Priyotosh Bandyopadhyay Indian Institute of Technology Hyderabad based on *EPJC* 80 (2020) 8, 715 and *PRD* 107 (2023) 5, 055032 with Shulpa Janngid

Perturbativity, Higgs mass FOPT and Gravitational wave with inert models

ICTS, Bangalore Hearing beyond the standard model with cosmic sources of Gravitational Waves,

Plan of my talk

- Vacuum Stability of SM
- Rescue with Inert singlet, doublet and triplet
- Bounds from perturbativity
- First order Phase trannsison in inert singlet and inert triplet • Upper bounds on bare mass and portal couplings from perturbativity
-
- Correction from two loop
- Gravitational wave signal
- Bounds from $h \rightarrow \gamma \gamma$ measurement

Some basic explanations which may need additional scalar

Meta-stable Vacuum in SM

Higgs mass M_h in GeV

Needs extra Texter Indirect evidence of Dark Matter

Needs extra scalar

Vacuum Stability

Stability bounds

- Higgs couples to fermions via Yukawa couplings
- At low field values the top quark contribution is important μ
- instability to Higgs potential $\frac{\textbf{0}}{8\pi^2} \lambda_t^4$ m_h^2 $\frac{2}{h}$ >
- be written as
	- $V_{\text{eff}}(h,\mu) \simeq \lambda_{\text{eff}}(h)$
- Where λ_{eff} assimilates the loop effects

$$
\lambda_{\text{eff}}(h,\mu) \simeq \underbrace{\lambda_h(\mu)}_{\text{tree-level}} + \frac{1}{16\pi^2} \sum_{\substack{i=W^{\pm},Z,t,\\h,G^{\pm},G^0}} n_i \kappa_i^2 \left[\log \frac{\kappa_i h^2}{\mu^2} - c_i \right].
$$

 $\mathcal{L}_Y = Y_t \bar{Q} \phi t_R$

 $d\lambda$ $d\mu$ \simeq $-$ 3 $\frac{\sigma}{8\pi^2}Y_t^4$ *t*

• The solution takes a form, $\lambda(\mu) = \lambda - \frac{3}{8\pi^2}\lambda_t^4\ln\frac{\mu}{n}$, where at some point we hit $\lambda(\mu) < 0$, leading $\frac{4}{t}$ ln $\frac{\mu}{a}$ \overline{v} $\lambda(\mu) < 0$ $3m_t^2$ *t* $\frac{3m_t^2}{\pi^2 v^2} \ln \frac{\Lambda}{v}$

• In the Coleman-Weinberg's effective potential approach the RG-improved potential can

$$
h,\mu)\frac{h^4}{4},\quad \text{with}\,\,h\gg v\,,
$$

Contribution from SM

Stability of the potential

If your mexican hat turns out to be a dog bowl you have a problem...

from A. Strumia

Status of SM

Higgs mass M_h in GeV

Within the uncertainty of top mass we are in a metastable vacuum

Higgs mass M_h in GeV

Degrassi et. al. :JHEP 1208, 098 (2012)

• Any scalar extension of SM will enhance the vacuum stability due to positive

- quantum correction to *λ*eff
- Singlet extensions are widely studied

Gonderinger et al., Costa et al., Haba et al., Barger et al., Rakshit et al. Baek et al.

Addition of scalars

Cross over region shifted towards higher scale from SM

SM+ Singlet $V(\phi, S) = \mu^2 |\phi|^2 + \lambda |\phi|^4 + m_S^2 S^2 + \lambda_{S\phi} S^2 |\phi^2| + \lambda_S S^4$

Khan et al, PRD 90, 113008 (2014)

- New Higgs bosons $A, H, H^{\pm} \,$ are predicted A, H, H^{\pm}
- The lightest neutral one can be a dark matter candidate
-
- the much needed dark matter candidate
- Inert Higgs doublet:

$$
V_{\text{scalar}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\lambda_5 ((\Phi_1^{\dagger} \Phi_2)^2) + h.c],
$$

• We will consider Inert Higgs doublet (Type-I) and Inert Triplet (Y=0) models Addition of scalars: Inert doublet

$$
\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix}, \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}.
$$

PB, Shilpa Jangid: Eur.Phys.J.C 80 (2020) 8, 715

On various 2HDMs similar studies: Kundu et al., Chakrabarty-Mukhopadhyaya, Khan et al.

