Refined Littlewood-Richardson coefficients and The Saturation Conjecture

Mrigendra Singh Kushwaha

University of Delhi, New Delhi, India

ICTS Bangalore, 26 November 2025

Joint work with K. N. Raghavan and Sankaran Viswanath

Notations

- \mathfrak{g} finite dimensional simple Lie algebra over \mathbb{C}
- P^+ the set of dominant integral weights of $\mathfrak g$
- $V(\lambda)$ the irreducible integrable \mathfrak{g} -module of highest weight $\lambda \in P^+$
- W the Weyl group of $\mathfrak g$
- Q the root lattice of \mathfrak{g}

Kostant-Kumar (KK) module

These modules were first formulated in the context of a strong form of the PRV conjecture due to Kostant, which Shrawan Kumar and O. Mathieu proved independently.

```
w an element of W
```

 v_{λ} a highest weight vector of $V(\lambda)$

 $v_{w\mu}$ a non-zero weight vector of the one-dimensional weight space of weight $w\mu$ of $V(\mu)$

The cyclic submodule of $V(\lambda) \otimes V(\mu)$ generated by $v_{\lambda} \otimes v_{w\mu}$ is called a KK-module and is denoted by $K(\lambda, w, \mu)$.

KK Module cont...

Properties:

- $(\lambda, 1, \mu) \cong V(\lambda + \mu).$
- ② $K(\lambda, w_0, \mu) = V(\lambda) \otimes V(\mu)$ where w_0 is the longest element of W.
- **3** $K(\lambda, w, \mu) \subseteq K(\lambda, w', \mu)$ if $w \le w'$ in the Bruhat order of W.
- $(\lambda, w, \mu) \cong K(\mu, w^{-1}, \lambda).$

Above properties shows that KK modules give a filtration of the tensor product $V(\lambda) \otimes V(\mu)$, with respect to the Bruhat order in W.

Let W_{λ} and W_{μ} denote the stabilizers of λ and μ respectively, then $K(\lambda, w, \mu) = K(\lambda, \sigma, \mu)$ if $W_{\lambda}wW_{\mu} = W_{\lambda}\sigma W_{\mu}$.

Decomposition of KK module

The decomposition of KK module is:

$$K(\lambda, w, \mu) \cong \bigoplus_{\nu \in P^+} V(\nu)^{\oplus c_{\lambda,\mu}^{\nu}(w)}.$$

- $c_{\lambda,\mu}^{\nu}(w)$ is the multiplicity of $V(\nu)$ in $K(\lambda,w,\mu)$.
- Let $c_{\lambda,\mu}^{\nu}$ denote the multiplicity of $V(\nu)$ in $V(\lambda)\otimes V(\mu)$, then $c_{\lambda,\mu}^{\nu}(w_0)=c_{\lambda,\mu}^{\nu}$.

Decomposition of KK module

The decomposition of KK module is:

$$K(\lambda, w, \mu) \cong \bigoplus_{\nu \in P^+} V(\nu)^{\oplus c_{\lambda,\mu}^{\nu}(w)}.$$

- $c_{\lambda,\mu}^{\nu}(w)$ is the multiplicity of $V(\nu)$ in $K(\lambda, w, \mu)$.
- Let $c_{\lambda,\mu}^{\nu}$ denote the multiplicity of $V(\nu)$ in $V(\lambda)\otimes V(\mu)$, then $c_{\lambda,\mu}^{\nu}(w_0)=c_{\lambda,\mu}^{\nu}$.

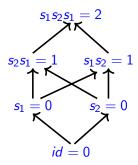
Observe that:

- $c_{\lambda,\mu}^{\nu}(1) = \delta_{\lambda+\mu,\nu}$
- $c_{\lambda,\mu}^{\nu}(w) \leq c_{\lambda,\mu}^{\nu}(w')$ if $w \leq w'$ in the Bruhat order of W
- $c_{\lambda,\mu}^{\nu}(w) = c_{\mu,\lambda}^{\nu}(w^{-1}) \ [c_{\lambda,\mu}^{\nu} = c_{\mu,\lambda}^{\nu}]$
- $c_{\lambda \mu}^{\nu}(w) = c_{\lambda \mu}^{\nu}(\sigma)$ if $W_{\lambda}wW_{\mu} = W_{\lambda}\sigma W_{\mu}$

Example

Let $\mathfrak{g}=\mathfrak{sl}_3(\mathbb{C})$ and $W=S_3$. For $\lambda=(2,1,0)=\mu$ and $\nu=(3,2,1)$, the constant $c_{\lambda,\mu}^{\nu}=2$ and $c_{\lambda,\mu}^{\nu}(s_1s_2)=1$.

