Planar and nonlinear Hall transport in quasi-2D systems

Amit Agarwal Quantum transport and theory group Physics@IIT Kanpur

Berry curvature induced transport and optical phenomena

[Linear and non-linear Hall effects, quantum anomalies, new transport/optical effects...]

New collective modes in bulk and on surface

[Chiral plasmons, new collective modes in bulk, surface plasmons]

First principle based exploration of novel quantum materials [Topological materials, 2D materials, topology + FE, Magnetism..., transport, excitons]

Novel electronic devices

[Negative Capacitance FET, 2D transistors..]

Geometrical properties of electron wave-packets

- One of the most interesting ideas in Quantum Mechanics
- Became prominent around 1984, 57 years after the discovery of QM

Wave-function moving around the Brillouin zone generates an irreducible phase - the Berry phase

$$\Phi_{\text{Berry}} = \oint \mathbf{\Omega}_{\mathbf{k}} \cdot \hat{n} \ dk_x dk_y$$

'Magnetic field' in momentum space

Connected to 'degenerate band crossing' or 'band inversion' points in the BZ

$$\Phi_{\text{Magnetic Flux}} = \oint \mathbf{B} \cdot \hat{n} \, dx dy$$

Magnetic field in real space

Connected to 'magnetic monopoles' and circulating currents in real space

Gives rise to very interesting geometrical phenomena in quantum materials

Curvature in Brillouin zone

Topological properties Novel surface/edge states Anomalous velocity $(\mathbf{E} imes \mathbf{\Omega}_{\mathbf{k}})$

Modified Eq. of motion Novel transport phenomena (AHE, NAHE....) Orbital magnetization (Finite size wavepacket) Valley polarization OMM induced Hall effect

Quantum geometry of Bloch electrons -> Transport

Translation and self-rotation of a finite width electron wave packet with Bloch electron dynamics

Geometrical properties: Berry connection, Berry curvature, orbital magnetic moment, quantum metric, metric connection

These couple to external perturbations (E, B, T-gradient) in interesting ways. Generate new phenomena in transport and optical experiments.

Boltzmann Transport theory

Eq. of motion, 1 band picture

Quantum Kinetic theory

Density matrix, multi-band picture

Berry Curvature => Novel transport phenomena

Anomalous velocity
[Anomalous Hall, valley Hall effect]

$$\dot{\mathbf{r}} = D_{\mathbf{k}} \left(\tilde{\mathbf{v}}_{\mathbf{k}} + \frac{e}{\hbar} (\mathbf{E} \times \mathbf{\Omega}_{\mathbf{k}}) + \frac{e}{\hbar} (\tilde{\mathbf{v}}_{\mathbf{k}} \cdot \mathbf{\Omega}_{\mathbf{k}}) \mathbf{B} \right)$$

$$\dot{\mathbf{k}} = D_{\mathbf{k}} \left(-e\mathbf{E} - e(\tilde{\mathbf{v}}_{\mathbf{k}} \times \mathbf{B}) - \frac{e^{2}}{\hbar} (\mathbf{E} \cdot \mathbf{B}) \mathbf{\Omega}_{\mathbf{k}} \right)$$

$$D_{\mathbf{k}} \equiv [1 + \frac{e}{\hbar} (\mathbf{B} \cdot \mathbf{\Omega}_{\mathbf{k}})]^{-1}$$

BC modifies the semiclassical Eq. of motion of wave packets in crystals

=> induces novel transport effects

Berry force [Magneto-electric coupling, Negative MR, Planar Hall effect, `chiral anomaly' like physics]

a a making wall a side

Playground: the problem of transport conductivity

Modelling electrical conductivity in transport measurements

Band geometry	BG + electron correlations			
Linear: Anomalous Hall effect Non-linear: i) Berry curvature Dipole ii) Quantum metric dipole (BCP) Third order: ???? AHE in systems with P and T	Linear: Superfluid stiffness Nonlinear: ????			
Extrinsic: disorder + BG + asymmetric scattering Linear: weak localization, extrinsic AHE Non-Linear: extrinsic AHE, ????	Disorder + BG + Correlation effects Linear: Kondo effect, Many body localization, ???? Nonlinear: ????			

