An Analysis of RPA Decoding of Reed-Muller Codes Over the BSC

Lalitha Vadlamani, IIIT Hyderabad HDX Workshop, ICTS-TIFR 5th May, 2025

Joint Work with

Dr. V. Arvind Rameshwar, Research Fellow, India Urban Data Exchange, Indian Institute of Science

1

Reed-Muller Codes

• For $0 \le r \le m$, the r^{th} -order binary Reed-Muller code RM(m, r) is defined as

$$\mathsf{RM}(m,r) := \{ \mathsf{Eval}(f) : f \in \mathbb{F}_2[x_1, x_2, \dots, x_m], \ \mathsf{deg}(f) \le r \},$$

where $\deg(f)$ is the largest degree of a monomial in f, and the degree of a monomial $\prod_{i \in S: S \subset [m]} x_i$ is simply |S|.

- Length $N=2^m$ and dimension $\binom{m}{\leq r}:=\sum_{i=0}^r \binom{m}{i}$.
- Minimum Hamming distance $d_{\min}(RM(m,r)) = 2^{m-r}$.

Recent Capacity Results

- [Kudekar etal 17] RM codes are capacity-achieving for the binary erasure channel
- [Reeves-Pfister23, Abbe-Sandon23] RM codes are capacity-achieving for BMS channels
- [Arikan08] Close cousins of polar codes

Decoding Algorithms

- [Reed54] Reed's Majority logic decoder
- [Sidel-Persha92, Sakkour05] Sidel'nikov and Pesharekov, Sakkour for second order RM codes
- [Dumer04, 06] Dumer's Recursive Decoding based on Plotkin decomposition
- [Ye-Abbe20] Recursive Projection Aggregation (RPA) Decoding

RPA Decoding - Projection Step

- Binary symmetric channel with cross-over probability p
- $\{\mathbb{B}_i \subseteq \{0,1\}^m\}$ collection of all k dimensional subspaces
- $Y_{/\mathbb{B}_i}(T) := \bigoplus_{\mathbf{b} \in \mathbb{B}_i} Y_{\mathbf{x} \oplus \mathbf{b}}$, T is the coset containing \mathbf{x}
- Projection of **Y** onto the cosets of \mathbb{B}_i as

$$\mathbf{Y}_{/\mathbb{B}_i} := \left(Y_{/\mathbb{B}_i}(T): T \in \{0,1\}^m/\mathbb{B}_i\right),$$

for some fixed ordering among cosets T.

• Projecting the codewords gives

$$\mathbf{c}_{/\mathbb{B}_i} := \left(c_{/\mathbb{B}_i}(T): T \in \{0,1\}^m/\mathbb{B}_i\right),$$

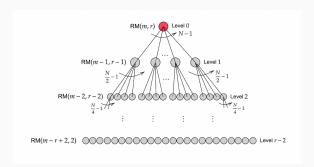
• $\mathbf{c}_{/\mathbb{B}_i} \in \mathsf{RM}(m-k,r-k)$, if $\mathbf{c} \in \mathsf{RM}(m,r)$.

RPA Decoding - Aggregation Step

For $\mathbf{x} \in \{0,1\}^m$

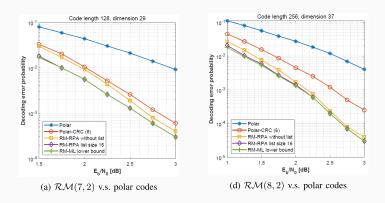
- Compute $\phi(\mathbf{x}) = \sum_{i=1}^{n_{k,m}-1} 1\{Y_{/\mathbb{B}_i}([\mathbf{x} + \mathbb{B}_i]) \neq \widehat{Y}_{/\mathbb{B}_i}([\mathbf{x} + \mathbb{B}_i])\}$
- Set $\mathrm{Flip}(\mathbf{x})=1$, if $\phi(\mathbf{x})>rac{n_{k,m}}{2}$
- $\bar{Y} = Y \oplus \mathsf{Flip}$

Projection Aggregation Tree



- Rooted tree, with the root (at level 0) being the code RM(m, r).
- Each node at level i has $\frac{N}{2^i}-1$ children at level i+1, each of which is an RM(m-i-1,r-i-1) code; here, $N:=2^m$.
- "Moving down" from a parent node to a child node corresponds to projection step and "moving up" corresponds to aggregation step.

Close to ML Performance



 Empirical performance of RPA decoder is close to ML bound for low values of r.

