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Abstract

In this talk, we will briefly cover a survey of the representation theory of finite
groups, mostly in positive characteristic. We will be discussing some properties of
the group algebra and will focus on irreducible and indecomposable modules over
the group algebra. Since it is only a survey most of the proofs will be omitted.
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1 Introduction
As we start our journey, let us understand what is the representation theory of finite
groups and what is the objective of this subject. The algebraic structure of groups is
rather abstract, yet useful. On the other hand, linear algebra, i.e., the study of modules
over rings or in the special case the theory of vector spaces over fields is much enriched
theoretically. Thus this branch of mathematics observes elements of groups as linear
maps and then tries to get group theoretic information such as, to distinguish and clas-
sify them or to determine simplicity or solvability etc., out of it.

Throughout the talk, 𝐺 will denote a group (often we will be interested in the case
where 𝐺 is finite). 𝑘 is a field and 𝑉 is a vector space over 𝑘 .

Definition 1 (Representation). Given a finite group 𝐺, and a field 𝑘 , a representation
of 𝐺 over 𝑘 is a map 𝜌 : 𝐺 → 𝐴𝑢𝑡𝑘 (𝑉) where 𝑉 is a vector space over 𝑘 . In such a
case, we will call (𝑉, 𝜌) a representation of 𝐺 over 𝑘 . The dimension of 𝑉 is called the
dimension of the representation.

We will only consider finite dimensional vector spaces 𝑉 over a field 𝑘 .

Example 2. (1) For any vector space 𝑉 over any field 𝑘 , the representation

𝜌 : 𝐺 → 𝐴𝑢𝑡𝑘 (𝑉)

which sends everything to 1 = 𝑖𝑑𝑉 is called a trivial representation of 𝐺.
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(2) Let, 𝑋 be a set and 𝐺 ↷ 𝑋 . Define, 𝑉 = ⊕𝑥∈𝑋𝑘𝑥. Setting 𝜌𝑔 (𝑥) = 𝑔𝑥,∀𝑥 ∈ 𝑋 ,
we get a representation 𝜌 : 𝐺 → 𝐴𝑢𝑡𝑘 (𝑉), called the permutation representation
associated to the action of 𝐺 on 𝑋 .

(3) In the special case, when 𝐺 ↷ 𝐺 by left multiplication𝑉 is denoted by 𝑘𝐺 and the
permutation representation is called the regular representation of 𝐺 over 𝑘 . Some
authors use the notation 𝑘 [𝐺] for 𝑘𝐺.

𝑘𝐺 will play a central role in developing the theory, as we shall shortly see. Hence,
we will have a closer look at it.

2 Group Algebra
Note that, 𝑘𝐺 can be given a structure of an augmented 𝑘-algebra. We get a 𝑘-algebra
structure by defining multiplication

(∑𝑔∈𝐺 𝑎𝑔𝑔) (
∑

ℎ∈𝐺 𝑏ℎℎ) =
∑

𝑔,ℎ 𝑎𝑔𝑏ℎ𝑔ℎ

and obtaining the ring homomorphism

𝜂 : 𝑘 → 𝑘𝐺, sending 𝜆 ↦→ 𝜆1.

We get the augmentation map by setting

𝜖 : 𝑘𝐺 → 𝑘 which sends 𝑔 ↦→ 1 for each 𝑔 ∈ 𝐺.

With these structures, 𝑘𝐺 is called the group algebra associated with 𝐺 over 𝑘 . This
was introduced by German mathematician Ferdinand Georg Frobenius in 1897. We
study some properties of 𝑘𝐺 in this section. Most of the materials here are taken from
[[2], §1].

2.1 Relationship Between Representations and 𝑘𝐺-modules
Before proceeding further, let us understand why 𝑘𝐺 is important.

Suppose, (𝑉, 𝜌) is a representation of a 𝐺. Then the map 𝜌 extends uniquely to a
map 𝜌′ : 𝑘𝐺 → 𝐸𝑛𝑑𝑘 (𝑉). Thus 𝑉 becomes a 𝑘𝐺-module with respect to the action of
𝜌′.

Conversely, given a 𝑘𝐺-module 𝑀 , we get a natural 𝑘-vector space structure on 𝑀
equipped with a map from 𝑘𝐺 → 𝐸𝑛𝑑𝑘 (𝑀) sending the elements of 𝑘𝐺 to the action
of the left multiplication on 𝑀 . Restricting this ring homomorphism to the group of
units (which contains 𝐺) we get the desired 𝜌 : 𝐺 → 𝐴𝑢𝑡𝑘 (𝑀).

