Algebraic construction of optimal recovery for arbitrary quantum noise channels

Debjyoti Biswas, Prabha Mandayam On arXiv soon January 21, 2025

■ Any unwanted changes in the system that appears due to system environment interaction ⇒ Noise ⇒ Loss of coherence.

¹M. A. Nielsen, I. L. Chuang Quantum Computation and Quantum Information, Cambridge University Press.

- Any unwanted changes in the system that appears due to system environment interaction ⇒ Noise ⇒ Loss of coherence.
- The evolution of a system **under such interaction** is represented by a Completely Positive and Trace Preserving map A^1 .

$$\mathcal{A}(
ho) = \mathsf{Tr}_{\mathrm{e}}[\mathcal{V}_{\mathcal{A}}(
ho\otimes
ho_{\mathrm{e}})\mathcal{V}_{\mathcal{A}}^{\dagger}] = \sum_{i} \mathcal{A}_{i}
ho \mathcal{A}_{i}^{\dagger}$$

¹M. A. Nielsen, I. L. Chuang Quantum Computation and Quantum Information, Cambridge University Press.

- Any unwanted changes in the system that appears due to system environment interaction ⇒ Noise ⇒ Loss of coherence.
- The evolution of a system **under such interaction** is represented by a Completely Positive and Trace Preserving map A^1 .

$$\mathcal{A}(
ho) = \mathsf{Tr}_{\mathbf{e}}[\mathcal{V}_{\mathcal{A}}(
ho\otimes
ho_{\mathbf{e}})\mathcal{V}_{\mathcal{A}}^{\dagger}] = \sum_{i} \mathcal{A}_{i}
ho\mathcal{A}_{i}^{\dagger}$$

$$\begin{array}{c} \rho \\ \rho_{\mathbf{e}} \end{array} \begin{array}{c} \mathcal{V}_{\mathcal{A}} \end{array} \begin{array}{c} \mathcal{E}(\rho) \\ \mathcal{V}_{\mathcal{A}} \end{array} \end{array}$$

One of the dominant noise processes in several physical realization of qubits (Superconducting qubits) is the Amplitude damping (AD) noise.

¹M. A. Nielsen, I. L. Chuang Quantum Computation and Quantum Information, Cambridge University Press.

- Any unwanted changes in the system that appears due to system environment interaction ⇒ Noise ⇒ Loss of coherence.
- The evolution of a system **under such interaction** is represented by a Completely Positive and Trace Preserving map A^1 .

$$\mathcal{A}(
ho) = \mathsf{Tr}_{\mathrm{e}}[\mathcal{V}_{\mathcal{A}}(
ho\otimes
ho_{\mathrm{e}})\mathcal{V}_{\mathcal{A}}^{\dagger}] = \sum_{i} \mathcal{A}_{i}
ho\mathcal{A}_{i}^{\dagger}$$

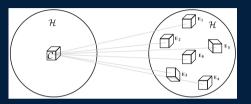
$$\begin{array}{c} \rho \\ \rho_{\mathbf{e}} \end{array} \begin{array}{c} \mathcal{V}_{\mathcal{A}} \end{array} \begin{array}{c} \mathcal{E}(\rho) \\ \mathcal{V}_{\mathcal{A}} \end{array} \end{array}$$

 One of the dominant noise processes in several physical realization of qubits (Superconducting qubits) is the Amplitude damping (AD) noise.

Single qubit AD channel:
$$D_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{pmatrix}, D_1 = \begin{pmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{pmatrix}$$

¹M. A. Nielsen, I. L. Chuang Quantum Computation and Quantum Information, Cambridge University Press.

Quantum error correction: Perfect Error Correction

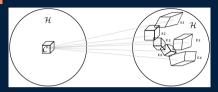


- Knill-Laflame condition: $PA_j^{\dagger}A_jP = \lambda_{ij}P$
- At least five qubits are necessary to correct arbitrary single qubit noise.
 There exists <u>a recovery *R* ~ {*PU*[†]_i}^a.
 </u>

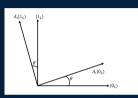
^aM. A. Nielsen, I. L. Chuang Quantum Computation and Quantum Information, Cambridge University Press

- First to detect which qubit get affected by the noise process.
- Apply the recovery accordingly.

Approximate Quantum Error Correction (AQEC)



- Beny- Oreskov condition: $\underbrace{PA_{j}^{\dagger}A_{j}P}_{M} = \lambda_{ij}P + PB_{ij}P.$ (*C. Bény et al. PRL. 104, 120501*)
- The error subspaces are not orthogonal to each other. The unitarity (or deformability) condition gets violated.