Image Courtesy: [Ye-Abbe20]

Main Result

Let
$$\overline{p} := \frac{1}{2} \cdot (1 - (1 - 2p)^{2^{r-2}})$$
 and $\eta(\overline{p}) := \frac{1}{2} \cdot (1 - 4\overline{p}(1 - \overline{p})).$

Theorem

For any $0<\epsilon<\eta(\overline{p})$, we have that for $r\geq 2$, using one-dimensional subspaces for projection,

$$P_{\mathsf{err}}(\mathsf{RM}(m,r)) \leq 32N^{r+1} \cdot \exp\left(-2^{-r-1}N\epsilon^2\right).$$

Let
$$c = c(p) := \frac{\log 2}{\log(\frac{1}{1-2p})}$$
.

Corollary

For any $0 < \overline{c} < c$, we have that for all $r \leq \log(\overline{c}m)$,

$$\lim_{m\to\infty} P_{\rm err}({\rm RM}(m,r))=0.$$

9

Analysis of Second Order RM Codes

Assume that all-zero codeword is transmitted

Key Ingredients:

- Analyzing the FHT Decoder
- Analyzing the aggregation step

Base Case - FHT Decoder

- $\mathbf{Y} \sim \mathsf{Ber}^{\otimes N}(p)$ implies $\mathbf{Y}_{/\mathbb{B}_i} \sim \mathsf{Ber}^{\otimes (N/2)}(2p(1-p))$.
- $\mathbf{Y}_{/\mathbb{B}_i} \in \{0,1\}^{N/2}$ mapped to $\mathbf{Y}_{/\mathbb{B}_i}^{\pm} \in \{-1,1\}^{N/2}$
- Consider the family of functions $(\chi_{\mathbf{s}} : \mathbf{s} \in \{0,1\}^{m-1})$, where $\chi_{\mathbf{s}}(\mathbf{x}) := (-1)^{\mathbf{x} \cdot \mathbf{s}}, \ \mathbf{x} \in \{0,1\}^{m-1}$.
- ullet One-one correspondence between codewords of $\mathsf{RM}(m-1,1)$ and the collection of vectors

$$\chi := (\chi_{\mathbf{s}} : \mathbf{s} \in \{0, 1\}^{m-1}) \cup (-\chi_{\mathbf{s}} : \mathbf{s} \in \{0, 1\}^{m-1}).$$

• ML decoder for RM(m-1,1) given by

$$\mathsf{ML}\big(\mathbf{Y}_{/\mathbb{B}_i}^{\pm}\big) = \argmax_{\mathbf{s} \in \{0,1\}^{m-1}, \ \sigma \in \{-1,1\}} \langle \mathbf{Y}_{/\mathbb{B}_i}^{\pm}, \sigma \cdot \chi_{\mathbf{s}} \rangle.$$

Analysis of FHT Decoder

• The all-zeros codeword $\mathbf{0} \in \mathsf{RM}(m-1,1)$ corresponds to $+\chi_{\mathbf{0}}.$

Concentration of the term with $+\chi_0$:

Lemma

For all $\epsilon > 0$ and any $i \in [N-1]$, we have that

$$\Pr\left[|\langle \mathbf{Y}_{/\mathbb{B}_i}^{\pm}, \chi_{\mathbf{0}} \rangle - (1 - 4p(1 - p))| \le \epsilon\right] \ge 1 - 2e^{-\frac{N\epsilon^2}{4}}.$$

Follows by concentration around mean using Hoeffding's Inequality

Analysis of FHT Decoder

Concentration of the term with χ_s :

Lemma

For all $\epsilon>0$ and any $i\in[\mathit{N}-1]$, we have that for any $\mathbf{s}\neq\mathbf{0}$,

 $\geq \left(1 - 2e^{-\frac{N\epsilon^2}{8}}\right)^2 \geq 1 - 4e^{-\frac{N\epsilon^2}{8}},$

$$\Pr\left[|\langle \mathbf{Y}_{/\mathbb{B}_i}^{\pm}, \chi_{\mathbf{s}} \rangle| \leq \epsilon\right] \geq 1 - 4e^{-\frac{N\epsilon^2}{8}}.$$

$$\begin{split} \langle \mathbf{Y}_{/\mathbb{B}_i}^{\pm}, \chi_{\mathbf{s}} \rangle &= \frac{2}{N} \cdot \left[\sum_{j=1}^{N/4} Z_j' - \sum_{k=1}^{N/4} Z_k'' \right], \\ \Pr \left[|\langle \mathbf{Y}_{/\mathbb{B}_i}^{\pm}, \chi_{\mathbf{s}} \rangle| \leq \epsilon \right] &= \Pr[|\alpha_1 - \alpha_2| \leq \epsilon] \\ &\geq \Pr \left[\alpha_1 \in [\beta - \epsilon/2, \beta + \epsilon/2] \text{ and } \alpha_2 \in [\beta - \epsilon/2, \beta + \epsilon/2] \right] \end{split}$$