Definition 3 (Intertwining Maps). If (𝑉, 𝜌), (𝑉 ′, 𝜌′) are two representations of 𝐺 over
𝑘 , then an intertwining map is a linear map𝑇 : 𝑉 → 𝑉 ′ such that the following diagram:
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𝑉 𝑉 ′

𝑉 𝑉 ′

𝑇

𝜌𝑔 𝜌′𝑔

𝑇

commutes for all 𝑔 ∈ 𝐺.

Note that, between two representations (𝑉, 𝜌), (𝑉 ′, 𝜌′) a 𝑘-linear map 𝑇 : 𝑉 → 𝑉 ′

is 𝑘𝐺-linear if and only if 𝑇 is an intertwining map.

Thus, this association given an equivalence of categories 𝑅𝑒𝑝𝑘 (𝐺) consisting of all
finite-dimensional 𝑘-representations of 𝐺 and intertwining maps and f.g. 𝑘𝐺 − 𝑚𝑜𝑑
consisting of all left finitely generated 𝑘𝐺-modules and 𝑘𝐺-linear maps.

Summarizing the above discussion, we can conclude that considering representa-
tions of 𝐺 over 𝑘 is the same as considering left 𝑘𝐺-modules.

Example 4 (Revisited). (1) 𝑘 considered as a 𝑘𝐺-module via the augmentation map
𝜖 gives the one dimensional trivial representation of 𝐺 over 𝑘 .

(2) 𝑘𝐺 considered as a left 𝑘𝐺-module gives the regular representation of 𝐺 over 𝑘 .

2.2 Properties of The Group Algebra
(1) ker 𝜖 = 𝐼 (𝐺) is a two-sided ideal of 𝑘𝐺, called the augmentation ideal of 𝑘𝐺. The

set {𝑔 − 1 : 𝑔 ≠ 1 ∈ 𝐺} forms a 𝑘-basis of 𝐼 (𝐺). In view of the relations

𝑔−1 − 1 = 𝑔−1 (1 − 𝑔), 𝑔ℎ − 1 = 𝑔(ℎ − 1) + 𝑔 − 1 = (𝑔 − 1)ℎ + ℎ − 1,

one obtains that if 𝐺 is generated by the set {𝑔𝜆 : 𝜆 ∈ Λ} then 𝐼 (𝐺) is generated
both as a left and a right ideal by the elements 𝑔𝜆 − 1.

(2) 𝑘𝐺 is commutative if and only if 𝐺 is abelian (with 𝐺 embedded in (𝑘𝐺)∗ and is
finite dimensional over 𝑘 if and only if 𝐺 is a finite group).

(3) More generally, if 𝐶1, . . . , 𝐶𝑟 are all the distinct conjugacy classes of 𝐺 and

𝑧𝑖 =
∑

𝑥∈𝐶𝑖
𝑥, then 𝑍 (𝑘𝐺) = ⊕𝑟

𝑖=1𝑘𝑧𝑖 .

To prove this, just compute using the description of the basis of 𝑘𝐺.

(4) If 𝐴 is a 𝑘-algebra, then 𝐻𝑜𝑚𝑔𝑝 (𝐺,𝑈 (𝐴)) � 𝐻𝑜𝑚𝑘−𝑎𝑙𝑔 (𝑘𝐺, 𝐴).

(5) 𝑘𝐺 is functorial, in the sense that, if 𝜙 : 𝐺1 → 𝐺2 is a group homomorphism
then it can be uniquely extended to an augmented 𝑘-algebra homomorphism
𝑘𝜙 : 𝑘𝐺1 → 𝑘𝐺2 whose kernel ker 𝑘𝜙 = ⟨𝑔 − 1|𝑔 ∈ ker 𝜙⟩ both as a left and
a right ideal.

In particular, if 𝑁 is a normal subgroup of 𝐺 then the natural projection
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𝜋 : 𝐺 → 𝐺/𝑁 induces 𝑘𝜋 : 𝑘𝐺 → 𝑘 (𝐺/𝑁)

with the kernel being generated by {𝑛 − 1 : 𝑛 ∈ 𝑁} as both a left and a right ideal,
i.e., the kernel is the extension of the augmentation ideal 𝐼 (𝑁) of 𝑘𝑁 in 𝑘𝐺 as a
left ideal as well as a right ideal. This gives the isomorphism,

𝑘 (𝐺/𝑁) � 𝑘𝐺/𝐼 (𝑁)𝑘𝐺 � 𝑘 ⊗𝑘𝑁 𝑘𝐺.

As an illustration of the above, we explicitly find out the group algebra of the cyclic
groups below.

First note that, 𝑘Z = 𝑘 [𝑥, 𝑥−1], the algebra of the Laurent polynomials over 𝑘 is the
variable 𝑥 with augmentation ideal 𝐼 (Z) generated by 𝑥 − 1.