• Both the extra SU(2) doublet (Φ_2) and triplet (T) are odd under $Z_2^{}$ and provide

 \blacklozenge ₂ is Z₂ odd, does not get vev

Addition of scalars: Inert Triplet

• Inert Triplet model: SM is extended Z_2 odd with a Y=0, SU(2) Triplet T

$$
T = \frac{1}{2} \begin{pmatrix} T_0 & \sqrt{2}T^+ \\ \sqrt{2}T^- & -T_0 \end{pmatrix} \qquad V = m_h^2 \Phi^\dagger \Phi + m
$$

- We have T_0, T^{\pm} extra Higgs bosons which are degenerated at the tree-level T_0, T^{\pm}
- Breaks by a quantum mass splitting of
- T_0 is dark matter candidate
- can be detected at the LHC $T^{\pm} \rightarrow \pi^{\pm} T_0$

 $\lambda_T^2Tr(T^\dagger T)+\lambda_1|\Phi^\dagger\Phi|^2+\lambda_t(Tr|T^\dagger T|)^2+\lambda_{ht}\Phi^\dagger\Phi Tr(T^\dagger T) \, .$

Z odd, does not get vev

$$
M = (m_{T^{\pm}} - m_{T^0}) \simeq 166 \,\text{MeV}
$$

Cirelli et al.: NPB753 (2006) 178

 $\bullet\,~ T^\pm \rightarrow \pi^\pm T^{}_0~$ predicts displaced pion charged track with ~ cm decay length which

PB, Shilpa Jangid: Eur.Phys.J.C 80 (2020) 8, 715

Addition of scalar makes EW vacuum stable

- Unlike fermions, addition of the scalars make the potential more stable
- The RG-improved effective potential gets contributions from IDM/ITM as

- The effective potential in the SM Higgs direction can be written as $V_{\text{eff}}(h,\mu) \ \simeq \ \lambda_{\text{eff}}(h,\mu)\frac{h^4}{4}, \quad \text{with } h \gg v \, ,$
- $\bullet~$ The $\lambda_{\rm eff}$ gets positive contributions from extra scalars which $\,$ counters the negative effect of the top quark

$$
\lambda_{\text{eff}}\left(h,\mu\right) \simeq \underbrace{\lambda_{h}\left(\mu\right)}_{\text{tree-level}} + \underbrace{\frac{1}{16\pi^{2}} \sum_{\substack{i=W^{\pm},Z,t, \\ h,G^{\pm},G^0}} n_{i}\kappa_{i}^{2} \left[\log \frac{\kappa_{i}h^{2}}{\mu^{2}} - c_{i}\right] + \frac{1}{16\pi^{2}} \sum_{i=H,A,H^{\pm}} n_{i}\kappa_{i}^{2} \left[\log \frac{\kappa_{i}h^{2}}{\mu^{2}} - c_{i}\right]}_{\text{Contribution from IDM/ITM}}
$$

Contribution from SM

 $V_{\text{eff}} = V_0 + V_1^{\text{SM}} + V_1^{\text{IDM/ITM}}$

PB, Shilpa Jangid: Eur.Phys.J.C 80 (2020) 8, 715

• Higher λ_i are constrained from perturbativity scalar to stabilise the potential

$$
\beta_{\lambda_1}^{\text{IDM}} = \frac{1}{16\pi^2} \left[2\lambda_3^2 + 2\lambda_3 \lambda_4 + \lambda_4^2 + 4\lambda_5^2 \right]
$$

$$
\beta_{\lambda_1}^{\text{ITM}} = \frac{1}{16\pi^2} \left[8\lambda_{ht}^2 \right].
$$