Non-interacting physics

Many body physics

Disorder

Hall effect without magnetic field: Beyond the linear regime

In case we do not have an anomalous Hall or symmetric (Drude) Hall response in the linear response regime

What is the dominant Hall response in the non-linear regime Are there novel longitudinal responses beyond nonlinear Drude?

Problem of second order nonlinear DC conductivity?

Full problem => Band geometry + Disorder (Symm + Asymm) + strong correlation effects

Partial solution => Band geometry + symmetric scattering effects

Letter

Intrinsic nonlinear conductivities induced by the quantum metric

Kamal Das[®],^{1,2,*,†} Shibalik Lahiri,^{1,3,*,‡} Rhonald Burgos Atencia,^{4,5,§} Dimitrie Culcer,^{4,5,∥} and Amit Agarwal^{®1,¶}

Nonlinear Zero B Hall effect: Second order Responses

Correction in the distribution function =>

Non-linear Drude response

(Second order correction in the distribution function)

Berry Curvature Dipole

(First order correction in the distribution function + Anomalous velocity)

E-induced correction in the Berry curvature and anomalous velocity + **Intrinsic** or unperturbed distribution function

Berry connection polarizability (quantum metric) induced Hall response

Quantum geometry of Bloch electrons - I

Distance between nearby states => quantum geometric tensor

$$ds^{2} = \langle \psi(\mathbf{k} + d\mathbf{k}) - \psi(\mathbf{k}) | \psi(\mathbf{k} + d\mathbf{k}) - \psi(\mathbf{k}) \rangle = \left\langle \frac{\partial \psi(\mathbf{k})}{\partial k_{a}} \middle| \frac{\partial \psi(\mathbf{k})}{\partial k_{b}} \right\rangle dk_{a} dk_{b}$$

a/b => coordinate axis

All topological indexes => the BZ integrals of functions of Berry curvature

Topological materials => Novel surface states with interesting properties

BC/QM => New transport and optical phenomena (AHE, valley HE, NL Hall)

Quantum geometry of Bloch electrons – II

From single band picture <=> multi band picture

Band resolved band geometric quantities

Berry connection

 $\mathcal{R}_{mp}(\boldsymbol{k}) = i \langle u_{\boldsymbol{k}}^m | \partial_{\boldsymbol{k}} u_{\boldsymbol{k}}^p \rangle$

Geometric tensor

Quantum Metric

Berry curvature

 $\Omega^{cb}_{mp} = i[\mathcal{R}^c_{pm}, \mathcal{R}^b_{mp}]$

$$\mathcal{Q}_m^{cb} = \sum_{p \neq m} \mathcal{Q}_{mp}^{cb}$$

$$ach$$
 $\sum ach$

 $\mathcal{Q}_{mp}^{cb} = \mathcal{R}_{mp}^{c} \mathcal{R}_{pm}^{b} \qquad \mathcal{G}_{mp}^{cb} = \{\mathcal{R}_{pm}^{c}, \mathcal{R}_{mp}^{b}\}/2$

Nonlinear Zero B Hall effect: Second order Responses

A natural question

Is that the complete story?

Or, are there missing terms?

How do we capture all possible nonlinear terms systematically, on the same footing even in a simple relaxation time approximation?

Quantum Kinetic theory: Non-linear transport/optics

E field – matter interaction: $\mathcal{H}_{int}(\boldsymbol{k},t) = \mathcal{H}_0(\boldsymbol{k}) + U + e\boldsymbol{r} \cdot \boldsymbol{E}(t)$

Velocity operator:
$$\mathbf{v} = \dot{\mathbf{r}} = \frac{1}{i\hbar} [\mathbf{r}, \mathcal{H}_{int}]$$

Current expectation value: $\mathbf{J} = \mathrm{Tr}$

$$\mathbf{J} = \operatorname{Trace}[\mathbf{v}\rho]$$

Evolution of density matrix:

$$\frac{d\rho(\boldsymbol{k},t)}{dt} + \frac{i}{\hbar} [\mathcal{H}_{\text{int}}(\boldsymbol{k},t),\rho(\boldsymbol{k},t)] = 0$$