From the above discussion, it follows that the group ring

𝑘 (Z/𝑑Z) = 𝑘 [𝑥, 𝑥−1]/⟨𝑥𝑑 − 1⟩ � 𝑘 [𝑥]/⟨𝑥𝑑 − 1⟩

with augmentation ideal 𝐼 (Z/𝑑Z) = ⟨𝑥 − 1⟩.

(6) The natural inclusions of 𝐺 𝑗

𝑖 𝑗
↩−→ 𝐺1 × 𝐺2 for 𝑗 = 1, 2 induces

𝑘𝑖 𝑗 : 𝐾𝐺 𝑗 → 𝑘 (𝐺1 × 𝐺2).

Since elements of 𝐼𝑚(𝑘𝑖1) commute with elements of 𝐼𝑚(𝑘𝑖2), one obtains an
augmented 𝑘-algebra homomorphism

𝑘𝐺1 ⊗𝑘 𝑘𝐺2 → 𝑘 (𝐺1 × 𝐺2)

sending 𝑔1 ⊗ 𝑔2 ↦→ (𝑔1, 𝑔2). As it gives a bijection on the natural bases of the
𝑘-vector spaces involved, it turns out to be an isomorphism. Hence, we can identify
𝑘 (𝐺1 × 𝐺2) with 𝑘𝐺1 ⊗𝑘 𝑘𝐺2. In view of this, we can describe the group algebra
of any finitely generated abelian group.

If 𝐺 is a finitely generated abelian group then by the structure theorem,

𝐺 � Z𝑛 ⊕ Z/𝑑1Z ⊕ · · · ⊕ Z/𝑑𝑚Z

for some unique 𝑛 ≥ 0, 𝑑𝑖 ≥ 2 with 𝑑𝑖+1 |𝑑𝑖 for all 𝑖. Thus we obtain

𝑘𝐺 =
𝑘 [𝑥1 ,𝑥

−1
1 ,...,𝑥𝑛 ,𝑥

−1
𝑛 ,𝑦1 ,...,𝑦𝑚 ]

⟨𝑦𝑑1
1 −1,...,𝑦𝑑𝑚𝑚 −1⟩

with 𝐼 (𝐺) = ⟨𝑥1 − 1, . . . , 𝑥𝑛 − 1, 𝑦1 − 1, . . . , 𝑦𝑚 − 1⟩.
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(7) 𝑘𝐺 is an (left and right) Artinian ring, being a finite dimensional 𝑘-vector space
(since 𝐺 is a finite group). This property of 𝑘𝐺 will be a saviour in the positive
characteristic case, in view of the Krull-Schmidt property, as we will see shortly.

Recall that, for a ring 𝑅 (not necessarily commutative) the radical of 𝑅 is defined as
the intersection of all left maximal ideals of 𝑅, which turns out to be the intersection
of annihilators of all simple left 𝑅-modules and hence, a two-sided ideal of 𝑅. To
see this, look at the equation⋂

𝑀 𝑎𝑛𝑛(𝑀) = ⋂
𝑀

⋂
𝑥≠0 𝑎𝑛𝑛(𝑥),

where the intersection is taken over all simple left 𝑅-modules. Now it is easy to
see that the right-hand side is the intersection of all the left maximal ideals. This
will be denoted by 𝐽 (𝑅). One can show that,

for an element 𝑥 ∈ 𝑅, 𝑥 ∈ 𝐽 (𝑅) ⇐⇒ 1 − 𝑦𝑥 ∈ 𝑅∗,∀𝑦 ∈ 𝑅.

Also, it coincides with the intersection of all right maximal ideals of 𝑅. This follows
from the fact that

𝐽 (𝑅) is the largest two-sided ideal 𝐼 such that 1 − 𝑥 ∈ 𝑅∗ for all 𝑥 ∈ 𝐼.

A ring 𝑅 will be called local if it has a unique left (or right or two-sided) maximal
ideal.

Recall that, if 𝑅 is an (left or/and right) Artinian ring then 𝐽 (𝑅) is the largest
nilpotent (left or right or two-sided) ideal of 𝑅. This gives,

(8) If 𝐶ℎ(𝑘)= characteristic of the field 𝑘 = 𝑝 ≥ 2 (and 𝐺 is finite), then 𝑘𝐺 is a local
ring with maximal ideal 𝐼 (𝐺) if and only if 𝐺 is a 𝑝-group.

Proof. =⇒ : Since 𝑘𝐺 is Artinian, 𝐽 (𝑘𝐺) is nilpotent, hence 𝐼 (𝐺) is nilpotent.
So, for all 𝑥 ∈ 𝐺, 𝑥 − 1 ∈ 𝐼 (𝐺). Choosing 𝑙 large enough such that 𝐼 (𝐺) 𝑝𝑙

= 0, we
get (𝑥 − 1) 𝑝𝑙

= 𝑥𝑝
𝑙 − 1 = 0, hence |𝑥 | | 𝑝𝑙 , proving that 𝐺 is a 𝑝-group.

