁ is given an
 $E_{1} = 2A_{1}^{L_{1}^{(1)}} \times 2_{2}^{L_{1}^{(2)}} \times 2_{3}^{L_{1}^{(3)}} \dots \times 2_{N-1}^{L_{1}^{(N-1)}}$
Simplifying De find,
 $E_{1} = 2_{1}^{L} \times 2_{2}^{\circ} \dots \times 2_{N-1}^{\circ} = 2_{1}^{\circ}$
 $E_{2} = 2_{1}^{\circ} \times 2_{2}^{\circ} \dots \times 2_{N-1}^{\circ} = 2_{1}^{\circ} + 2_{2}^{\circ}$
 $E_{K} = 2_{1}^{\circ} \times \dots \times 2_{N-1}^{-1} \times 2_{N} \times \dots = 2_{K-1}^{\circ} + 2_{K},$
 $E_{N} = 2_{N-1}^{\circ}$
Let's absume Dynkin label of a ref^{*} R is
 $(a_{1}, a_{2}, \dots, a_{N-1})$