- Work in the basis states of H_0
- `r' operator => Berry connection
- EOM of density matrix => Covariant derivative

Nonlinear Zero B Hall effect: Second order Responses

+ Asymmetric scattering contributions (side jump and skew scattering)

Berry curvature dipole induced Hall conductivity

O Hall effect in time-reversal symmetric systems

O Induced by Berry curvature dipole

O Inversion symmetry breaking + asymmetry of band structure is essential

PRL 115, 216806 (2015)

Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials

Inti Sodemann and Liang Fu

Berry curvature dipole

$$\chi_{\rm abc} = -\varepsilon_{adc} \frac{e^3 \tau}{2(1+i\omega\tau)} \int_k f_0(\partial_b \Omega_d).$$

Berry curvature dipole induced Hall conductivity

Topological phase transitions are hard to detect (valley Chern type)

=> We demonstrate that the BCD changes sign across the transition

=> NL Hall measurement can detect topological phase transitions

Intrinsic: Berry curvature polarizability Hall current

This induces corrections in An. velocity=> Second order intrinsic Hall response

This corrections is significant in systems where the Berry curvature vanishes For example in (PT) symmetric systems (bipartite antiferromagnets) in P and T symmetric systems (graphene) => NL valley response

ct in Antiferromagnetic Tetragonal CuMnAs
D, ¹ Yang Gao, ^{2,3,*} and Di Xiao ^{1,†}

Intrinsic: Berry curvature polarizability Hall current

Article

Quantum-metric-induced nonlinear transport in a topological antiferromagnet

https://doi.org/10.1038/s41586-023-06363-3 Received: 16 January 2023 Accepted: 22 June 2023

Naizhou Wang¹, Daniel Kaplan², Zhaowei Zhang¹, Tobias Holder², Ning Cao³, Aifeng Wang³, Xiaoyuan Zhou³, Feifei Zhou¹, Zhengzhi Jiang¹, Chusheng Zhang¹, Shihao Ru¹, Hongbing Cai^{1,4}, Kenji Watanabe⁵, Takashi Taniguchi⁶, Binghai Yan²¹² & Weibo Gao^{1,4,7}¹²

Nonlinear BCP Hall \mathbf{j}_{\perp} $\mathbf{f}_{\mathbf{k}} \propto f$ $v_{a}^{\mathrm{BCPH}} \propto \sum_{p \neq m} \left[2\partial_{a} \tilde{\mathcal{G}}_{mp}^{bc} - \partial_{b} \tilde{\mathcal{G}}_{mp}^{ac} - \partial_{c} \tilde{\mathcal{G}}_{mp}^{ab} \right] E_{b} E_{c}$

Recent observation

RESEARCH

RESEARCH ARTICLE

TOPOLOGICAL MATTER

Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure

Anyuan Gao¹, Yu-Fei Liu^{1,2}, Jian-Xiang Qiu¹, Barun Ghosh³, Thaís V. Trevisan^{4,5}, Yugo Onishi⁶, Chaowei Hu⁷, Tiema Qian⁷, Hung-Ju Tien⁸, Shao-Wen Chen², Mengqi Huang⁹, Damien Bérubé¹, Houchen Li¹, Christian Tzschaschel¹, Thao Dinh^{1,2}, Zhe Sun^{1,10}, Sheng-Chin Ho¹, Shang-Wei Lien⁸, Bahadur Singh¹¹, Kenji Watanabe¹², Takashi Taniguchi¹², David C. Bell^{13,14}, Hsin Lin¹⁵, Tay-Rong Chang^{8,16,17}, Chunhui Rita Du⁹, Arun Bansil³, Liang Fu⁶, Ni Ni⁷, Peter P. Orth^{4,5}, Qiong Ma^{10,18}, Su-Yang Xu¹*

Intrinsic: Quantum metric dipole induced current

Letter

New NL intrinsic response: longitudinal as well as transverse

Interband coherence effects in longitudinal transport

Not very well understood from the semiclassical calculation framework

PHYSICAL REVIEW B 108, L201405 (2023)