⇐= : It is sufficient to show that 𝐼 (𝐺) is nilpotent. Since 𝐺 is a 𝑝-group,

|𝑍 (𝐺) | > 1 and 𝑘𝐺/𝐼 (𝑍 (𝐺))𝑘𝐺 � 𝑘 [𝐺/𝑍 (𝐺)].

Assume by induction that 𝐼 (𝐺/𝑍 (𝐺)) is nilpotent. Thus, from the above iso-
morphism, it follows that 𝐼 (𝐺)𝑛 ⊂ 𝐼 (𝑍 (𝐺))𝑘𝐺 for some 𝑛 > 0. Since, 𝑍 (𝐺)
is an abelian group, by the above characterisation, 𝐼 (𝑍 (𝐺)) is nilpotent and
𝐼 (𝑍 (𝐺)) ⊂ 𝑍 (𝑘𝐺), we deduce the nilpotency of 𝐼 (𝐺) (see [2],§1.5 and §1.6). □
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3 Semisimplicity
To enable us with the language of modern representation theory, i.e., to focus on the
𝑘𝐺-modules, we first describe some preliminaries from (non-commutative) ring theory.
In what follows we will always be concerned about rings with unity. For an elaborated
discussion, see [3], Chapter XVII.

Definition 5 (Simple and Semisimple Modules). A nonzero 𝑅-module 𝑀 is called
simple if it contains no nontrivial proper submodules. An 𝑅-module 𝑀 is called
semisimple if it is expressible as a sum of a family of simple submodules.

We have the following characterisation:

Theorem 6. For a ring 𝑅 and a module 𝑀 over 𝑅, the following conditions are
equivalent:

(A) 𝑀 is Semisimple.

(B) 𝑀 is a direct sum of simple modules.

(C) Every submodule of 𝑀 is a direct summand of 𝑀 .

Proof. See [3], Chapter XVII, §2, for a discussion. □

Lemma 7 (Schur). If 𝑀, 𝑁 are simple 𝑅-modules then any morphism 𝑓 : 𝑀 → 𝑁 is
either 0 or an isomorphism. Thus, if 𝑀 ≇ 𝑁 then 𝐻𝑜𝑚𝑅 (𝑀, 𝑁) = 0 and 𝐸𝑛𝑑𝑅 (𝑀) is
always a division algebra over 𝑅.

Proof. Consider ker 𝑓 , 𝐼𝑚 𝑓 and use the definition of simple 𝑅-modules. □

The simple-looking Schur’s lemma has far-stretched consequences in representation
theory. We derive some corollaries.

Corollary 8. (1) Submodules and quotient modules of a semi-simple module are semi-
simple (see [3], Chapter XVII, §2, Proposition 2.2).

(2) If 𝑀 =
∑
𝑆𝑖 with 𝑆𝑖 simple for each 𝑖, then any simple submodule 𝑆 ≤ 𝑀 is

isomorphic to one of the 𝑆𝑖’s. Note that in view of the above theorem, there is
a projection from 𝑀 → 𝑆, which, when restricted on 𝑆𝑖 , is nonzero, for some 𝑖.
Schur’s lemma takes care of the rest of the statement.

(3) A semisimple module 𝑀 is expressible as a direct sum of finitely many simple
submodules if and only if 𝑀 has finite length. Such a decomposition is unique
up to permutation and number of simple summands, in view of the Jordan-Hölder
theorem.

Examples of semisimple modules include vector spaces of arbitrary dimension over
an arbitrary field.

The module Z/𝑛Z is semisimple Z-module if and only if 𝑛 is a product of distinct
primes with multiplicity 1 (exercise).
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Definition 9 (Semisimple Rings). A ring 𝑅 is called semisimple if 𝑅 is semisimple left
𝑅-module. A ring 𝑅 is called right semisimple if it is semisimple as a right 𝑅-module,
i.e., 𝑅𝑜𝑝 is semisimple.

In fact, one can show that the notion of semisimplicity of a ring 𝑅 is equivalent to 𝑅
being right semisimple, with the help of the Artin-Wedderburn structure theorem. So
we will only talk about semisimplicity (as a left module) in our discussion.

The semisimplicity of rings is in general stronger than the semisimplicity of mod-
ules. We also have the notion of simple rings as follows.

Definition 10 (Simple Rings). A ring 𝑅 is called simple if it is a nonzero semisimple
ring with no proper nontrivial two-sided ideal.

Note that, considering the map 𝜂, its kernel 𝐼 (𝐺) and comparing 𝑘-dimensions one
can easily obtain that

𝑘𝐺 is simple if and only if 𝐺 is trivial.