The map $w \to c^{\nu}_{\lambda,\mu}(w)$ is an increasing function on the Bruhat poset.



Lakshmibai-Seshadri paths

P. Littelmann (1994) introduced Lakshmibai-Seshadri (LS) paths.

An LS path $\pi:[0,1] \to P \otimes_{\mathbb{Z}} \mathbb{R}$ of shape $\mu \in P^+$ is given by

$$\pi = (w_1 > w_2 > \dots > w_r ; \ 0 < a_1 < a_2 < \dots < a_r = 1)$$

with "chain conditions", where $w_i \in W/W_\mu$ and $a_i \in \mathbb{Q}$ for $i=1,2,\ldots,n$.

$$\pi(t) = \sum_{i=0}^{s-1} (a_i - a_{i-1}) w_i(\mu) + (t - a_{s-1}) w_s(\mu)$$
; for $t \in [a_{s-1}, a_s]$

We say w_1 and w_r is the initial and final direction of π , respectively.

Let P_{μ} denote the set of LS paths of shape μ .

Path model

Path model of $V(\lambda) \otimes V(\mu)$ [P. Littelmann (1994)]

$$\mathsf{Char} \, V(\lambda) \otimes V(\mu) = \sum_{(\pi,\pi') \in P_{\lambda} \times P_{\mu}} \mathsf{e}^{\pi(1) + \pi'(1)}$$

Path model

Path model of $V(\lambda) \otimes V(\mu)$ [P. Littelmann (1994)]

$$\mathsf{Char} V(\lambda) \otimes V(\mu) = \sum_{(\pi,\pi') \in P_{\lambda} \times P_{\mu}} \mathsf{e}^{\pi(1) + \pi'(1)}$$

Path model of $K(\lambda, w, \mu)$ [-, Raghavan, Viswanath (2021)]

For given a $(\pi,\pi')\in P_\lambda imes P_\mu$ we associate a Weyl group element $\mathfrak{w}(\pi,\pi')$.

Let
$$P(\lambda, w, \mu) = \{(\pi, \pi') \in P_{\lambda} \times P_{\mu} \mid \mathfrak{w}(\pi, \pi') \leq w\}$$

$$\mathsf{Char} \mathcal{K}(\lambda, w, \mu) = \sum_{(\pi, \pi') \in P(\lambda, w, \mu)} e^{\pi(1) + \pi'(1)}$$

A decomposition rule for KK module

For $\lambda \in P^+$, an LS path $\pi \in P_\mu$ is λ -dominant if $\lambda + \pi(t)$ is in the dominant chamber for all $t \in [0,1]$.

$$P_{\mu}^{\lambda}(w \geq u) = \quad \{\pi \in P_{\mu} \mid \pi \text{ is λ-dominant; Initial direction of } \pi \leq wW_{\mu};$$
 Final direction of $\pi \geq uW_{\mu}$ }

A decomposition rule for KK module

For $\lambda \in P^+$, an LS path $\pi \in P_\mu$ is λ -dominant if $\lambda + \pi(t)$ is in the dominant chamber for all $t \in [0,1]$.

$$P_{\mu}^{\lambda}(w \geq u) = \{\pi \in P_{\mu} \mid \pi \text{ is } \lambda\text{-dominant; Initial direction of } \pi \leq wW_{\mu}; \}$$

Final direction of $\pi \geq uW_{\mu}$

A decomposition rule for KK modules (Joseph [2003]):

$$K(\lambda, w, \mu) \cong \bigoplus_{\pi \in P_{\mu}^{\lambda}(w \geq 1)} V(\lambda + \pi(1));$$

Let
$$P_{\mu}^{\lambda}(w \geq u; \ \nu) = \{\pi \in P_{\mu}^{\lambda}(w \geq u) \mid \lambda + \pi(1) = \nu\}$$

Observe that: $c_{\lambda,\mu}^{\ \nu}(w)=|P_{\mu}^{\lambda}(w\geq 1;\
u)|.$

Some properties of $c_{\lambda,\mu}^{\nu}(w)$

Let
$$\pi=(w_1>w_2>\cdots>w_r\;;\;0< a_1< a_2<\cdots< a_r=1)\in P_\mu$$
 then
$$\pi^\dagger=(w_0w_r>w_0w_{r-1}>\cdots>w_0w_1\;;\;0<1-a_{r-1}<\cdots<1-a_1<1)$$

is also an LS path of shape μ .

Note that $\dagger: P_{\mu} \to P_{\mu}$ is an involution.