Combining the Cases

By union bound that with probability at least $1-8\textit{N}\cdot e^{-\frac{\textit{N}e^2}{8}}$, the following events occur:

- $\langle \mathbf{Y}_{/\mathbb{B}_{i}}^{\pm}, \chi_{\mathbf{0}} \rangle \in [(1 4p(1 p)) \epsilon, (1 4p(1 p)) + \epsilon]$
- $\langle \mathbf{Y}_{/\mathbb{B}_{i}}^{\pm}, -\chi_{\mathbf{0}} \rangle \in [-(1-4p(1-p))-\epsilon, -(1-4p(1-p))+\epsilon]$
- For all $\mathbf{s} \neq \mathbf{0}$, we have $\langle \mathbf{Y}_{/\mathbb{B}_{i}}^{\pm}, \chi_{\mathbf{s}} \rangle \in [-\epsilon, \epsilon]$ and $\langle \mathbf{Y}_{/\mathbb{B}_{i}}^{\pm}, -\chi_{\mathbf{s}} \rangle \in [-\epsilon, \epsilon]$.

If
$$\epsilon < \eta(p) = \frac{1}{2}(1 - 4p(1-p))$$

• With probability at least $1 - 8N \cdot e^{-\frac{N\epsilon^2}{8}}$,

$$\langle \max_{f \in \chi} \langle \mathbf{Y}_{/\mathbb{B}_i}^{\pm}, f \rangle = \langle \mathbf{Y}_{/\mathbb{B}_i}^{\pm}, \chi_{\mathbf{0}} \rangle.$$

[Burnshev-Dumer06] have analysis of ML decoding of first order RM codes for BSC. Our approach is very different. The exponents match.

Analysis of the Aggregation Step

- ullet Let ${\mathcal G}$ denote the event $\Big\{\widehat{\mathbf Y}_{/{\mathbb B}_i}=\mathbf 0, ext{for all } i\in [{\mathsf N}-1]\Big\}.$
- $\Pr[\mathcal{G}] \ge 1 8N(N-1) \cdot e^{-\frac{N\epsilon^2}{8}}$.

Upon conditioning on G:

$$\sum_{i=1}^{N-1} 1\{Y_{/\mathbb{B}_i}([\mathbf{x}+\mathbb{B}_i])
eq \widehat{Y}_{/\mathbb{B}_i}([\mathbf{x}+\mathbb{B}_i])\}$$
 reduces to

$$\phi(\mathbf{x}) = \sum_{i=1}^{N-1} (Y_{\mathbf{x}} \oplus Y_{\mathbf{x}+\mathbf{b}_i}),$$

• Rewriting $\phi(\mathbf{x})$ as

$$\phi(\mathbf{x}) = \begin{cases} \sum_{\mathbf{z} \neq \mathbf{x}} Y_{\mathbf{z}}, & \text{if } Y_{\mathbf{x}} = 0, \\ N - 1 - \sum_{\mathbf{z} \neq \mathbf{x}} Y_{\mathbf{z}}, & \text{if } Y_{\mathbf{x}} = 1. \end{cases}$$

• $\overline{\phi}(\mathbf{x}) = \frac{\phi(\mathbf{x})}{N-1}$ concentrates around its mean $\overline{\phi}_{\infty}(\mathbf{x}) := p(1-Y_{\mathbf{x}}) + (1-p)Y_{\mathbf{x}}$

Analysis of Aggregation Step

- If $\overline{\phi}(\mathbf{x})$ is close to $\overline{\phi}_{\infty}(\mathbf{x})$, then their indicators $1\{\overline{\phi}(\mathbf{x})>\frac{1}{2}\}$ and $1\{\overline{\phi}_{\infty}(\mathbf{x})>\frac{1}{2}\}$ are close.
- Only upon conditioning on \mathcal{G} :, $\mathsf{Flip}^{(N)}(\mathbf{x}) = 1\{\overline{\phi}(\mathbf{x}) > \frac{1}{2}\}$
- $1\{\overline{\phi}(\mathbf{x}) > \frac{1}{2}\}$ and $1\{\overline{\phi}_{\infty}(\mathbf{x}) > \frac{1}{2}\}$ are close even after conditioning on $\mathcal G$ because $\mathcal G$ is a very high probability event.