Addition of scalar makes EW vacuum stable • At one-loop $\lambda_h = \lambda_1$ gets contributions from IDM/ITM and stabilise the vacuum 0.04 $\sim \lambda_{\text{ID}} - \lambda_{\text{IT}}$ $- \lambda_{ID} - \lambda_{IT}$ 0.03 0.03 $\lambda_{i \neq 1} = 0.010$ *d*_{\vec{x}} $\begin{cases} 0.02 \\ 0.01 \end{cases}$ $\lambda_{i \neq 1} = 0.060$ 0.02 $\lambda_{\tt h}$ 0.01 0.00 0.00 -0.01 -0.01 -0.02 -0.02 Mostly in the stable 20 10 15 15 10 20 5 $\log_{10} \mu$ [GeV] $\log_{10} \mu$ [GeV] regions With $\lambda_i^{\vphantom{\dagger}}(\,\uparrow\,)$ stability ($\,\uparrow\,$) $\left(\mathrm{a}\right)$ (b) 182 182 0.04 $- \lambda_{ID} - \lambda_{IT}$ $\sim \lambda_{ID} - \lambda_{IT}$ 180 180 0.03 0.05 $\lambda_{i \neq 1} = 0.068$ 0.02 178 178 $GeV]$ $\lambda_{\tt h}$ $\lambda_{\tt h}$ 0.00 0.01 176 Metastable 0.00 \mathbf{M}_t [$\lambda_{i \neq 1} = 0.100$ 174 174 -0.05 -0.01 172 172 -0.02 -0.10 Stable Stable -5 10 15 20 5 10 15 20 170 170

 (c)

 $\log_{10} \mu$ [GeV]

 (d)

 $\log_{10} \mu$ [GeV]

• Models with Type-I, III Seesaw fermions are severely constraints and need extra

Type-I →**PB, Shilpa Jangid, Bhupal Dev, Arjun Kumar: JHEP 08 (2020) 154 Type-III** →**PB, Shilpa Jangid, Manimal Mitra: JHEP 02 (2021) 075**

Is there a bound from perturbativity ?

and often hits the perturbativity bounds

 $|\lambda_i| \ \leq \ 4\pi$

• The two-loop beta functions gets more positive contributions than one-loop Perturbativity bound on quartic couplings

• For inert-doublet scenario we receive perturbativity bounds for all the

quadratic couplings

$$
,\qquad |g_j|\ \leq\ 4\pi,
$$

PB, Shilpa Jangid: EJC 80 (2020) 8, 715

Type-I →**PB, Shilpa Jangid, Bhupal Dev, Arjun Kumar: JHEP 08 (2020) 154 Type-III** →**PB, Shilpa Jangid, Manimal Mitra: JHEP 02 (2021) 075**

- For inert triplet scenario there is only one portal coupling λ_{ht} , which also gets nonperturbative for certain unutial values of the couplings 50
- Thus larger Higgs quartic coupling g $\frac{2}{9}$ $_{30}$ vacuum stability but are constrained $\frac{1}{2}$
there perturbativity there perturbativity

Perturbativity bound on quartic couplings

Type-I →**PB, Shilpa Jangid, Bhupal Dev, Arjun Kumar: JHEP 08 (2020) 154 Type-III** →**PB, Shilpa Jangid, Manimal Mitra: JHEP 02 (2021) 075**

Has these scalars other motivation ?

First order Phase Transition

- Electroweak baryogengesis needs first order phase transition
- If Standard Model electroweak Phase transition is first order then the Higgs mass should have been $\lesssim 50\,{\rm GeV}$
- The observed Higgs mass is around 125 GeV
- So there is a need of extra scalar to explain this
- A scalar dark matter is a suitable candidate

Possibility of first order phase transition

- At higher temperature SM potential looks like $V(\Phi, T) = D(T^2 - T_0^2)\Phi^2 + \lambda \Phi^4$
- These causes second order phase transition (SOPT)
- However, if there is one negative cubic term then you can get a first order phase transition (FOPT) $V(\Phi, T) = D(T^2 - T_0^2)\Phi^2 + \lambda \Phi^4 (-ET\Phi^3)$