Some properties of $c_{\lambda,\mu}^{\nu}(w)$

Let
$$\pi=(w_1>w_2>\cdots>w_r\;;\;0< a_1< a_2<\cdots< a_r=1)\in P_\mu$$
 then
$$\pi^\dagger=(w_0w_r>w_0w_{r-1}>\cdots>w_0w_1\;;\;0<1-a_{r-1}<\cdots<1-a_1<1)$$

is also an LS path of shape μ .

Note that $\dagger:P_{\mu}\to P_{\mu}$ is an involution.

Proposition

$$\pi \in P_{\mu}^{\lambda}(w \geq 1; \ \nu)$$
 if and only if $\pi^{\dagger} \in P_{\mu}^{\nu^*}(w_0 \geq w_0 w; \ \lambda^*)$

Observe that
$$c_{\lambda,\mu}^{\nu}(w)=|P_{\mu}^{\nu^*}(w_0\geq w_0w;\ \lambda^*)|$$

Also for $w = w_0$ we get $c_{\lambda,\mu}^{\nu} = c_{\nu^*,\mu}^{\lambda^*}$.

$$c_{\lambda,\mu}^{\,
u}(w) = |P_{\mu}^{\,
u}(w \ge 1; \
u)|.$$
 Let $\pi = (w_1 > w_2 > \dots > w_r \ ; \ 0 < a_1 < a_2 < \dots < a_r = 1) \in P_{\mu}$ then $\pi^* = (w_1^* > w_2^* > \dots > w_r^* \ ; \ 0 < a_1 < a_2 < \dots < a_r = 1)$

is an LS path of shape $\mu^* = -w_0(\mu)$, where $w^* = w_0 w w_0$.

$$c_{\lambda,\mu}^{\nu}(w)=|P_{\mu}^{\lambda}(w\geq 1; \ \nu)|.$$

Let
$$\pi = (w_1 > w_2 > \cdots > w_r \; ; \; 0 < \mathsf{a}_1 < \mathsf{a}_2 < \cdots < \mathsf{a}_r = 1) \in P_\mu$$
 then

$$\pi^* = (w_1^* > w_2^* > \dots > w_r^*; \ 0 < a_1 < a_2 < \dots < a_r = 1)$$

is an LS path of shape $\mu^* = -w_0(\mu)$, where $w^* = w_0 w w_0$.

- \bullet * : $P_{\mu} \rightarrow P_{\mu^*}$ is a bijection.
- $2 * P_{\mu}^{\lambda}(w \geq 1) \rightarrow P_{\mu^*}^{\lambda^*}(w^* \geq 1)$ is a bijection.

From item (2) we conclude that:

$$c_{\lambda,\mu}^{\nu}(w) = c_{\lambda^*,\mu^*}^{\nu^*}(w^*).$$
 [$c_{\lambda,\mu}^{\nu} = c_{\lambda^*,\mu^*}^{\nu^*}$]

$$[\ c_{\lambda,\mu}^{\ \nu}=c_{\lambda^*,\mu^*}^{\nu^*}$$

- Let $I \subset S$ where $S = \{1, 2, \dots, n\}$ index the nodes of the Dynkin diagram of \mathfrak{g} .
- Let $\mathfrak{h}_I := \langle \alpha_i^{\vee} \mid i \in I \rangle$, for $\mu \in \mathfrak{h}^*$, μ_I denote the restriction μ on \mathfrak{h}_I .
- Let $\mathfrak{g}_I := \langle \mathfrak{h}_I, e_i, f_i \mid i \in I \rangle$. (In general \mathfrak{g}_I is semisimple)
- $W_I = \{ w \in W \mid \text{supp}(w) \subset I \}$ where supp(w) denote the set of all $i \in S$ such that s_i occurs in any chosen reduced expression of w.
- $Q_I := \{ \alpha \in Q : \operatorname{supp}(\alpha) \subset I \}$ where if $\alpha = \sum_{i \in S} c_i \alpha_i \in \mathfrak{h}^*$, let $\operatorname{supp}(\alpha)$ denote the set of $i \in S$ such that $c_i \neq 0$.

- Let $I \subset S$ where $S = \{1, 2, ..., n\}$ index the nodes of the Dynkin diagram of \mathfrak{g} .
- Let $\mathfrak{h}_I := \langle \alpha_i^{\vee} \mid i \in I \rangle$, for $\mu \in \mathfrak{h}^*$, μ_I denote the restriction μ on \mathfrak{h}_I .
- Let $\mathfrak{g}_I := \langle \mathfrak{h}_I, e_i, f_i \mid i \in I \rangle$. (In general \mathfrak{g}_I is semisimple)
- $W_I = \{ w \in W \mid \text{supp}(w) \subset I \}$ where supp(w) denote the set of all $i \in S$ such that s_i occurs in any chosen reduced expression of w.
- $Q_I := \{ \alpha \in Q : \operatorname{supp}(\alpha) \subset I \}$ where if $\alpha = \sum_{i \in S} c_i \alpha_i \in \mathfrak{h}^*$, let $\operatorname{supp}(\alpha)$ denote the set of $i \in S$ such that $c_i \neq 0$.