For a *t*− error correcting code the deformation ~ ⟨*m*_L|*B*^{mn}_j|*n*_L⟩ should be small ~ *ϵ*^{t+1}. (*ϵ* is the noise strength)
 *F*² = ⟨ψ|*R* ∘ *E*(|ψ⟩⟨ψ|)||ψ⟩ ~ 1 − *O*(*ϵ*^{t+1})

What is the recovery ?

Example: [4,1]-Leung code ^a and AD noise

^aDebbie Leung *et al.* Phys. Rev. A 56, 2567 (1997)

$$|0_L
angle=rac{1}{\sqrt{2}}(|0000
angle+|1111
angle) \qquad |1_L
angle=rac{1}{\sqrt{2}}(|0011
angle+|1100
angle)$$

• Stabilizer generator : $\langle XXXX, IIZZ, ZZII \rangle$.

These operators are not sufficient to detect which qubit has faced the damping².

Errors	ZZII	IIZZ
D ₁₀₀₀	-1	+1
D_{0100}	-1	+1
D_{0010}	+1	-1
D ₀₀₀₁	+1	-1

Table: Syndrome Table 1

²Andrew Fletcher *et al.* arXiv:0710.1052v1 (2007)

Example: [4,1]-Leung code ^a and AD noise

^aDebbie Leung *et al.* Phys. Rev. A 56, 2567 (1997)

$$|0_L
angle = rac{1}{\sqrt{2}}(|0000
angle + |1111
angle) \qquad |1_L
angle = rac{1}{\sqrt{2}}(|0011
angle + |1100
angle)$$

Stabilizer generator : (XXXX, IIZZ, ZZII).

These operators are not sufficient to detect which qubit has faced the damping².

Errors	ZZII	IIZZ
D ₁₀₀₀	-1	+1
D_{0100}	-1	+1
D_{0010}	+1	-1
D ₀₀₀₁	+1	-1

Table: Syndrome Table 1

Errors	ZZII	IIZZ	ZIII	IIIZ
D ₁₀₀₀	-1	+1	-1	+1
D_{0100}	-1	+1	+1	+1
D_{0010}	+1	-1	+1	+1
D ₀₀₀₁	+1	-1	+1	-1

Table: Syndrome Table 2.

²Andrew Fletcher et al. arXiv:0710.1052v1 (2007)

The Algorithm

Given the actual noise operators $\{A_k\}$

$$PA_{k}^{\dagger}A_{l}P = \lambda_{kl}P + PB_{kl}P \longrightarrow \langle m_{L}|E_{k}^{\dagger}E_{l}|n_{L}\rangle = \delta_{kl}\delta_{mn}\beta_{k}^{m}$$
 (1)

- We start with the choice $E_1 = A_1$.
- Construct $E_2 = A_2 U_1 P_1 U_1^{\dagger} A_2 \leftarrow U_1 \leftarrow E_1 P = U_1 \sqrt{P E_1^{\dagger} E_1 P}$. P_1 is projector onto the non-null space of $\sqrt{P E_1^{\dagger} E_1 P}$.
- **By** construction $PE_1^{\dagger}E_2P = 0$.
- We generate the k^{th} operator $E_k = A_k \sum_{i=1}^{k-1} U_i P_i U_i^{\dagger} A_k$.

The operator P_i is the projector onto the non-null space of E_iP , i.e, a space spanned by the eigenvectors of E_iP with non-zero eigenvalues. U_i s are the polar decomposition unitary of E_iP .

$$U_i^{\dagger} U_i = \delta_{ij} \implies \sum_i E_i^{\dagger} E_i \leq I .$$

The Algorithm

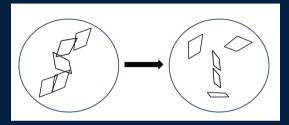
Given the actual noise operators $\{A_k\}$

$$PA_{k}^{\dagger}A_{l}P = \lambda_{kl}P + PB_{kl}P \longrightarrow \langle m_{L}|E_{k}^{\dagger}E_{l}|n_{L}\rangle = \delta_{kl}\delta_{mn}\beta_{k}^{m}$$
 (1)

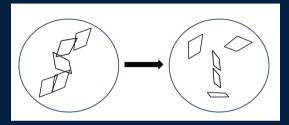
- We start with the choice $E_1 = A_1$.
- Construct $E_2 = A_2 U_1 P_1 U_1^{\dagger} A_2 \leftarrow U_1 \leftarrow E_1 P = U_1 \sqrt{P E_1^{\dagger} E_1 P}$. P_1 is projector onto the non-null space of $\sqrt{P E_1^{\dagger} E_1 P}$.
- **By** construction $PE_1^{\dagger}E_2P = 0$.
- We generate the k^{th} operator $E_k = A_k \sum_{i=1}^{k-1} U_i P_i U_i^{\dagger} A_k$.

