

Two Dimensional Electron Gas at LVO/KTO Interface Arpan Das

Jawaharlal Nehru Centre for Advanced Scientific Research

Bangalore

Engineered 2D Quantum Materials ICTS-TIFR, Bangalore July, 2024

Collaborators

Prof. Suvankar Chakraverty, INST, Mohali, India

Prof. Shobhana Narasimhan, JNCASR, Bangalore, India

2DEG at Interface

2DEG at Interface

2DEG at Interface

- 2DEG can form at heterointerface.
- Electrons confined and free to move in two dimensions.
- Tightly confined in third dimension (\sim nm).

Why is 2DEG Interesting?

• Important for fundamental physics and exotic phenomena in 2D (2 Nobel prizes so far!)

e.g.,

- Quantum Hall effect.
- Superconductivity.
- Wigner Crystallization.

- Important for applications.
	- High carrier concentration and high carrier mobility attractive for devices.
	- e.g., MOSFETs.

Why 2DEG forms - 1

- At semiconductor-semiconductor interfaces:
	- e.g., Si/Si-Ge or AlGaAs/GaAs

• Band gap engineering: band bending + modulation doping + gating. (Recall talk by Garima Ahuja on 23rd July)

Why 2DEG forms - 2

• At polar/non-polar interfaces:

e.g., LaAlO₃/SrTiO₂, LaCrO₂/SrTiO₂

- Neutral planes of STO interfaced with alternating charged planes of LAO.
- Produces non-negative electric field.
- Electrostatic potential diverges with increasing film thickness.
- Known as "Polar catastrophe".

Why 2DEG forms - 2

• At polar/non-polar interfaces:

e.g., LaAlO₃/SrTiO₃, LaCrO₃/SrTiO₃

- Polar catastrophe is avoided by $\frac{1}{2}$ electron transfer to the interfacial TiO₂ layer.
- Electric field oscillates about zero and potential remains finite.
- Known as "electronic reconstruction".

Early Work: Polar/Non-polar Oxide Interface

Early Work: Other Oxide Interfaces

• Non-polar/non-polar oxide interfaces:

e.g., CaZrO₃/SrTiO₃ etc.

• Polar/polar oxide interfaces:

e.g., LaTiO₃/KTaO₃, LaAlO₃/KNbO₃, LaAlO₃/NaTaO₃ etc.

Fig. is taken from: Y. Wang et al., ACS Appl. Mater. Interfaces **8**, 13659−13668 (2016). 11

System Under Study

- Deposited thin film of LaVO₃ on TaO₂ terminated $KTaO₃(001)$ surface.
- LVO is a Mott insulator. KTO is a band insulator.
- Both LVO and KTO are polar i.e., consist of alternating charged layers.

Why LVO/KTO?

- Polar/polar interface.
- What we hope will happen:
- (i) Both the materials will donate electrons \Box increase in carrier density.
- (ii) Ta-5d orbitals are less localized compared to Ti-3d orbitals higher *e*[−] mobility.
- (iii) Large spin-orbit coupling \Box Rashba physics.

Aims of this Study

- Joint experimental and theoretical study.
- Experiments done in the group of Prof. Suvankar Chakraverty, INST, Mohali.
- Want to find other systems which exhibit 2DEG at oxide interface, in particular LaVO₃/KTaO₃ (LVO/KTO).
- LVO/KTO is a polar/polar interface Can give higher interfacial electron density of 2DEG?
- Determine the origin of 2DEG at LVO/KTO interface.
- DFT calculations to confirm experimental observations and provide additional insights.

- At 2 ML LVO film thickness, resistivity is very high.
- Resistivity decreases with increasing temp.
- Interface is insulating.

- Resistivity vs. Temp for diff thicknesses of LVO At 3 ML LVO film thickness, resistivity became smaller, but still high.
	- Resistivity increases linearly with increasing T.

 $• 10 ml$ 6.6 ml \bullet 2 ml $10⁷$ $• 40 ml$ $• 7 ml$ \bullet 3 ml $\rho_{2\text{D}}(\Omega/\text{sq.})$ $• 4 ml$ \bullet 8 ml $10⁵$ $10³$ $\overline{2}$ $\overline{2}$ 4 6 8 8 2 6 10 100 Temperature (K)

- Resistivity vs. Temp for diff thicknesses of LVO Above 3 ML LVO film thickness, interfacial resistivity drops down few orders of magnitude.
	- Resistivity increases linearly with increasing T.
	- Interface becomes metallic above 3 ML.