SM and the possibility of FOPT

- In SM the cubic term is $E \sim \frac{2M_W^3 + M_Z^3}{4\pi r^3} \sim 0.01$
- Which leads to $\lambda \sim 2E \sim 0.02 \implies m_h \sim 49.2 \, \text{GeV}$
- However, observed Higgs Boson mass gives $m_h = \sqrt{a\lambda}v = 125.5$ GeV $\implies \lambda \sim 0.13$
- Standard Model phase transition is a smooth cross-over

M.~Gogberashvili, Adv. High Energy Phys. (2018), 4653202

Inert Singlet and triplet extension

• We can add a Z_2 -odd SM gauge singlet via

 $V = -\mu^2 H^{\dagger} H + m_S^2 S^* S + \lambda_1 |H^{\dagger} H|^2 + \lambda_s |S^* S|^2 + \lambda_{hs} (H^{\dagger} H)(S^* S).$

- Here S can serve as dark matter candidate
-

 $V = -\mu^2 H^{\dagger} H + m_T^2 Tr(T^{\dagger} T) + \lambda_1 |H^{\dagger} H|^2 + \lambda_t (Tr|T^{\dagger} T|)^2 + \lambda_{ht} H^{\dagger} H Tr(T^{\dagger} T),$

$$
T = \tfrac{1}{2} \begin{pmatrix} T_0 & \sqrt{} \\ \sqrt{2}T^- & \end{pmatrix}
$$

• Similarly we can extended SM with $Z_2-{\rm odd}, {\rm Y=0, SU(2)}$ triplet T

-
- $\begin{pmatrix} \sqrt{2}T^+ \ -T_0 \end{pmatrix}$

Thermal potentials • The one-loop daisy improved finite temperature effective potential can be written $V_{\text{eff}}(\phi, T) = V_0(\phi) + V_1(\phi, 0) + \Delta V_1(\phi, T) + \Delta V_{\text{daisy/ring}}(\phi, T).$ • The field dependent masses are dependent on the corresponding Higgs portal

- as
- couplings

$$
M_S^2(\phi) = m_S^2 + \frac{\lambda_{hs}}{2} \phi^2.
$$

Singlet Triplet

- Addition of scalars make electroweak vacuum more stable
- Inert extensions provide the dark matter
- Possible FOPT can give rise to EW-baryogenesis and Gravitational wave

$$
M_{T_0}^2(\phi) = m_T^2 + \frac{\lambda_{ht}}{2} \phi^2,
$$

$$
M_{T\pm}^2(\phi) = m_T^2 + \frac{\lambda_{ht}}{2} \phi^2.
$$

Thermal potentials

• The effective potential can be written as

Singlet Triplet

$$
T_1^2 = \frac{2\lambda_{T_1}(\lambda_{hs}\mu_{T_1}^2 + 2\lambda_{T_1}m_S^2)}{\lambda_{hs}\left((\frac{\lambda_{hs}}{6} + \frac{y_t^2}{2})\lambda_{T_1} - \frac{\lambda_{hs}^3}{64\pi^2} - \frac{2\lambda_{T_1}^2}{3\lambda_{hs}}(\lambda_{hs} + 2\lambda_s)\right)},
$$

$$
T_2^2 = \frac{1}{2\alpha}(\Lambda^2(T2) + \sqrt{\Lambda^4(T2) - 16\alpha\mu_{T2}^4}),
$$

$$
\alpha = \left(\frac{\lambda_{hs}}{6} + \frac{y_t^2}{2}\right)^2 - \frac{1}{24\pi^2} \lambda_{hs}^2 \left(\lambda_{hs} + 2\lambda_s\right),
$$

$$
\Lambda^2(T) = \frac{1}{4\pi^2} \lambda_{hs}^2 m_S^2 + 4\left(\frac{\lambda_{hs}}{6} + \frac{y_t^2}{2}\right) \mu_T^2.
$$