Proposition

Let $\lambda, \mu, \nu \in P^+$ and $w \in W$, with I = supp(w). Then

$$c_{\lambda,\mu}^{\nu}(w) = \delta_{\lambda\mu}^{\nu}(w) c_{\lambda_I,\mu_I}^{\nu_I}(w;\mathfrak{g}_I)$$

where $\delta^{\nu}_{\lambda\mu}(w) = 1$ if $(\lambda + \mu - \nu) \in Q_I$ and 0 otherwise.

- Let $w \in W$ and I = supp(w). Let I_j ; j = 1, 2, ..., r be the connected components of I.
- Let $W_j = W_{l_j}$ for j = 1, 2, ..., r. Then $w = \prod_{j=1}^r w_j$ where $w_j \in W_j$; note that w_i and w_k commute for $j \neq k$.
- Let $\mathfrak{g}_j = \mathfrak{g}_{l_j}$ and $\mathfrak{h}_j = \mathfrak{h}_{l_j}$. For the weights λ, μ, ν of \mathfrak{g} , let λ_j, μ_j, ν_j denote their restrictions to \mathfrak{h}_j .

- Let $w \in W$ and I = supp(w). Let I_j ; j = 1, 2, ..., r be the connected components of I.
- Let $W_j = W_{l_j}$ for j = 1, 2, ..., r. Then $w = \prod_{j=1}^r w_j$ where $w_j \in W_j$; note that w_i and w_k commute for $j \neq k$.
- Let $\mathfrak{g}_j = \mathfrak{g}_{l_j}$ and $\mathfrak{h}_j = \mathfrak{h}_{l_j}$. For the weights λ, μ, ν of \mathfrak{g} , let λ_j, μ_j, ν_j denote their restrictions to \mathfrak{h}_i .

Proposition

Let notation be as above. Then

$$c_{\lambda,\mu}^{\nu}(w) = \delta_{\lambda\mu}^{\nu}(w) \prod_{j=1}^{r} c_{\lambda_{j}\mu_{j}}^{\nu_{j}}(w_{j};\mathfrak{g}_{j})$$

where $\delta^{\nu}_{\lambda\mu}(w) = 1$ if $(\lambda + \mu - \nu) \in Q_I$ and 0 otherwise.

Saturation and Semigroup problem

Saturation property

A element $w \in W$ is said to have the *saturation property* if the following holds for all $\lambda, \mu, \nu \in P^+$:

$$c_{k\lambda,k\mu}^{k
u}(w)>0$$
 for some integer $k\geq 1$, then $c_{\lambda,\mu}^{
u}(w)>0$.

Saturation and Semigroup problem

Saturation property

A element $w \in W$ is said to have the *saturation property* if the following holds for all $\lambda, \mu, \nu \in P^+$:

$$c_{k\lambda,k\mu}^{k
u}(w)>0$$
 for some integer $k\geq 1$, then $c_{\lambda,\mu}^{
u}(w)>0$.

Semigroup property

An element $w \in W$ is said to have the *semigroup property* if

$$c_{\lambda,\,\mu}^{\,\nu}(w)>0$$
 and $c_{\lambda',\,\mu'}^{\,\nu'}(w)>0$, then $c_{\lambda+\lambda',\,\mu+\mu'}^{\,\nu+\nu'}(w)>0$

for all λ , λ' , μ , μ' , ν , $\nu' \in P^+$.

Saturation and Semigroup cont...

- Identity element has the saturation and semigroup properties since $c_{k\lambda,k\mu}^{k\nu}(1)=\delta_{k\lambda+k\mu,k\nu}=\delta_{\lambda+\mu,\nu}=c_{\lambda,\mu}^{\nu}(1).$
- Note that, in the case $\mathfrak g$ is of type A, the constants $c_{\lambda,\mu}^{\nu}(w_0)=c_{\lambda,\mu}^{\nu}$ are called Littlewood-Richardson (LR) coefficients.
- w_0 have the saturation and semigroup properties proved by Knutson-Tao by using the Honeycomb model for $c_{\lambda,\mu}^{\nu}$.
- In this case (g is of type A), we say the constants $c_{\lambda,\mu}^{\nu}(w)$ are refined LR coefficients,
- and we have proved that the saturation and semigroup properties for some special classes of permutations w.