Resistivity vs. Temp for diff thicknesses of LVO $• 6 ml$ $• 10 ml$ \bullet 2 ml $10⁷$ $• 40 ml$ $• 7 ml$ \bullet 3 ml $\rho_{2\text{D}}(\Omega/\text{sq.})$ $• 4 ml$ \bullet 8 ml $10⁵$ $10³$ $\overline{2}$ 6 8 $\overline{2}$ 4 2 8 6 10 100 Temperature (K)

- Above 3 ML LVO film thickness, interfacial resistivity drops down few orders of magnitude.
- Resistivity increases linearly with increasing T.
- Interface becomes metallic above 3 ML.
- Metallicity is confined within \sim 10 nm around interface.
- High carrier mobility ~ 600 cm² V⁻¹ s⁻¹ at 1.8 K.
- High carrier density of 1×10^{14} electrons/cm⁻². (compare with 1×10^{13} electrons/cm⁻² for LAO/STO system)

Computational Details

- Spin-polarized Density functional theory, Quantum ESPRESSO package.
- Plane wave basis (ecutwfc = 45 Ry), ultrasoft pseudopotentials.
- PBE-GGA exchange-correlation.
- Hubbard *U* and *J* for strongly correlated V-3*d* and Ta-5*d* orbitals.
- BZ sampling using 8×8×1 Monkhorst-Pack k-mesh.
- Marzari-Vanderbilt cold smearing of width of 0.005 Ry.
- Geometry optimization using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

Bulk KTO and LVO Structures

Bulk KTO and LVO Structures

Cubic NM

DFT optimized lattice constant: a_0^{KTO} = 4.011 Å (3.989 Å)

Band insulator

Orthorhombic NM

RT structure

Mott insulator

DFT optimized lattice constants: $a = 5.547 \text{ Å } (5.555 \text{ Å})$ $b = 5.571 \text{ Å} (5.553 \text{ Å})$ $c = 7.952$ Å $(7.848$ Å)

Bulk KTO and LVO Structures

La

V

O

Cubic NM

DFT optimized lattice constant: a_0^{KTO} = 4.011 Å (3.989 Å)

Band insulator

Orthorhombic NM

Mott insulator

DFT optimized lattice constants: $a = 5.547 \text{ Å } (5.555 \text{ Å})$ $b = 5.571 \text{ Å}$ (5.553 Å) $c = 7.952$ Å (7.848 Å)

Tetragonal A-AFM

RT structure **EXECUTE:** Hypothetical structure considered as LVO takes tetragonal structure when grown on KTO(001)

> $a = b = a_0^{KTO} = 4.011 \text{ Å}$ $c = 3.952$ Å (DFT optimized)

A-AFM ordering favored over NM, FM, C-AFM and G-AFM

Electronic Structure of Bulk KTO 10 K-4s Ta-5d $D-2D$ Ta-6s $Ta-5p$ $O-2s$ $K-3p$ $E-E_F^{}(eV)$ E - E_F (eV) $K-3s$ $K-4p$ -4 -6 -6 $\overline{\mathbf{x}}$ M \overline{R} $\mathbf x$ 2 8 10 PDOS (states/eV)

- Calculated band gap = 2.18 eV; Previous DFT: 2.1 eV Experimental value = 3.60 eV.
- VBM at R point, CBM at Γ point. Indirect gap.
- Valence bands mainly come from O-2*p* orbitals.
- Conduction bands mainly come from Ta-5*d* orbitals.

Electronic Structure of Bulk LVO

• LVO is a Mott insulator. Therefore need *U* to get correct physics.

• For $U = 5.65$ eV and $J = 0.65$ eV, band gap matches with expt. value of 1.1 eV.