• For first order phase transition we look for regions $T_1 = T_2$

 $V(\phi) = A(T)\phi^{2} + B(T)\phi^{4} + C(T)(\phi^{2} + K^{2}(T))^{\frac{3}{2}}$

$$
T_1^2 = \frac{6144\pi^2\lambda_{T_1}(\lambda_{ht}\mu_{T_1}^2 + 2\lambda_{T_1}m_T^2)}{\lambda_{ht}(3072\pi^2(\frac{\lambda_{ht}}{4} + \frac{y_t^2}{2})\lambda_{T_1} - 27\lambda_{ht}^3 - \frac{2048\pi^2\lambda_{T_1}^2}{\lambda_{ht}}(2\lambda_{ht} + \frac{y_t^2}{2})}
$$

$$
T_2^2 = \frac{1}{\alpha}(\Lambda^2(T_2) + \sqrt{\Lambda^4(T_2) - 65536\alpha\mu_{T_2}^4}),
$$

$$
\alpha = \left(\frac{\lambda_{ht}}{4} + \frac{y_t^2}{2}\right) - \frac{3}{128\pi^2} \lambda_{ht}^2 \left(2\lambda_{ht} + 4\lambda_t\right),
$$

$$
\Lambda^2(T) = 9\lambda_{ht}^2 m_T^2 + 256\left(\frac{\lambda_{ht}}{4} + \frac{y_t^2}{2}\right) \mu_T^2.
$$

FOPT with ISM and ITM

• $T_1 = T_2$ lines for ISM and ITM are shown by the coloured lines

to have SFOPT

• A variation of soft mass parameter shows higher mass needs larger Higgs portal couplings for FOPT $\frac{1+\epsilon}{T}$ > 1 demands: For the singlet: $m_S \geq 350$ GeV $\implies \lambda_{\text{hs}} \geq 3.0$ and for the triplet: $m_T \geq 400 \text{ GeV} \implies \lambda_{\text{ht}} \geq 2.6$ $φ_+(T_c)$ T_c

FOPT with ISM and ITM

Constraints from one-loop perturbativity

• The one-loop beta functions take the following form for ISM and ITM

$$
\begin{aligned}\n&\hat{\beta}_{\lambda_1} = \beta_{\lambda_1}^{\text{SM}} + \Delta \beta_{\lambda_1}^{\text{ISM/TM}} \text{ , where } \beta_{\lambda_1}^{\text{ISM}} = 4\lambda_{hs}^2, \quad \beta_{\lambda_1}^{\text{ITM}} = 8\lambda_{ht}^2 \\
&\hat{\beta}_{\lambda_t} = \frac{1}{16\pi^2} [-24g_2^2 \lambda_t + 88\lambda_t^2 + 8\lambda_{ht}^2 + \frac{3}{2}g_2^4] \\
&\hat{\beta}_{\lambda_{ht}} = \frac{1}{16\pi^2} [-\frac{9}{10}g_1^2 \lambda_{ht} - \frac{33}{2}g_2^2 \lambda_{ht} + 12\lambda \lambda_{ht} + 16\lambda_{ht}^2 + 24\lambda_{ht} \lambda_t + 6y_t^2 \lambda_{ht} + \frac{3}{4}g_2^4] \\
&\hat{\beta}_{\lambda_s} = \frac{1}{16\pi^2} [20\lambda_s^2 + 8\lambda_{hs}^2] \\
&\hat{\beta}_{\lambda_{hs}} = \frac{1}{16\pi^2} [\lambda_{hs} (12\lambda - \frac{9}{2}g_2^2 + 18y_t^2 + 8\lambda_{hs} + 8\lambda_s - \frac{9}{10}g_1^2)]\n\end{aligned}
$$

Constraints from one-loop perturbativity

- Depending on the perturbative scale the matrix of the matrix of the matrix \blacksquare values of $\lambda_{hs/ht}$ are restricted at the EW scale
- For a lower perturbative scale (Λ) , a higher value of the Higgs-portal coupling is allowed
- For more DOF in ITM as compared to are more restricted in the former case
- The change of two-loop perturbativity results differ due to some negative contributions in the two-loop beta functions

One-loop perturbativity limit

- For the $\lambda_{hs/ht} = \lambda_{hs/ht}^{max}$ for each scale vs the SM Higgs mass for
- Only for singlet with $\Lambda = 10^4\,\text{GeV}$, the SM Higgs mass can reach 125.5 GeV $\Lambda = 10^4$ GeV