Pattern avoiding permutations

Now we will take the $\mathfrak{g}=\mathfrak{sl}_n(\mathbb{C})$ throughout the talk. Note that $W=S_n$ is the symmetric group.

312-avoiding permutations

A permutation $w \in S_n$ contains a 312-pattern if there exist i < j < k such that w(j) < w(k) < w(i). A permutation not containing any 312-pattern is called a 312-avoiding permutation.

Permutation w=45231 (written in one-line notation) is not a 312-avoiding permutation. Take 1<3<4, then

$$w(3) = 2 < w(4) = 3 < w(1) = 4.$$

Permutation w' = 34521 is a 312-avoiding permutations.

Similarly, we can define 231-avoiding permutation.

Saturation and semigroup theorem

Permutations of special form

A permutation $w \in S_n$ is said to be of *special form* if it is one of the following types:

- w is either 312-avoiding or 231-avoiding.
- ② Let $H = S_{n_1} \times S_{n_2} \times \cdots \times S_{n_p} \subseteq S_n$ be a Young subgroup and $w = w_1 w_2 \cdots w_p \in H$ be such that each $w_i \in S_{n_i}$ is either 312-avoiding or 231-avoiding.

Saturation and semigroup theorem

Permutations of special form

A permutation $w \in S_n$ is said to be of *special form* if it is one of the following types:

- w is either 312-avoiding or 231-avoiding.
- ② Let $H = S_{n_1} \times S_{n_2} \times \cdots \times S_{n_p} \subseteq S_n$ be a Young subgroup and $w = w_1 w_2 \cdots w_p \in H$ be such that each $w_i \in S_{n_i}$ is either 312-avoiding or 231-avoiding.

Theorem [-, Raghavan, Viswanath (2021)]

Let $w \in S_n$ be of special form, then w has the saturation and semigroup property.

Saturation and semigroup theorem

Remarks:

• If we prove the saturation and semigroup for those w given as item (1) above, then both properties follows for any $w = w_1 w_2 \cdots w_p$ given as item (2) by the equation:

$$c_{\lambda,\mu}^{\nu}(w) = \delta_{\lambda\mu}^{\nu}(w) \prod_{i=1}^{p} c_{\lambda_i\mu_i}^{\nu_i}(w_i;\mathfrak{g}_i)$$

where $\delta^{\nu}_{\lambda\mu}(w)=1$ if $(\lambda+\mu-\nu)\in Q_I$ and 0 otherwise.

- For n = 1, 2, 3, all permutations in S_n are of special form.
- For n = 4, our theorem establishes saturation and semigroup properties for all except the following four permutations:

2413, 3142, 3412, 4231.

Other than type A case

Let $\mathfrak g$ is any finite dimensional simple Lie algebra. Recall that, for $\lambda, \mu, \nu \in P^+$ and $w \in W$, with $I = \operatorname{supp}(w)$.

$$c_{\lambda,\mu}^{\nu}(w) = \delta_{\lambda\mu}^{\nu}(w) c_{\lambda_I,\mu_I}^{\nu_I}(w;\mathfrak{g}_I)$$

where $\delta^{\nu}_{\lambda\mu}(w)=1$ if $(\lambda+\mu-\nu)\in Q_I$ and 0 otherwise.

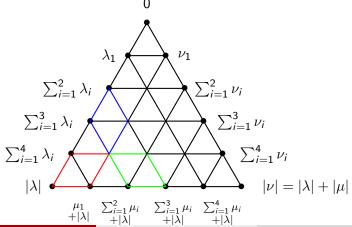
Corollary

w has the saturation (semigroup) property for the ambient Lie algebra $\mathfrak g$ if and only if $w \in W(\mathfrak g_I)$ has the saturation (semigroup) property for $\mathfrak g_I$.

Remark: Let $w \in W$ and I = supp(w). If I be any type A subdiagram of \mathfrak{g} and w is of special form in $W(\mathfrak{g}_I)$. Then w has saturation and semigroup property for \mathfrak{g} .

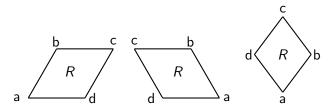
Ideas in the Proof: Hives

Note that, in the case $\mathfrak{g}=\mathfrak{sl}_n(\mathbb{C})$, the set of integral dominant weights P^+ corresponds to the integer partitions with at most n-parts denoted by $\mathcal{P}[n]$. Given $\lambda, \mu, \nu \in \mathcal{P}[n]$ such that $|\lambda| + |\mu| = |\nu|$



Rhombus inequalities

Consider the following rhombi R inside the big hive triangle

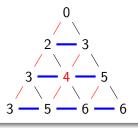


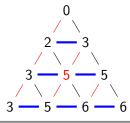
content(R) := (b + d) - (a + c) (sum of Obtus labels - Acute labels).