Intrinsic nonlinear conductivities induced by the quantum metric

Kamal Das[®],^{1,2,*,†} Shibalik Lahiri,^{1,3,*,‡} Rhonald Burgos Atencia,^{4,5,§} Dimitrie Culcer,^{4,5,∥} and Amit Agarwal[®]^{1,¶}

$$\mathcal{H} = v_F(k_x\sigma_y - k_y\sigma_x) + v_tk_y\sigma_0 + \Delta\sigma_z$$

Nonlinear Zero B Hall effect: Second order Responses

+ Asymmetric scattering contributions (side jump and skew scattering)

Planar Hall Effect in Quasi-Two-Dimensional Materials

Koushik Ghorai,^{*} Sunit Das,^{*} Harsh Varshney, and Amit Agarwal[†] Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India Lorentz Hall effect

Transverse Hall voltage generated by orthogonal electric and magnetic field

Lorentz force

Planar Hall effect

In-plane transverse voltage in presence of in-plane electric and magnetic field

> Chiral magnetic velocity + Berry force

Chiral magnetic velocity and Berry force

Anomalous velocity
[Anomalous Hall, valley Hall effect]

$$\dot{\mathbf{r}} = D_{\mathbf{k}} \left(\tilde{\mathbf{v}}_{\mathbf{k}} + \frac{e}{\hbar} (\mathbf{E} \times \mathbf{\Omega}_{\mathbf{k}}) + \frac{e}{\hbar} (\tilde{\mathbf{v}}_{\mathbf{k}} \cdot \mathbf{\Omega}_{\mathbf{k}}) \mathbf{B} \right)$$

$$\dot{\mathbf{r}} = D_{\mathbf{k}} \left(-e\mathbf{E} - e(\tilde{\mathbf{v}}_{\mathbf{k}} \times \mathbf{B}) - \frac{e^{2}}{\hbar} (\mathbf{E} \cdot \mathbf{B}) \mathbf{\Omega}_{\mathbf{k}} \right)$$

$$D_{\mathbf{k}} \equiv [1 + \frac{e}{\hbar} (\mathbf{B} \cdot \mathbf{\Omega}_{\mathbf{k}})]^{-1}$$

BC modifies the semiclassical Eq. of motion of wave packets in crystals

=> induces novel transport effects

Berry force [Magneto-electric coupling, Negative MR, Planar Hall effect, `chiral anomaly' like physics]

Electronic current $\mathbf{j}^e = -e \int [d\mathbf{k}] D^{-1} \, \dot{\mathbf{r}} \, g_{\mathbf{k}}$

