

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Engineering electron-phonon interactions in noble metals with nanoscale interfaces

Shreya Kumbhakar

IISc, Bangalore

Acknowledgemen

Dr. Tuhin K Maji

Banashree Debnath

Dr. BinitaTongbram

Prof. Anshu Pandey

Dr. T Phanindra Sai

Prof. Arindam Ghosh

Department of Physics, IISc Bangalore Solid State Structural Chemistry Unit (SSCU), IISc Bangalore

Modulating electron-phonon interaction in metals

Aligning states in a quantum well with fermi level

Phys. Rev. Lett. **114**, 047002

Interfacial el-ph interaction

Nat Commun 8, 214 (2017)

Achieving low-frequency phonons with surfaces

50 nm Sn nanowires *Phys. Rev. B* 99, 064512

Optically driving the lattice

Phys. Rev. B 95, 024304

Electron scattering from surfaces

Polycrystalline Au nanoparticles

ACS Photonics 2021, 8, 3, 752–757

Stress

Proc. Natl. Acad. Sci. 2014, 111, 8712– 8716

Our approach

Dense network of nanoscale crystalline interfaces

Metal nanoparticles embedded inside a metallic matrix

Challenge

Not achieved: Bottom-up assembly of 'Metal' with nanoparticles

Electron tunneling effects: Coulomb blockade, Variable Range hopping, Activated transport

Nanoparticle

Surface Capping Agents-Ligands

Tunelling gap

Assembly of nanoparticles

Our approach: A bi-metallic nano-hybrid

Near identical lattice constants of Au and Ag : 4.078 Å and 4.085 Å

Chemical route – The process flow Ag(NP) – Au hybrid

Temperature-dependance of electrical resistivity

Resistivity – interface correlation

 ρ_0 : Resistivity at base temperature ~6 K

The Mott-Ioffe-Regel (MIR) Limit and 'bad metals'

MIR Limit:
$$k_F l = 1$$
 $\rho_{MIR}^{Au} = 24.6 \ \mu\Omega$ -m

$$\rho_{MIR} = \frac{3\pi^2\hbar}{e^2k_F(k_Fl)} = \frac{3\pi^2\hbar}{e^2k_F}$$

Mean-free path approaching inter-atomic distance

Gunnarsson, Calandra, Han Rev Mod Phys 2003 75, 1085

Resistivity saturation The Mott-Ioffe-Regel (MIR) Limit and 'bad metals'

Resistivity saturation

The Mott-Ioffe-Regel (MIR) Limit and 'bad metals'

Point-contact spectroscopy – A primer

Point-contact spectroscopy – A primer

Point-contact spectroscopy – A primer

Point contact spectroscopy of nanohybrid films

Electron-phonon coupling in metallic nanohybrid films

▶ **Universality:** $\rho_{300} \propto \lambda$, Electron-phonon coupling dominates high *T* resistivity in a wide class of materials

- \Box Significant increase in with F
- <u>arXiv:2405.14684v1</u>

Role of nanoscale interfaces

Charge doping from difference in onsite potential

Shift in Au 4f peak in XPS Charge doping Variation of EPC with interfacial charge transfer

Possible role of Coulomb interactions

Role of nanoscale interfaces: Theoretical insight

Charge doping from difference in onsite potential

 δn

Contributions to the electron-phonon matrix elements from Coulomb interactions of electrons to interfacial charge

 $g_{ce} \propto V_0(\delta n)$

 V_0 : Inter-site Coulomb repulsion

Charge distribution in a square lattice: 4×4 Ag sites surrounded by 8×8 Au sites

- arXiv:2405.14684v1
- Details coming out in another paper soon

Shinjan Mandal

Manish Jain

H R Krishnamurthy

IISc, Bangalore ICTS, Bangalore

Summary

- Bottom-up metal-nanocomposite
- Unconventional metallic transport: Bad metals
- Buried interfaces of Ag and Au significantly enhance the electron-phonon coupling in noble metals, which have intrinsically the weakest coupling

Questions?

- Origin of high values of EPC
- Existence of metallic state in strong EPC regime
- No crossover to Anderson insulator even for strong disorder
- Possible coexistence of localized and itinerant electrons?

Stay tuned for **Arindam's talk on 26th July** for more details and results!

Thank you for your attention

EXTRA SLIDES

Scaling of electron-phonon scattering rate

Ignore any non-phonon temperature-dependent scattering

SK, TK Maji, .. A. Ghosh (<u>arXiv:2405.14684v1</u>)

Role of nanoscale interfaces

Structure

Motivation

Not achieved: Bottom-up assembly of 'Metal' with nanoparticles <u>Electron tunneling effects</u>: Coulomb blockade, Variable Range hopping, Activated transport

Nanoparticle

Assembly of nanoparticles

Motivation

Not achieved: Bottom-up assembly of 'Metal' with nanoparticles <u>Electron tunneling effects</u>: Coulomb blockade, Variable Range hopping, Activated transport

Tie et al. PRB 89, 155117 (2014)

A bi-metallic nano-hybrid

Structure

Resistivity – interface correlation

$$R = \frac{h}{e^2} \frac{(1-T_N)}{MT_N}$$
, $T_N = \frac{\lambda}{L+\lambda}$, M : no. of modes $= \frac{L^2}{\lambda_H^2}$

Mott-loffe-Regel limit!

Resistivity saturation

The Mott-Ioffe-Regel (MIR) Limit and 'bad metals'

MIR Limit:
$$k_F l = 1$$
 $\rho_{MIR}^{Au} = 24.6 \ \mu\Omega$ -m

$$\rho_{MIR} = \frac{3\pi^2\hbar}{e^2k_F(k_Fl)} = \frac{3\pi^2\hbar}{e^2k_F}$$

Mean-free path approaching inter-atomic distance

Gunnarsson, Calandra, Han Rev Mod Phys 2003 75, 1085

Metal Nanoparticles-A primer:

The Mott-Ioffe-Regel (MIR) Limit and 'bad metals'

Chemical route – The process flow Ag(NP) – Au hybrid

Film for transport measurements

Ligand removal and cross-linking

Clustering

Resistivity saturation

The Mott-Ioffe-Regel (MIR) Limit and 'bad metals'

Bound in the residual resistivity (disorder) in the range $F \sim 0.4 - 0.8$ towards the MIR limit