FOPT with ISM and ITM

 $\lambda_{hshht} = \lambda_{hshht}^{max}$ for each scale vs the SM Higgs mass $\:text{for } m_{s/T} = 0, \lambda_{s/t} = 0$

- is not possible $\Lambda = 10^4$ GeV
- Two-loop results may give a breather

FOPT with ISM and ITM

 m_h [GeV]

• Except for the singlet with $\Lambda=10^4\,{\rm GeV}$ and a SM Higgs mass of 125.5 GeV, FOPT

Constraints from two-loop perturbativity

- Unlike one-loop, here λ_1 hits Landau pole before
- However, the growth of λ_1 slows down due to negative contributions proportional to $\lambda_1^3, \lambda_1 \lambda_{ht}^2$, *λ*³ *ht*
- Similar negative contributions can be observed for the singlet case also, which are proportional to *λ*3 ¹ , *λ*1*λ*² *hs* λ_h^3 *hs*
- However for Planck scale perturbativity, the singlet has almost double allowed value compared to the triplet
- This is due to additional positive contributions of the type , which are absent in case of the singlet g_2^4 $\frac{4}{2}\lambda_{ht}$ $, s_2^2$ $\frac{2}{2}\lambda_{ht}$

Two-loop perturbativity limit

Higgs mass FOPT with Planck scale perturbativity

• Singlet and triplet masses are carried for 500, 840, 1000 GeV and 300. 200,100 GeV, respectively

Higgs mass FOPT with Planck scale perturbativity

• For Planck scale perturbativity of $\lambda_{hsht} = 4.0(1.95)$

• For FOPT with correct Higgs mass: $m_s \leq 840, m_T \leq 193$ GeV

Two-loop beta function for ITM

$$
\begin{split} \beta_{\lambda=\lambda_{1}}&=\frac{1}{16\pi^{2}}\left[\frac{27}{200}g_{1}^{4}+\frac{9}{20}g_{1}^{2}g_{2}^{4}+\frac{9}{8}g_{2}^{4}-\frac{9}{5}g_{1}^{2}\lambda_{1}-9g_{2}^{2}\lambda_{1}+24\lambda_{1}^{2}+8\lambda_{n}^{2}+12\lambda_{1}\text{Tr}\Big(Y_{a}Y_{d}^{4}\Big)+4\lambda_{1}\text{Tr}\Big(Y_{a}Y_{d}^{4}\Big)\\ &+12\lambda_{1}\text{Tr}\Big(Y_{a}Y_{a}^{1}\big)-6\text{Tr}\Big(Y_{a}Y_{a}^{1}Y_{a}Y_{d}^{4}\Big)-2\text{Tr}\Big(Y_{a}Y_{a}^{1}Y_{a}Y_{d}^{4}\Big)-6\text{Tr}\Big(Y_{a}Y_{a}^{1}Y_{a}Y_{d}^{4}\Big)\right]\\ &+\frac{1}{(16\pi^{2})^{2}}\left[-\frac{3}{16}g_{10}^{4}-\frac{1677}{260}g_{1}^{6}-\frac{1677}{400}g_{1}^{6}g_{2}^{2}-\frac{317}{80}g_{1}^{6}g_{2}^{4}+\frac{277}{16}g_{2}^{6}+\frac{1887}{200}g_{1}^{4}\lambda_{1}+\frac{117}{20}g_{1}^{2}g_{2}^{2}\lambda_{1}-\frac{29}{8}g_{2}^{4}\lambda_{1}\\ &+\frac{1}{(16\pi^{2})^{2}}\left[-\frac{3}{16}g_{10}^{4}-\frac{26}{16}g_{1}^{4}\lambda_{10}+\frac{26}{16}g_{1}^{4}\lambda_{2}-28\lambda_{1}X_{d}-180\lambda_{1}+\frac{72}{16}g_{1}^{4}\lambda_{2}-28\lambda_{1}X_{d}-180\lambda_{1}+\frac{72}{16}g_{1}^{4}\lambda_{2}-28\lambda_{1}X_{d}-180\lambda_{1}+\frac{72}{16}g_{1}^{4}\lambda_{1}+\frac{11}{16}g_{1}^{2}\lambda_{2}-24\lambda_{1}X_{d}-180\lambda_{1}+\frac{72}{16}g_{1}^{2}\lambda_{1}+\frac{11}{16
$$