Theory of Planar Hall effect in 3D systems

 $\mathbf{v}_{\lambda}\cdot\mathbf{\Omega}_{\lambda}\neq0.$

No Berry curvature induced Planar Hall effect

Possibility of finite planar BC in 2D systems

2D systems with two or more atomic layers + Interlayer tunnelling of electrons

Finite inplane Berry Curvature and Orbital magnetic moment =>

$$\begin{split} \mathbf{\Omega}_{n\mathbf{k}}^{\text{planar}} &= 2\hbar \sum_{n' \neq n} \frac{\text{Re}(\boldsymbol{v}_{nn'} \times \boldsymbol{Z}_{n'n})}{(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}})}, \qquad \boldsymbol{m}_{n\mathbf{k}}^{\text{planar}} = e \sum_{n' \neq n} \text{Re}(\boldsymbol{v}_{nn'} \times \boldsymbol{Z}_{n'n}). \\ \boldsymbol{\mathcal{Z}}_{n'}^{\text{planar}} &= e \sum_{n' \neq n} \text{Re}(\boldsymbol{v}_{nn'} \times \boldsymbol{Z}_{n'n}). \\ \boldsymbol{\mathcal{Z}}_{n'n} &= \hat{z} \langle u_{n'\mathbf{k}} | \, \boldsymbol{\mathcal{Z}} | u_{n\mathbf{k}} \rangle \\ \boldsymbol{j}^{\text{planar}} &= -e^{2} \tau \int_{n\mathbf{k}} \mathcal{D}_{\mathbf{k}} \tilde{\boldsymbol{v}}_{\mathbf{k}} (\tilde{\boldsymbol{v}}_{\mathbf{k}} \hat{\boldsymbol{z}} | \mathbf{E}) \underbrace{\partial_{\varepsilon} \tilde{f}_{0}}_{\boldsymbol{E}} \underbrace{\int_{\Omega} e^{3} \tau}_{\boldsymbol{\Omega}} \underbrace{\int_{\Omega} e^{3} \tau}_{\boldsymbol{\Omega}} (\tilde{\boldsymbol{v}}_{\mathbf{k}} \cdot \boldsymbol{\Omega}_{\mathbf{k}}) \underbrace{\partial_{\varepsilon} \tilde{f}_{0}}_{\boldsymbol{\varepsilon}} \underbrace{\int_{\Omega} e^{4} \tau}_{\tilde{h}^{2}} (\mathbf{E} \cdot \mathbf{B}) \mathbf{B} \int_{n\mathbf{k}} \mathcal{D}_{\mathbf{k}} (\tilde{\boldsymbol{v}}_{\mathbf{k}} \cdot \boldsymbol{\Omega}_{\mathbf{k}}) \underbrace{\partial_{\varepsilon} \tilde{f}_{0}}_{\boldsymbol{\varepsilon}} \underbrace{\int_{\Omega} e^{4} \tau}_{\tilde{h}^{2}} (\mathbf{E} \cdot \mathbf{B}) \mathbf{B} \int_{n\mathbf{k}} \mathcal{D}_{\mathbf{k}} (\tilde{\boldsymbol{v}}_{\mathbf{k}} \cdot \boldsymbol{\Omega}_{\mathbf{k}}) \underbrace{\partial_{\varepsilon} \tilde{f}_{0}}_{\boldsymbol{\varepsilon}} \underbrace{\int_{\Omega} e^{4} \tau}_{\tilde{h}^{2}} (\mathbf{E} \cdot \mathbf{B}) \mathbf{B} \int_{n\mathbf{k}} \mathcal{D}_{\mathbf{k}} (\tilde{\boldsymbol{v}}_{\mathbf{k}} \cdot \boldsymbol{\Omega}_{\mathbf{k}}) \underbrace{\partial_{\varepsilon} \tilde{f}_{0}}_{\boldsymbol{\varepsilon}} \underbrace{\int_{\Omega} e^{4} \tau}_{\tilde{h}^{2}} (\mathbf{E} \cdot \mathbf{B}) \mathbf{B} \int_{n\mathbf{k}} \mathcal{D}_{\mathbf{k}} (\tilde{\boldsymbol{v}}_{\mathbf{k}} \cdot \boldsymbol{\Omega}_{\mathbf{k}}) \underbrace{\int_{\Omega} e^{2} \tau}_{\tilde{h}^{2}} \underbrace{\int_{\Omega} e^{4} \tau}_{\tilde{h}^{2}} (\mathbf{E} \cdot \mathbf{B}) \mathbf{B} \int_{n\mathbf{k}} \mathcal{D}_{\mathbf{k}} (\tilde{\boldsymbol{v}}_{\mathbf{k}} \cdot \boldsymbol{\Omega}_{\mathbf{k}}) \underbrace{\int_{\Omega} e^{2} \tau}_{\tilde{h}^{2}} \underbrace{\int_{\Omega} e^{4} \tau}_{\tilde{h}^{2}}$$

 $h \mathbf{k}$

 $^{3} au$

Origin of finite planar BC in 2D systems

Conventional Berry Curvature:

$$\boldsymbol{\Omega}_{n\boldsymbol{k}} = i\hbar^2 \sum_{n' \neq n} \frac{\boldsymbol{v}_{nn'} \times \boldsymbol{v}_{n'n}}{(\varepsilon_{n\boldsymbol{k}} - \varepsilon_{n'\boldsymbol{k}})^2}$$

Redefine out-of-plane velocity matrix element:

 $v_{n'n}^{z} = (1/\hbar) \langle u_{n'\boldsymbol{k}} | \partial_{k_{z}} H_{\boldsymbol{k}} | u_{n\boldsymbol{k}} \rangle \equiv (1/\hbar) \langle u_{n'\boldsymbol{k}} | i[H_{\boldsymbol{k}}, Z] | u_{n\boldsymbol{k}} \rangle = (i/\hbar) (\varepsilon_{n'\boldsymbol{k}} - \varepsilon_{n\boldsymbol{k}}) Z_{n'n}$