The operator P_i is the projector onto the non-null space of E_iP , i.e, a space spanned by the eigenvectors of E_iP with non-zero eigenvalues. U_i s are the polar decomposition unitary of E_iP .

$$\blacksquare U_i^{\dagger} U_i = \delta_{ij} \implies \sum_i E_i^{\dagger} E_i \le I.$$
 Recovery

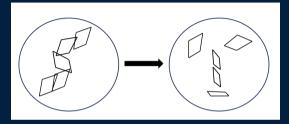


• We have $\langle m_L | E_k^{\dagger} E_l | n_L \rangle = \delta_{kl} \delta_{mn} \beta_k^m$.



• We have $\langle m_L | E_k^{\dagger} E_l | n_L \rangle = \delta_{kl} \delta_{mn} \beta_k^m$.

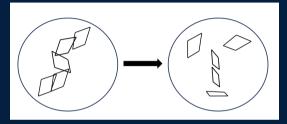
After the orthogonalisation the deformation is still there.



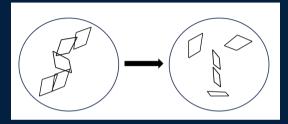
• We have $\langle m_L | E_k^{\dagger} E_l | n_L \rangle = \delta_{kl} \delta_{mn} \beta_k^m$.

After the orthogonalisation the deformation is still there.

• One can easily verify that $PU_k^{\dagger}U_lP = \delta_{kl}P$.



- We have $\langle m_L | E_k^{\dagger} E_l | n_L \rangle = \delta_{kl} \delta_{mn} \beta_k^m$.
- After the orthogonalisation the deformation is still there.
- One can easily verify that $PU_k^{\dagger}U_lP = \delta_{kl}P$.
- We design a recovery $R \sim \{PU_k^{\dagger}\}$



- We have $\langle m_L | E_k^{\dagger} E_l | n_L \rangle = \delta_{kl} \delta_{mn} \beta_k^m$.
- After the orthogonalisation the deformation is still there.
- One can easily verify that $PU_k^{\dagger}U_lP = \delta_{kl}P$.
- We design a recovery $R \sim \{PU_k^{\dagger}\}$

Not optimal.

The aim is to recovery or map these orthogonal subspaces which we have obtained from the channel with Kraus $\{E_i\}$ to the code space.

- The aim is to recovery or map these orthogonal subspaces which we have obtained from the channel with Kraus $\{E_i\}$ to the code space.
- What guarantees that the recovery should correct the actual noise ?.

- The aim is to recovery or map these orthogonal subspaces which we have obtained from the channel with Kraus $\{E_i\}$ to the code space.
- What guarantees that the recovery should correct the actual noise ?.
- Are there any constraints on the operators {*E_i*}s to achieve a recovery through which we can correct the errors {*A_i*}?
- The amount of the overlap between the newly constructed subspaces and the older subspaces ← How close the {*E_i*}s and the {*A_i*}s are on the code space ?

- The aim is to recovery or map these orthogonal subspaces which we have obtained from the channel with Kraus $\{E_i\}$ to the code space.
- What guarantees that the recovery should correct the actual noise ?.
- Are there any constraints on the operators {*E_i*}s to achieve a recovery through which we can correct the errors {*A_i*}?
- The amount of the overlap between the newly constructed subspaces and the older subspaces ← How close the {*E_i*}s and the {*A_i*}s are on the code space ?

$|\langle \psi | \boldsymbol{E}_{i}^{\dagger} \boldsymbol{A}_{i} | \psi \rangle|$

- The aim is to recovery or map these orthogonal subspaces which we have obtained from the channel with Kraus $\{E_i\}$ to the code space.
- What guarantees that the recovery should correct the actual noise ?.
- Are there any constraints on the operators {*E_i*}s to achieve a recovery through which we can correct the errors {*A_i*}?
- The amount of the overlap between the newly constructed subspaces and the older subspaces ← How close the {*E_i*}s and the {*A_i*}s are on the code space ?