Two-loop beta function for ISM

$$
\begin{split} \beta_\lambda^{(1)}=&\frac{1}{16\pi^2}\bigg[\frac{27}{200}g_1^4+\frac{9}{20}g_1^2g_2^2+\frac{9}{8}g_2^4-\frac{9}{5}g_1^2\lambda_1-9g_2^2\lambda_1+24\lambda_1^2+4\lambda_{hs}^2+12\lambda_1\text{Tr}\Big(Y_dY_d^\dagger\Big)+4\lambda_1\text{Tr}\Big(Y_eY_e^\dagger\Big)\\ &\qquad \qquad +12\lambda_1\text{Tr}\Big(Y_uY_u^\dagger\Big)-6\text{Tr}\Big(Y_dY_d^\dagger Y_dY_d^\dagger\Big)-2\text{Tr}\Big(Y_eY_e^\dagger Y_eY_e^\dagger\Big)-6\text{Tr}\Big(Y_uY_u^\dagger Y_uY_u^\dagger\Big)\bigg]\\ &\qquad \qquad +\frac{1}{(16\pi^2)^2}\bigg[-\frac{3411}{200}g_1^6-\frac{1677}{400}g_1^4g_2^2-\frac{289}{80}g_1^2g_2^4+\frac{305}{16}g_2^6+\frac{1887}{200}g_1^4\lambda_1+\frac{117}{20}g_1^2g_2^2\lambda_1\\ &\qquad \qquad +\frac{1}{(16\pi^2)^2}\bigg[-\frac{3411}{400}g_1^6\lambda_0^6-\frac{1677}{400}g_1^4g_2^2-\frac{289}{80}g_1^2g_2^4+\frac{305}{16}g_2^6+\frac{1887}{200}g_1^4\lambda_1+\frac{117}{20}g_1^2g_2^2\lambda_1\\ &\qquad \qquad +\frac{1}{20}g_1^2g_2^2\lambda_1\\ &\qquad \qquad +\frac{1}{4}\big(32\big(-3\lambda_{hs}+5g_2^2-32\big(3\lambda_{1}+ \lambda_{hs}^2-96\lambda_{hs}^2-6g_1^2\big)\lambda_{hs}+\frac{17}{4}g_1^2\lambda_{hs}+6\lambda_{hs}^2-4\lambda_{hs}^2-4\lambda_{hs}^2-16\lambda_{hs}^2+6\lambda_{hs}^2-4\lambda_{hs}^2+6\lambda_{hs}^2-4
$$

$$
(10\pi^2)^2 \left[2000 \quad 400 \quad 80 \quad 16 \quad 200 \quad 20
$$

\n
$$
- \frac{73}{8}g_2^4\lambda_1 + \frac{108}{5}g_1^2\lambda_1^2 + 108g_2^2\lambda_1^2 - 312\lambda_1^3 - 40\lambda_1\lambda_{hs}^2 - 32\lambda_{hs}^3
$$

\n
$$
+ \frac{1}{20} \Big(-5\Big(64\lambda_1\Big(-5g_3^2 + 9\lambda_1\Big) - 90g_2^2\lambda_1 + 9g_2^4\Big) + 9g_1^4 + g_1^2\Big(50\lambda_1 + 54g_2^2\Big)\Big) \text{Tr}\Big(Y_d
$$

\n
$$
- \frac{3}{20}\Big(15g_1^4 - 2g_1^2\Big(11g_2^2 + 25\lambda_1\Big) + 5\Big(-10g_2^2\lambda_1 + 64\lambda_1^2 + g_2^4\Big)\Big) \text{Tr}\Big(Y_eY_e^{\dagger}\Big) - \frac{171}{100}g_1^4\text{Tr}\Big(Y_uY_u^{\dagger}\Big) - \frac{9}{4}g_2^4\text{Tr}\Big(Y_uY_u^{\dagger}\Big) + \frac{17}{2}g_1^2\lambda_1\text{Tr}\Big(Y_uY_u^{\dagger}\Big) + \frac{45}{2}g_2^2\lambda_1\text{Tr}\Big(Y_uY_u^{\dagger}\Big)
$$