Hive (λ,μ,ν) is the set of all labelings of the big hive vertices with real numbers such that the boundary labels are partial sums of λ,μ,ν and all rhombus contents are ≥ 0 . This is a polytope.

Example

For $\lambda=(2,1,0)=\mu$ and $\nu=(3,2,1)$, the following are examples of hives in $\mathrm{Hive}_{\mathbb{Z}}(\lambda,\mu,\nu)$.

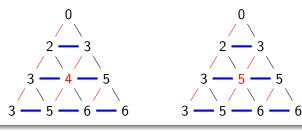




 $Hive(\lambda, \mu, \nu) = the closed interval [4, 5]$

Example

For $\lambda=(2,1,0)=\mu$ and $\nu=(3,2,1)$, the following are examples of hives in $\mathrm{Hive}_{\mathbb{Z}}(\lambda,\mu,\nu)$.



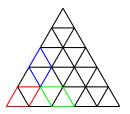
 $Hive(\lambda, \mu, \nu) = the closed interval [4, 5]$

Theorem [Knutson-Tao (1999)]

 $|\operatorname{Hive}_{\mathbb{Z}}(\lambda,\mu,\nu)| = c_{\lambda,\mu}^{\nu}$. (A hive model for LR coefficients)

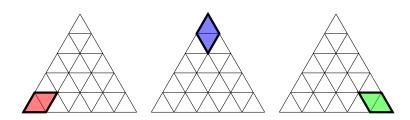
In the above example, we have $c_{\lambda \mu}^{\nu}=2$.

Big hive triangle



- Let \triangle denote the above big hive triangle.
- Let $\mathfrak{R} = \{ \text{collection of small rhombi of all three kinds in } \Delta \}.$
- Let $R \in \mathfrak{R}$, then V(R) denotes the set of all four vertices of R, and for any $F \subset \mathfrak{R}$, denote $V(F) = \bigcup_{R \in F} V(R)$.

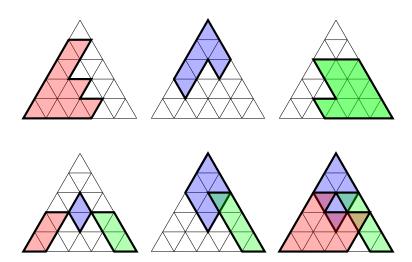
Frozen subset



Frozen subset

A subset $F \subset \mathfrak{R}$ is called *frozen* if |F|=1, then it is one of the above types, and if |F|>1 then there exists an $R \in F$ such that $H=F\setminus \{R\}$ is frozen and the obtuse vertices of R is in $V(H) \cup \partial \triangle$.

Examples



Main Theorem

A rhombus R is called flat if content(R) = 0.

- For a given $h \in \text{Hive}(\lambda, \mu, \nu)$, let $\text{Flats}(h) = \{R \in \mathfrak{R} \mid R \text{ is flat in } h\}$.
- For a given $F \subset \mathfrak{R}$, define a face of the hive polytope $\mathsf{Hive}(\lambda, \mu, \nu)$:

$$\mathsf{Hive}(\lambda,\mu,\nu;F) := \{h \in \mathsf{Hive}(\lambda,\mu,\nu) \mid F \subset \mathsf{Flats}(h)\}.$$

• Let $\mathsf{Hive}_{\mathbb{Z}}(\lambda, \mu, \nu; F)$ denote the set of integral points in $\mathsf{Hive}(\lambda, \mu, \nu; F)$.

Main Theorem

A rhombus R is called flat if content(R) = 0.

- For a given $h \in \text{Hive}(\lambda, \mu, \nu)$, let $\text{Flats}(h) = \{R \in \mathfrak{R} \mid R \text{ is flat in } h\}$.
- For a given $F \subset \mathfrak{R}$, define a face of the hive polytope Hive (λ, μ, ν) :

$$\mathsf{Hive}(\lambda,\mu,\nu;F) := \{ h \in \mathsf{Hive}(\lambda,\mu,\nu) \mid F \subset \mathsf{Flats}(h) \}.$$

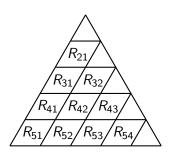
• Let $\mathsf{Hive}_{\mathbb{Z}}(\lambda, \mu, \nu; F)$ denote the set of integral points in $\mathsf{Hive}(\lambda, \mu, \nu; F)$.