Proposition 11 ([3], Chapter XVII, §4). (1) For a ring 𝑅 the following are equivalent

(A) 𝑅 is semisimple.
(B) Each 𝑅-module is semisimple.
(C) Every left or right 𝑅-module is projective.

Proof. In view of the fact that any 𝑅-module is a quotient of a free 𝑅-module, the
equivalence of (A) and (B) is clear.

In view of condition (C) in Theorem 6, the equivalence of (B) and (C) is clear. □

(2) If 𝑅 is a semisimple ring then 𝑅 is the direct sum of a finitely many simple left ideals.
Moreover, any simple left 𝑅-module is isomorphic to one of the ideals mentioned
above. In particular, there exist only a finitely many simple left 𝑅-modules up to
isomorphism.

Proof. Write

1 =
∑𝑛

𝑖=1 𝑥𝑖 , where 𝑅 = ⊕𝑖∈𝐼𝑆𝑖

and 𝑥𝑖 ∈ 𝑆𝜆𝑖 for 𝑖 = 1, . . . , 𝑛 and 𝑆𝑖 are simple left 𝑅-ideals. Then 𝑅 = ⊕𝑛
𝑖=1𝑆𝜆𝑖 .

The second part follows from Schur’s lemma by proceeding similarly as in part (2)
of Corollary 8. □

(3) For a semisimple ring 𝑅, 𝑅 is simple if and only if there exists exactly one simple
left 𝑅 module up to isomorphism.

(4) For a ring 𝑅 the following are equivalent. (Use Jordan-Hölder theorem and Chinese
remainder theorem)
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(A) 𝑅 is semisimple.
(B) 𝑅 is (left and right) Artinian and 𝐽 (𝑅) = 0.
(C) 𝑅 is Artinian and it has no non-zero nilpotent left ideal.

(5) From the last equivalence, it follows that a ring 𝑅 is simple if and only if 𝑅 is
Artinian and has no nontrivial two-sided ideal. Thus, if 𝑅 is Artinian then 𝑅/𝐽 (𝑅)
is semisimple.

One can in fact describe all the semisimple and simple rings thanks to the Artin-
Wedderburn structure theorem.

Theorem 12 (Artin-Wedderburn; [1], Chapter 1, §1.3). A ring 𝑅 is semisimple if and
only if 𝑅 is isomorphic to 𝑀𝑛1 (𝐷1) × · · · × 𝑀𝑛𝑘 (𝐷𝑘) for some uniquely determined
𝑘, 𝑛𝑖’s and division rings 𝐷𝑖’s (up to isomorphism).

In fact, a ring 𝑅 is simple if and only if it is isomorphic to 𝑀𝑛 (𝐷) for some uniquely
determined 𝑛 and a unique (up to isomorphism) division ring 𝐷.

Now we discuss some facts about representations of finite groups and point out some
fundamental differences between the zero characteristic and the positive characteristic
cases.

4 Representation Theory of Finite Groups
Definition 13 (Irreducible Representations). A simple 𝑘𝐺-module, i.e., a 𝑘𝐺-module
which has no nontrivial submodule (submodules of a 𝑘𝐺-module are called subrepre-
sentations of 𝐺) is called an irreducible representation of 𝐺 over 𝑘 .

Definition 14 (Indecomposable Representations). An indecomposable representation
of 𝐺 over 𝑘 is an indecomposable 𝑘𝐺-module, i.e., an 𝑘𝐺-module which has no
nontrivial direct summands.

In the sequel, every indecomposable module is assumed to be finitely generated,
unless otherwise stated.1

In general irreducible representations are indecomposable, by definition. Converse
may not hold always.

As an illustration, consider

F𝑝 (Z/𝑝Z) = F𝑝 [𝑥]/⟨(𝑥 − 1) 𝑝⟩.

It is not irreducible since the trivial subrepresentation F𝑝 (1 + 𝑥 + · · · + 𝑥𝑝−1) is a
F𝑝 (Z/𝑝Z)-submodule of the group algebra. However it is indecomposable since if

⟨ 𝑓 (𝑥)⟩/⟨(𝑥 − 1) 𝑝⟩ ⊕ ⟨𝑔(𝑥)⟩/⟨(𝑥 − 1) 𝑝⟩ = F𝑝 [𝑥]/⟨(𝑥 − 1) 𝑝⟩

1Note that, simple modules are, by definition, finitely generated. However, for indecomposable modules,
this is not the case. Consider the indecomposable Z-module Q, which is not finitely generated.
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then notice that 𝑓 (𝑥), 𝑔(𝑥) | (𝑥−1) 𝑝 and expressing the image of 1 as 𝑎(𝑥) 𝑓 (𝑥)+𝑏(𝑥)𝑔(𝑥)
and then raising the power 𝑝 yields 1 = 0, giving a contradiction to the nontrivial cases.

However, in zero characteristic and in some special cases in positive characteristic
the notions of irreducible and indecomposable representations coincide.