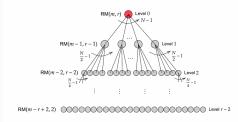
$$egin{aligned} \mathsf{Pr}\left[\mathsf{Flip}^{(\mathcal{N})}(\mathbf{x}) &= 1\left\{\overline{\phi}_{\infty}(\mathbf{x}) > rac{1}{2}
ight\} \ \middle| \ \mathcal{G}
ight] \ &\geq 1 - 16 \mathcal{N}(\mathcal{N}-1) \cdot e^{-rac{\mathcal{N}\epsilon^2}{8}}. \end{aligned}$$

Combining FHT Analysis and Aggregation Analysis

$$\begin{split} & \mathsf{Pr}\left[\mathsf{Flip}^{(\textit{N})}(\mathbf{x}) = 1\left\{\overline{\phi}_{\infty}(\mathbf{x}) > \frac{1}{2}\right\}, \; \mathsf{for \; all} \; \mathbf{x} \; \middle| \; \mathcal{G}\right] \\ & \geq 1 - 16\textit{N}^2(\textit{N}-1) \cdot \mathrm{e}^{-\frac{\textit{N}\epsilon^2}{8}}. \end{split}$$

$$\begin{split} & \text{Pr}\left[\mathsf{Flip}^{(N)} = \mathbf{Y}\right] \\ & \geq \mathsf{Pr}\left[\mathsf{Flip}^{(N)} = \mathbf{Y} \;\middle|\; \mathcal{G}\right] \cdot \mathsf{Pr}[\mathcal{G}] \\ & \geq \left(1 - 16N^2(N-1) \cdot e^{-\frac{N\epsilon^2}{8}}\right) \left(1 - 8N(N-1) \cdot e^{-\frac{N\epsilon^2}{8}}\right) \\ & \geq 1 - 32N^3 \cdot e^{-\frac{N\epsilon^2}{8}}. \end{split}$$

Analysis of Higher Order RM Codes



- Analysis of FHT decoder required only at the leaf nodes
- Analysis of the aggregation step is done at all levels other than the last one

Theorem

For any $0 < \epsilon < \eta(\overline{p})$, we have that for $r \ge 2$, using one-dimensional subspaces for projection,

$$P_{\mathsf{err}}(\mathsf{RM}(m,r)) \leq 32N^{r+1} \cdot \exp\left(-2^{-r-1}N\epsilon^2\right).$$

Analysis of Higher Dimensional Projections

Aggregation step is different

•
$$\phi(\mathbf{x}) = \sum_{i=1}^{\tilde{n}} \bigoplus_{\mathbf{b} \in \mathbb{B}_i} \tilde{Y}_{\mathbf{x} \oplus \mathbf{b}}$$

$$\phi(\mathbf{x}) = \begin{cases} \sum_{i=1}^{\tilde{n}} \bigoplus_{\mathbf{b} \in [\mathbf{x} + \mathbb{B}_i], \mathbf{b} \neq \mathbf{x}} Y_{\mathbf{b}}, & \text{if } Y_{\mathbf{x}} = 0, \\ \tilde{n} - \sum_{i=1}^{\tilde{n}} \bigoplus_{\mathbf{b} \in [\mathbf{x} + \mathbb{B}_i], \mathbf{b} \neq \mathbf{x}} Y_{\mathbf{b}}, & \text{if } Y_{\mathbf{x}} = 1. \end{cases}$$

Unlike one dimensional projections, $\phi(x)$ is not sum of independent random variables. Hoeffding's Inequality cannot be applied.

Analysis of Higher Dimensional Projections

A more general concentration inequality:

[Raginsky-Sason18, Thm. 3.4.4]

Let X_1, \ldots, X_n be i.i.d. Ber(p) random variables. Then, for every Lipschitz function $f: \{0,1\}^n \to \mathbb{R}$ with Lipschitz constant c_f , we have for all $\alpha > 0$,

$$\Pr[f(X^n) - E[f(X^n)] > \alpha] \le \exp\left(-\ln\left(\frac{1-p}{p}\right) \cdot \frac{\alpha^2}{nc_f^2 \cdot (1-2p)}\right).$$

Analysis of Higher Dimensional Projections

Lipschitz constant for $\phi(x)$ is

$$n_{k-1,m-1} = {m-1 \brack k-1} := \prod_{i=0}^{k-2} \frac{2^{m-1}-2^i}{2^{k-1}-2^i}.$$

Theorem

After a single iteration of the RPA decoder at the last level, for all $\epsilon < \eta(\bar{p})$, $\Pr[\overline{\mathbf{Y}} = \mathbf{0}] \geq 1 - 32n_{k,m}\tilde{N}^2 \cdot \exp\left(-\ln\left(\frac{1-\bar{p}}{\bar{p}}\right) \cdot 2^{-2k-2}\tilde{N}\epsilon^2\right)$

- Analysis can be repeated on a projection aggregation tree with k-dimensional projection in each step
- The exponent doesn't improve compared to the one-dimensional projection

Open Problems

- Analysis by picking smaller number of subspaces is straightforward
- Analysis of RPA for general BMS channels
- Bounds for probability of error in the regime when r is growing increasing faster with m
- Performance of RPA with list decoding

Thanks!

https://arxiv.org/abs/2412.08129