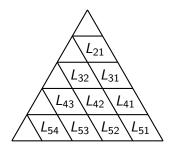
Main Theorem

Let $F \subset \mathfrak{R}$ be frozen. If $\mathsf{Hive}(\lambda, \mu, \nu; F) \neq \emptyset$ then $\mathsf{Hive}_{\mathbb{Z}}(\lambda, \mu, \nu; F) \neq \emptyset$.

Remark: To prove the above theorem, we adopt the Knutson-Tao hive model technique in our case.

Hive Kogan face

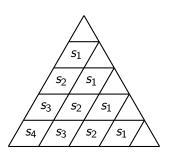


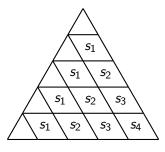


Let
$$NE(\mathfrak{R}) = \{R_{ij} \mid n \ge i > j \ge 1\}$$
 and $SE(\mathfrak{R}) = \{L_{ij} \mid n \ge i > j \ge 1\}$.

- For $F \subset NE(\mathfrak{R})$, the face $Hive(\lambda, \mu, \nu; F)$ is called a Kogan face of hive polytope.
- For $H \subset SE(\mathfrak{R})$, the face $Hive(\lambda, \mu, \nu; H)$ is called a dual Kogan face of hive polytope.

Hive Kogan face



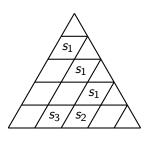


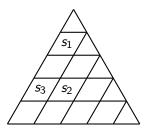
Let North-East and South-East rhombi be labeled by simple transpositions in S_n as in the above figure, i.e:

• R_{ij} and L_{ij} both labeled by s_{i-j} for $n \ge i > j \ge 1$.

Hive Kogan face

Fix a subset F of $NE(\mathfrak{R})$.





Define $\sigma(F)$ to be the product of s_{i-j} for $R_{ij} \in F$ in the lexicographic order.

Example

Let
$$F_1 = \{R_{21}, R_{32}, R_{43}, R_{52}, R_{53}\}$$
 and $F_2 = \{R_{21}, R_{41}, R_{42}\}$, then $\sigma(F_1) = s_1 s_3 s_2 = \sigma(F_2)$.

Hive model for $c_{\lambda,\mu}^{\nu}(w)$

If $len(\sigma(F)) = |F|$, we say that F is reduced.

Ex: F_1 is not reduced and F_2 is reduced.

Naoki Fujita [2020]

Set:
$$\varpi(F) = w_0 \, \sigma(F) \, w_0$$
.

For $w \in S_n$, define $\mathsf{Hive}(\lambda, \mu, \nu; w) := \cup \,\mathsf{Hive}(\lambda, \mu, \nu; F)$,

where the union is taken over all reduced subset $F \subset NE(\mathfrak{R})$ for which $\varpi(F) = w$.

$$c_{\lambda,\mu}^{\nu}(w) = |\operatorname{Hive}_{\mathbb{Z}}(\lambda,\mu,\nu;w_0w)|.$$

Another hive model for $c_{\lambda,\mu}^{\nu}(w)$

Similarly, for $H \subset SE(\mathfrak{R})$ we can define $\sigma(H)$.

Fujita [2020]

For $w \in S_n$, define $\overline{\mathsf{Hive}}(\lambda, \mu, \nu; w) := \cup \mathsf{Hive}(\lambda, \mu, \nu; H)$,

where the union is taken over all reduced subset $H \subset SE(\mathfrak{R})$ for which $\sigma(H) = w$.

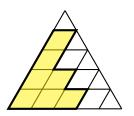
Theorem [-, Raghavan, Viswanath (2021)]

$$c_{\lambda,\mu}^{\nu}(w) = |\overline{\mathsf{Hive}_{\mathbb{Z}}}(\nu^*,\mu,\lambda^*;w_0w)|.$$

Observe that above model implies that $c_{\lambda,\mu}^{\nu} = c_{\nu*,\mu}^{\lambda^*}$.