Theorem 15 (Maschke). For a finite group𝐺, each short exact sequence of 𝑘𝐺-modules
split if and only if |𝐺 | ≠ 0 in 𝑘 .

Proof. Consider a short exact sequence of 𝑘𝐺-modules

0 → 𝐿 → 𝑀
𝜋−→ 𝑁 → 0.

Since 𝑘 is a field 𝜋 has a 𝑘-linear section 𝜎 : 𝑁 → 𝑀 . Define 𝜎̃ : 𝑁 → 𝑀 by setting

𝜎̃(𝑛) = 1
|𝐺 |

∑
𝑔∈𝐺 𝑔𝜎(𝑔−1𝑛)

which turns out to be a 𝑘𝐺-linear section of the short exact sequence. This construction
of 𝜎̃ is known as the “averaging trick”, which is of fundamental importance in the cases
where |𝐺 | ≠ 0 in 𝑘 .

Conversely, one has a split exact sequence

0 𝐼 (𝐺) 𝑘𝐺 𝑘 0.𝜖

𝜎

Now, 𝜎(1) =
∑

𝑔 𝑎𝑔𝑔. For a fixed ℎ ∈ 𝐺, 𝜎(1) = 𝜎(ℎ.1) = ℎ.𝜎(1). Comparing
coefficients, thus one obtains 𝑎𝑔 = 𝑎1,∀𝑔 ∈ 𝐺. Now

1 = 𝜖 (𝜎(1)) = 𝑎1
∑
𝜖 (𝑔) = 𝑎1

∑
𝑔 1 = 𝑎1 |𝐺 |,

proving the result (see [2], §2.6). □

As a consequence (this is just a restatement) one gets the traditional form of
Maschke’s theorem:

Theorem 16 (Maschke). For a finite group 𝐺, the following are equivalent:

(A) 𝑘𝐺 is a semisimple ring.

(B) 𝑘 , as a 𝑘𝐺-module via 𝜖 , is projective.

(C) |𝐺 | ≠ 0 in 𝑘 .

Proof. (𝐴) =⇒ (𝐵): Obvious.

(𝐵) =⇒ (𝐶): follows from the second part of the previous theorem.

(𝐶) =⇒ (𝐴): also follows from the first part of the previous theorem showing that
every submodule of a 𝑘𝐺-module 𝑀 is a direct summand of 𝑀 (see [2], §3.1). □
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Thus, for any representation of a finite group 𝐺 over a field 𝑘 such that 𝑐ℎ(𝑘) = 0
or 𝑐ℎ(𝑘) ∤ |𝐺 |, every subrepresentation is a direct summand and every representation
is completely reduced to irreducible subrepresentations. Moreover, if we assume 𝑘 is
algebraically closed, we get the following results.

Theorem 17. (1) The number of non-isomorphic simple 𝑘𝐺-modules (i.e., irreducible
representations of𝐺 over 𝑘) is the same as the number of conjugacy classes of𝐺. If
𝑛1, . . . , 𝑛𝑟 are the 𝑘-dimensions of the irreducible representations then

∑
𝑛2
𝑖
= |𝐺 |.

In particular, 𝐺 is abelian if and only if each irreducible representation of 𝐺 is
one-dimensional.

[Note that, here the hypothesis that 𝑘 is algebraically closed is important, consider
the Q-representation of Z/3Z, 𝑉 = Q[𝑥]/⟨𝑥2 + 𝑥 + 1⟩. Then 𝑉 is an irreducible
representation of dimension 2.]

(2) If 𝑉 be a simple 𝑘𝐺-module then 𝐸𝑛𝑑𝑘𝐺 (𝑉) = 𝑘 . (This is nothing but Schur’s
lemma).

In fact, one can generalise (1) to

(3) Brauer’s Theorem: If 𝑘 is algebraically closed of characteristic 𝑝 > 0, then the
number of isomorphism classes of simple 𝑘𝐺-modules is the same as the number of
𝑝-regular conjugacy classes of 𝐺 (see [5], the whole notes is devoted to illustrating
a proof of this statement). (By a 𝑝-regular element of 𝐺 we mean an element
whose order is not divisible by 𝑝. A 𝑝-regular conjugacy class is a conjugacy class
of a 𝑝-regular element.)

(4) From the decomposition of 𝑘𝐺 into simple ideals one can obtain all the irreducible
representations of 𝐺 over 𝑘 up to isomorphisms.

In fact in the general case, one can always claim that for any finite group 𝐺 over an
arbitrary field 𝑘 , there are only finitely many irreducible representations (up to isomor-
phism).