\n
$$
+ 80g_3^2\lambda_1\text{Tr}\Big(Y_uY_u^{\dagger}\Big) - 144\lambda_1^2\text{Tr}\Big(Y_uY_u^{\dagger}\Big) + \frac{4}{5}g_1^2\text{Tr}\Big(Y_dY_d^{\dagger}Y_dY_d^{\dagger}\Big) - 32g_3^2\text{Tr}\Big(Y_dY_d^{\dagger}Y_dY_d^{\dagger}\Big)
$$

\n
$$
- 3\lambda_1\text{Tr}\Big(Y_dY_d^{\dagger}Y_dY_d^{\dagger}\Big) - 42\lambda\text{Tr}\Big(Y_dY_u^{\dagger}Y_uY_d^{\dagger}\Big) - \frac{12}{5}g_1^2\text{Tr}\Big(Y_eY
$$

 $\left\langle {}_{e}Y_{e}^{\dagger}\right\rangle$ $Y_d Y_d^\dagger Y_d Y_d^\dagger \Big)$

Correction of two-loop potential

- The one-loop thermal potential has an accuracy of $\mathscr{O}(g^3)$ but an accuracy of with two-loop beat function needs a two-loop thermal potential (g^3) (g^4)
- One-loop effects the upper bounds on the soft masses $m_S \le 909, m_T \le 310 \text{ GeV}$

• With two-loop effects the upper bounds on the soft masses $m_S \lesssim 909$, $m_T \lesssim 320$ GeV

• Gravitonal wave frequencies detectable at LISA and BBO are possible

 v_n/T_n

 $1.16\,$

 $1.10\,$

Gravitational waves

FOPT with inert Doublet

Where $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$

Benincasa, Rose, Kannike and Marzola: *JCAP* 12 (2022) 025

FOPT with inert Doublet

- •The points are rescale with DM under abundance I.e. Ω_{DM} Ω*planck*
- •However, with current LZWS2022+LZWS2024 bounds, these points may be further ruled out [arXiv:2410.17036](https://arxiv.org/abs/2410.17036) [hep-ex]

 10°

•Models with a charged Higgs like IDM and ITM will further get stringent bounds from *h* → *γγ* measurement

Benincasa, Rose, Kannike and Marzola: *JCAP* 12 (2022) 025

h → *γγ* constraints on IDM and ITM

• $\mu_{\gamma\gamma} = 1.04^{+0.10}_{-0.09}$ from ATLAS JHEP 07 (2023) 088

Further constraints

- Sommerfeld enhancement requires more than TeV masses for correct DM relic for ITM
- •Similar enhancement will change the parameter shape for IDM .. work in progress
- ISM also suffers heavily from the direct DM bounds
- Cheng-Wei Chiang, Bo-Qiang Lu: JHEP07(2020)082 Cheng-Wei Chiang, Da Huang, Bo-Qiang Lu: JCAP01(2021)035
- There are many other studies on non-inert scalar extensions addressing recent collider constraints

Purushottam, Tathagata, Shubhajit, Dorival, Kaladharan, Wu, Thomas, ..

Conclusions

- Extra scalar are highly motivated for the stability of the Electroweak vacuum
- It can provide the much needed dark matter
- Models with Seesaw with relatively large Yukawa have potential problem with stability, which can be restored via addition of scalars
- FOPT needs lower mass and larger Higgs portal couplings
- For inert scenarios this corresponds to under abundant DM region
- HESS and FermiLat add further restrictions to low mass values
- Recent LZ bounds constraint the Higgs portal coupling to 5×10^{-3} for $m_{DM} < 400$ GeV
- Models with extra charged scalar is now more constrained from *h* → *γγ*