Interlayer tunnelling can give rise to out of plane velocity matrix

Planar Berry curvature in quasi-2D systems

$$\Omega_{n\mathbf{k}}^{\text{planar}} = 2\hbar \operatorname{Re} \sum_{n' \neq n} \frac{\mathbf{v}_{nn'} \times \mathbf{Z}_{n'n}}{(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}})}$$

Similarly, planar orbital magnetic moment:

$$m{m}_{nm{k}}^{ ext{planar}} = e \, \operatorname{Re} \sum_{n'
eq n} m{v}_{nn'} imes m{Z}_{n'n}$$

Origin of finite planar BC in 2D systems

During dimensional reduction, the helical texture of in-plane BC is preserved for polar BiAg2 monolayer (Phys. Rev. B **104**, L081114)

Planar Hall effect in quasi-2D systems

Planar Current: $j_a = \tau \chi_{ab;c} E_b B_c + \tau \chi_{ab;cd} E_b B_c B_d$

Planar Hall effect in quasi-2D systems

Planar Current: $j_a = \tau \chi_{ab;c} E_b B_c + \tau \chi_{ab;cd} E_b B_c B_d$

$$\sigma_{\parallel} = \tau B(\chi_{xx;x} \cos \phi + \chi_{xx;y} \sin \phi) + \tau B^2(\chi_{xx;xx} \cos^2 \phi + \chi_{xx;yy} \sin^2 \phi + \chi_{xx;xy} \sin \phi \cos \phi) , \qquad (9)$$

$$\sigma_{\perp} = \tau B(\chi_{yx;x} \cos \phi + \chi_{yx;y} \sin \phi) + \tau B^{2}(\chi_{yx;xx} \cos^{2} \phi + \chi_{yx;yy} \sin^{2} \phi + \chi_{yx;xy} \sin \phi \cos \phi) .$$
(10)

B-linear planar Hall conductivity vanishes in τ -symmetric systems.

Finiteness of $\chi_{xx;xy}, \chi_{yx;xx}, \chi_{yx;yy}$ requires broken $\mathcal{M}_x, \mathcal{M}_y$ symmetries.

Longitudinal	Transverse	${\cal P}$	\mathcal{T}	\mathcal{M}_x	\mathcal{M}_y	\mathcal{C}_{3z}
$\chi_{xx;x}$	$\chi_{yx;y}$	✓	X	✓	×	1
$\chi_{xx;y}$	$\chi_{yx;x}$	1	×	×	✓	✓
$\chi_{xx;xx},\chi_{xx;yy}$	$\chi_{yx;xy}$	✓	✓	✓	1	✓
$\chi_{xx;xy}$	$\chi_{yx;xx},\chi_{yx;yy}$	✓	✓	×	×	✓

$\chi_{ab;c} = 0$ 2D-Planar Hall effect in bilayer graphene

Planar BC and OMM in Bilayer graphene

 $\sigma_{\perp} = \tau B(\chi_{yx;x} \cos \phi + \chi_{yx;y} \sin \phi) + \tau B^2(\chi_{yx;xx} \cos^2 \phi + \chi_{yx;yy} \sin^2 \phi + \chi_{yx;xy} \sin \phi \cos \phi) .$ (10)

 $\sigma_{\parallel} = \tau B(\chi_{xx;x} \cos \phi + \chi_{xx;y} \sin \phi) + \tau B^2(\chi_{xx;xx} \cos^2 \phi + \chi_{xx;yy} \sin^2 \phi + \chi_{xx;xy} \sin \phi \cos \phi) , \qquad (9)$

Variation of 2DPHE with doping, displacement field, and angle

2D Planar Hall effect: Possibilities

Planar Nernst, and planar Seebeck effect in 2D systems..

What about planar spin Hall effect in 2D systems?

What about planar spin-thermoelectric effect in 2D systems?

What about similar physics in bosonic systems?

What about in-plane quantum metric and its implications?