For any field 𝑘 and a finite group 𝐺, we have previously remarked that 𝑘𝐺 is
Artinian. Thus any finite-dimensional representation 𝑀 of 𝐺 over 𝑘 is both Noetherian
and Artinian. Hence it has a composition series, i.e., a sequence of submodules

0 = 𝑀𝑙 ⊂ 𝑀𝑙−1 ⊂ · · · ⊂ 𝑀0 = 𝑀

such that each of the successive quotients is simple. Jordan-Hölder theorem hence tells
that any two such composition series have the same length (𝑙) and the simple factors
are uniquely determined up to permutation and isomorphism (see [1], Chapter 1, §1.1).

Since every simple 𝑘𝐺-module appear as a quotient of 𝑘𝐺, they appear in a compo-
sition series and thus there are only finitely many irreducible representations of𝐺 over 𝑘 .
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In view of Maschke’s theorem, if 𝑘𝐺 is semisimple, so is every module over 𝑘𝐺.
Thus, every representation of 𝐺 over 𝑘 can be written as a direct sum of irreducible
representations of 𝐺 over 𝑘 . However, this is not true in general. For example, take

𝑘 [Z/2Z] = 𝑘 [𝑥]/⟨𝑥2 − 1⟩ with 𝑐ℎ(𝑘) = 2.

Note that, 𝑘 (1 + 𝑥) is the unique 1-dimensional subrepresentation of this regular repre-
sentation. Hence, it can not be decomposed as a direct sum of irreducibles. This forces
us to shift our attention to indecomposable representations in view of the Krull-Schmidt
theorem.

Definition 18. A ring 𝑅 is said to have the Krull-Schimdt property if each finitely
generated 𝑅-module can be written as a finite direct sum of indecomposable modules
and such a decomposition is unique in the sense that, if

⊕𝑛
𝑖=1𝑀𝑖 � ⊕𝑚

𝑗=1𝑁 𝑗

with 𝑀𝑖 , 𝑁 𝑗 ’s being indecomposable, then 𝑚 = 𝑛, 𝑀𝑖 � 𝑁𝑖 for all 𝑖 (possibly after a
permutation).

Theorem 19 (Krull-Schimdt; [1], Chapter 1, §1.4). Artinian rings have the Krull-
Schmidt property.

In particular, one obtains that 𝑘𝐺, being Artinian, has the Krull-Schmidt property.

In view of the Krull-Schmidt property, thus if one can characterise all the indecom-
posable representations of𝐺 over 𝑘 , then one can obtain all the possible representations
of 𝐺 up to isomorphism. This motivates us to study the classification of representation
types (see [1], Chapter 4, §4.4).

Definition 20. Suppose 𝑘 is an infinite field. Λ is a finite-dimensional 𝑘-algebra.

(1) Λ is of finite representation type if there are only finitely many isomorphism classes
of indecomposable Λ-modules.

(2) Λ is of tame representation type if it is not of finite representation type, and for any
dimension 𝑛, there is a finite set of Λ − 𝑘 [𝑇]-bimodules 𝑀𝑖 which are free as right
𝑘 [𝑇]-modules, with the property that all but a finite number of indecomposable
Λ-modules of dimension 𝑛 are of the form 𝑀𝑖 ⊗𝑘 [𝑇 ] 𝑀 for some 𝑖, and for some
indecomposable 𝑘 [𝑇]-module 𝑀 .

(3) Λ is of domestic representation type if the 𝑀𝑖 may be chosen independently of 𝑛.

(4) Λ is of wild representation type if there is a finitely generated Λ−𝑘 [𝑋,𝑌 ]-bimodule
𝑀 which is free as a right 𝑘 [𝑋,𝑌 ]-module, such that the functor 𝑀 ⊗𝑘 [𝑋,𝑌 ] − from
finite dimensional 𝑘 [𝑋,𝑌 ]-modules to finite dimensional Λ-modules preserves
indecomposability and isomorphism class.

A complete classification for a field of positive characteristic is as follows.

Theorem 21 (Trichotomy). Let 𝐺 be a finite group and 𝑘 an infinite field of character-
istic 𝑝.

11



(i) 𝑘𝐺 has finite representation type if and only if 𝐺 has cyclic Sylow 𝑝-subgroups.

(ii) 𝑘𝐺 has domestic representation type if and only if 𝑝 = 2 and the Sylow 2-
subgroups of 𝐺 are isomorphic to the Klein’s four group.

(iii) 𝑘𝐺 has tame representation type if and only if 𝑝 = 2 and the Sylow 2-subgroups
are dihedral, semi-dihedral (𝑆𝐷2𝑛 = ⟨𝑎, 𝑥 |𝑎2𝑛−1

= 𝑥2 = 1, 𝑥𝑎𝑥 = 𝑎2𝑛−2−1⟩) or
generalised quaternions (𝑄4𝑛 = ⟨𝑎, 𝑏 |𝑎𝑛 = 𝑏2, 𝑎2𝑛 = 1, 𝑏−1𝑎𝑏 = 𝑎−1⟩).