Hive Kogan face for 312-avoiding permutations

Let $w \in S_n$ be 312-avoiding. Then w_0w is 132-avoiding, and there exists a unique reduced $F_w \subset NE(\mathfrak{R})$ such that $\varpi(F_w) = w_0w$. Further, it has the following form:



- Note that F_w is frozen.
- In this case: $\operatorname{Hive}(\lambda, \mu, \nu; w_0 w) = \operatorname{Hive}(\lambda, \mu, \nu; F_w)$,
- and $c_{\lambda,\mu}^{\nu}(w) = |\operatorname{Hive}_{\mathbb{Z}}(\lambda,\mu,\nu;w_0w)| = |\operatorname{Hive}_{\mathbb{Z}}(\lambda,\mu,\nu;F_w)|.$

Semigroup property for 312-avoiding permutations

- Let w be 312-avoiding and $c_{\lambda,\mu}^{\nu}(w)>0$ and $c_{\lambda',\mu'}^{\nu'}(w)>0$.
- There exists a unique $F_w \subset NE(\mathfrak{R})$,
- such that, $\operatorname{Hive}_{\mathbb{Z}}(\lambda, \mu, \nu; F_w) \neq \emptyset$ and $\operatorname{Hive}_{\mathbb{Z}}(\lambda', \mu', \nu'; F_w) \neq \emptyset$.
- Hive_Z $(\lambda + \lambda', \mu + \mu', \nu + \nu'; F_w) \neq \emptyset \implies c_{\lambda + \lambda', \mu + \mu'}^{\nu + \nu'}(w) > 0.$

Remark:

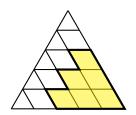
$$c_{\lambda+\lambda',\mu+\mu'}^{\nu+\nu'}(w) \geq \max \left(\ c_{\lambda,\mu}^{\ \nu}(w), \ c_{\lambda',\mu'}^{\nu'}(w) \ \right)$$

Sauration property for 312-avoiding permutations

- Let w be 312-avoiding.
- $c_{k\lambda,k\mu}^{\ k\nu}(w) > 0$ for some positive integer $k \ge 1$.
- There exist a unique $F_w \subset NE(\mathfrak{R})$ such that $Hive_{\mathbb{Z}}(k\lambda, k\mu, k\nu; F_w) \neq \emptyset$,
- and after scaling Hive $(k\lambda, k\mu, k\nu; F_w)$ by 1/k we get Hive $(\lambda, \mu, \nu; F_w) \neq \emptyset$.
- Since F_w is forzen then $\mathrm{Hive}_{\mathbb{Z}}(\lambda,\mu,\nu;F_w) \neq \emptyset \implies c_{\lambda,\mu}^{\ \nu}(w) > 0$.

Hive dual Kogan face for 231-avoiding permutations

Let $w \in S_n$ be 231-avoiding. Then w_0w is 213-avoiding and there exists a unique reduced $H_w \subset SE(\mathfrak{R})$ such that $\sigma(H_w) = w_0w$. Further, it has the following form:



- Note that H_w is frozen.
- In this case: $\overline{\text{Hive}}(\nu^*, \mu, \lambda^*; w_0 w) = \text{Hive}(\nu^*, \mu, \lambda^*; H_w),$
- and $c_{\lambda,\mu}^{\nu}(w) = |\operatorname{Hive}_{\mathbb{Z}}(\nu^*, \mu, \lambda^*; H_w)|$.

Semigroup property for 231-avoiding permutations

- Let w be 231-avoiding and $c_{\lambda,\mu}^{\nu}(w)>0$ and $c_{\lambda',\mu'}^{\nu'}(w)>0$.
- There exist a unique $H_w \in SE(\mathfrak{R})$,
- such that, $\operatorname{Hive}_{\mathbb{Z}}(\nu^*, \mu, \lambda^*; H_w) \neq \emptyset$ and $\operatorname{Hive}_{\mathbb{Z}}(\nu'^*, \mu', \lambda'^*; H_w) \neq \emptyset$.
- $\operatorname{Hive}_{\mathbb{Z}}(\nu^* + \nu'^*, \mu + \mu', \lambda^* + \lambda'^*; H_w) \neq \emptyset \implies c_{\lambda + \lambda', \mu + \mu'}^{\nu + \nu'}(w) > 0.$

Sauration property for 231-avoiding permutations

- Let w be 231-avoiding.
- $c_{k\lambda,k\mu}^{\ k\nu}(w) > 0$ for some positive integer $k \ge 1$.
- There exist a unique $H_w \subset SE(\mathfrak{R})$ such that $Hive_{\mathbb{Z}}(k\nu^*, k\mu, k\lambda^*; H_w) \neq \emptyset$.
- after scaling $\operatorname{Hive}_{\mathbb{Z}}(k\nu^*, k\mu, k\lambda^*; H_w)$ by 1/k we get $\operatorname{Hive}(\nu^*, \mu, \lambda^*; H_w) \neq \emptyset$.
- Since H_w is frozen then $\mathrm{Hive}_{\mathbb{Z}}(\nu^*,\mu,\lambda^*;H_w) \neq \emptyset \implies c_{\lambda,\mu}^{\,\nu}(w) > 0$.

Thank You