Polar Distortions at LVO/KTO Interface

Polar Distortions at LVO/KTO Interface

- \cdot O²⁻ anions want to come closer to the interface.
- Ferroelectric like polar distortions create local dipoles.
- Similar behavior observed at LAO/STO and LSO/BSO interfaces [1,2]

[1, 2]: Phys. Rev. B 96, 245423 (2017) and Appl. Phys. Lett. 111, 141604 (2017)]. 27

Layer-resolved PDOS of LVO/KTO Interface

34

Layer-resolved Electronic Charge

- Charge is calculated by integrating layer-• resolved PDOS.
- 2DEG is primarily hosted by Interfacial TaO₂ layer on KTO side.
- Very high interfacial free e⁻ density = 4.89 \times 10¹⁴ e⁻/cm²

(reasonable agreement w/ expt. value of

 1×10^{14} e⁻/cm²)

(at LAO/STO interface $\sim 1 \times 10^{13}$ e⁻/cm²)

- Spin-polarized 2DEG.
- 2DEG is extremely confined to the interface.

• We indeed find charge contributed from both polar materials!

Projected Band Dispersion at Interface

Projected on interfacial Ta-5*d xy* orbitals spin ↑

• Parabolic band confirms existence of free electrons forming 2DEG; primarily hosted by interfacial Ta-5*d xy* orbitals.

Effective Mass & Mobility of 2DEG Electrons

Projected on interfacial Ta-5*d xy* orbitals spin ↑

- 2DEG at the interface forms a \bullet parabolic band.
- Electron effective mass: $m^* = \frac{\hbar^2}{d^2 E} = 0.11 m_0.$

Much lower than $m^* = 0.4 - 0.6 m_0$ for LAO/STO.

• Results in Higher mobility $(\mu = \frac{e^{i}}{m^{*}})$.

Band-decomposed Charge Density: 2DEG at LVO/KTO Interface

- Band-decomposed charge density for parabolic band hosting 2DEG at Γ point.
- Cyan lobes correspond to iso-surface of charge density $|\psi_{nk\uparrow}(r)|^2$ with iso-value = 0.0001 e^{-}/bb r³.
- Cyan lobes showing 2DEG.
- Electrons are confined and free to move in plane parallel to interface; cannot move perpendicular to interface.

Conclusions

- •Very thin layer of spin-polarized 2DEG formed at the interface between KTO (non-magnetic) and LVO (A-AFM).
- •2DEG has higher carrier density and lower electron effective $mass \Box$ expect higher mobility than previously studied systems.
- •Carrier density is higher in 2DEG because of charge contributed from both (polar) LVO and (polar) KTO.

Thank You

Backup Slides

Conclusions

- LVO/KTO interface shows metallicity though the constituents are insulators.
- Parabolic bands around the Γ point cross the Fermi level which shows the existence of conduction/free electrons.
- Electrons are transferred from surface of both LVO and KTO to interfacial TaO, layer \Box 'electronic reconstruction' is the origin of 2DEG.
- Calculated interfacial electron density agrees well with expt.
- Higher electron mobility because of lower effective mass, due to less localized Ta-5d orbitals compared to Ti-3d orbitals.
- Conduction electrons forming the 2DEG primarily reside on interfacial TaO₂ layer.
- 2DEG is spin-polarized.
- 2DEG is extremely confined or localized to the interface.
- Higher interfacial carrier density and higher mobility of 2DEG compared to polar/non-polar oxide interfaces.

"Electronic Reconstruction" is the Origin of 2DEG at LVO/KTO Interface

- CBM of surface TaO₂ layer move up in energy.
- Free *e*[−] density at KTO surface decreases.

e

−

formation LVO/KTO being polar/polar, both LVO & KTO donate e^- to the interface □ higher *e*[−] density compared to polar/non-polar LAO/STO interface.

2DEG

• Valence bands of surface VO₂ layer move up in energy & cross Fermi level.

 \overline{a} h^+

• Creation of holes.

Orbital Projected Band Dispersion

Projected on interfacial Ta-5*d xy*

orbitals spin ↑ Projected on surface VO₂ layer spin \downarrow

- Parabolic band confirms existence of free electrons forming 2DEG; primarily hosted by interfacial Ta-5*d xy* orbitals.
- Surface valence V-3*d* and O-2*p* states cross the Fermi level: they donate electrons to the interface.