(iv) In all the other cases 𝑘𝐺 has wild representation type.

There is a nice connection between indecomposable modules and irreducible mod-
ules over a finite-dimensional 𝑘-algebra (in particular, for 𝑘𝐺).

Theorem 22 (see [2], §4.2. Also see, [4]). For a finite-dimensional 𝑘-algebra 𝑅,
the association 𝑃 ↦→ 𝑃/𝐽 (𝑅)𝑃 gives a one-one correspondence between the set of
all isomorphism classes of indecomposable projective 𝑅-modules and the set of all
isomorphism classes of simple 𝑅-modules. (In fact, every projective indecomposable
𝑅-module is finitely generated.)

Thus the isomorphism classes of projective indecomposable representations of 𝐺
over 𝑘 are in one-one correspondence with the irreducible representations and hence
there are only finitely many of them.

Note that, all the finitely generated indecomposable modules may not be projective.
Thus, in particular, there may exist more indecomposable modules than irreducibles
(even when 𝑘𝐺 is of finite representation type).

As an illustration consider, 𝐺 to be a finite cyclic group. (i.e., 𝑘𝐺 is of finite
representation type for any infinite field 𝑘). Let 𝑝 denote 1 if 𝑐ℎ(𝑘) = 0 and the
characteristic of 𝑘 otherwise. Suppose, |𝐺 | = 𝑝𝑛𝑞, with 𝑛 ∈ N ∪ {0} and (𝑝, 𝑞) = 1.
Then

𝑅 = 𝑘𝐺 = 𝑘 [𝑥]/⟨𝑥𝑝𝑛𝑞 − 1⟩.

With the conventions of 𝑝,

𝑥𝑝
𝑛𝑞 − 1 = (𝑥𝑞 − 1) 𝑝𝑛

= (Π𝑑
𝑖=1 𝑓𝑖 (𝑥))

𝑝𝑛 ,

where 𝑓𝑖’s are irreducibles and
∑𝑑

𝑖=1 𝑑𝑒𝑔( 𝑓𝑖) = 𝑞. By comaximality of the ideals
⟨ 𝑓𝑖 (𝑥) 𝑝

𝑛⟩, applying Chinese Remainder theorem, one obtains that

𝑅 � Π𝑑
𝑖=1𝑅𝑖 , with 𝑅𝑖 = 𝑘 [𝑥]/⟨ 𝑓 𝑝

𝑛

𝑖
⟩.

Thus each 𝑅-module 𝑀 uniquely decomposes as 𝑀 =
⊕𝑑

𝑖=1 𝑀𝑖 where each 𝑀𝑖 is an
𝑅𝑖-module. Observe that 𝑀 is an indecomposable 𝑅-module if and only if exactly one
𝑀𝑖 is indecomposable as an 𝑅𝑖-module and the other 𝑀 𝑗 ’s are 0. Thus it is sufficient
to find out all the finitely generated indecomposable 𝑅𝑖-modules.
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Now, note that, for any commutative ring 𝑅 and ideal 𝐼, 𝑅/𝐼 is decomposable as an
𝑅-module (equivalently, as an 𝑅/𝐼-module) if and only if there are ideals 𝐽1, 𝐽2 of 𝑅
containing 𝐼 whose sum is 𝑅 and the intersection is 𝐼. This shows that 𝑅𝑖/⟨ 𝑓 𝑠𝑖 ⟩ are inde-
composable modules for 1 ≤ 𝑠 ≤ 𝑝𝑛 (working out you will see that 𝐽1 + 𝐽2 ⊂ ⟨ 𝑓𝑖 (𝑋)⟩,
in case of a nontrivial decomposition). Moreover, no two of them are isomorphic which
can be seen by looking at their annihilators. We claim that they exhaust the list of
finitely generated indecomposable modules over 𝑅. This follows from the structure
theorem of finitely generated modules over PID, by noting that a 𝑘 [𝑥]-module is an
𝑅𝑖-module if and only if it is annihilated by 𝑓

𝑝𝑛

𝑖
.

Next, we find out all the projective indecomposable modules over 𝑅. We claim
that the 𝑅𝑖’s are precisely all the projective indecomposable 𝑅-modules. That they are
projective is clear and indecomposability follows from the previous paragraph. Also,
no two of them are isomorphic, as before. Note that, the simple 𝑘𝐺 modules up to
isomorphism, in this case, are precisely

𝑘 [𝑥]/⟨ 𝑓𝑖 (𝑥)⟩, 𝑖 = 1, . . . , 𝑑.

From Theorem 22, thus it follows that the list mentioned above is precisely all the
projective indecomposable 𝑅-modules up to isomorphism. This list is way smaller than
the list of indecomposable modules in positive characteristic.
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