 $= |\langle \psi | \boldsymbol{E}_i^{\dagger} \boldsymbol{A}_i | \psi \rangle| \leq \sqrt{\langle \psi | \boldsymbol{E}_i^{\dagger} \boldsymbol{E}_i | \psi \rangle} \sqrt{\langle \psi | \boldsymbol{A}_i^{\dagger} \boldsymbol{A}_i | \psi \rangle}.$

- The aim is to recovery or map these orthogonal subspaces which we have obtained from the channel with Kraus $\{E_i\}$ to the code space.
- What guarantees that the recovery should correct the actual noise ?.
- Are there any constraints on the operators {*E_i*}s to achieve a recovery through which we can correct the errors {*A_i*}?
- The amount of the overlap between the newly constructed subspaces and the older subspaces ← How close the {*E_i*}s and the {*A_i*}s are on the code space ?
- $|\langle \psi | \boldsymbol{E}_i^{\dagger} \boldsymbol{A}_i | \psi \rangle| \leq \sqrt{\langle \psi | \boldsymbol{E}_i^{\dagger} \boldsymbol{E}_i | \psi \rangle} \sqrt{\langle \psi | \boldsymbol{A}_i^{\dagger} \boldsymbol{A}_i | \psi \rangle}.$

 $= E_i |\psi\rangle \& \overline{A_i} |\psi\rangle \text{ are linearly dependent.} \Longrightarrow \\ |\langle \psi | E_i^{\dagger} A_i |\psi\rangle| = \sqrt{\langle \psi | E_i^{\dagger} E_i |\psi\rangle} \sqrt{\langle \psi | A_i^{\dagger} A_i |\psi\rangle}$

This bound is reflected in the fidelity as well.

Recovery for approximate quantum error correction (QEC)

Worst-case fidelity $F_{\min}^2 = \min_{|\psi|\in\mathcal{V}} \langle \psi | \mathcal{R} \circ \mathcal{E}(|\psi\rangle \langle \psi|) | \psi \rangle$

- Through a numerical search (semi-definite programming (SDP)) we can obtain an optimal recovery ³. But it hard to execute the SDP.
- There exists an analytical way to construct a near-optimal ⁴ and universal recovery ⁵ - this recovery is known as the Petz map.

 $\mathcal{R}_{P,\mathcal{E}} \sim \{PE_i^{\dagger}\mathcal{E}(P)^{-1/2}\}$

- Note that for a perfect code $\mathcal{R}_{P,\mathcal{E}} \sim \{\frac{1}{\sqrt{\lambda_{u}}} P E_{i}^{\dagger}\}^{4}$.
- The Petz map is an optimal recovery ⁶ under the measure of entanglement fidelity $(F_{Ent}^2 = \frac{1}{d^2} \sum_{k,l} |\text{Tr}(R_k E_l)|^2),$

³ Fletcher *et al.* IEEE 10.1109/TIT.2008.2006458
 ⁴ Hui Khoon, PM (2010)
 ⁵ Barnum-Knill (2002)
 ⁶ B. Li, Z. Wang, G. Zheng, Liang Jiang arXiv:2410.23622v2

Recovery for approximate quantum error correction (QEC)

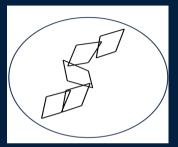
Worst-case fidelity $F_{\min}^2 = \min_{|\psi|\in\mathcal{V}} \langle \psi | \mathcal{R} \circ \mathcal{E}(|\psi\rangle \langle \psi|) | \psi \rangle$

- Through a numerical search (semi-definite programming (SDP)) we can obtain an optimal recovery ³. But it hard to execute the SDP.
- There exists an analytical way to construct a near-optimal ⁴ and universal recovery ⁵ - this recovery is known as the Petz map.

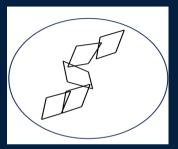
 $\mathcal{R}_{P,\mathcal{E}} \sim \{PE_i^{\dagger}\mathcal{E}(P)^{-1/2}\}$

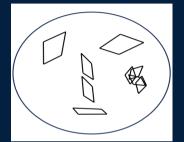
- Note that for a perfect code $\mathcal{R}_{P,\mathcal{E}} \sim \{\frac{1}{\sqrt{\lambda_{u}}} P E_{i}^{\dagger}\}^{4}$.
- The Petz map is an optimal recovery ⁶ under the measure of entanglement fidelity $(F_{Ent}^2 = \frac{1}{d^2} \sum_{l=1} |\operatorname{Tr}(R_k E_l)|^2)$, if $[M, \operatorname{Tr}_L(M \otimes I_d)] = 0$.

³Fletcher *et al.* IEEE 10.1109/TIT.2008.2006458
 ⁴Hui Khoon, PM (2010)
 ⁵Barnum-Knill (2002)
 ⁶B. Li, Z. Wang, G. Zheng, Liang Jiang arXiv:2410.23622v2



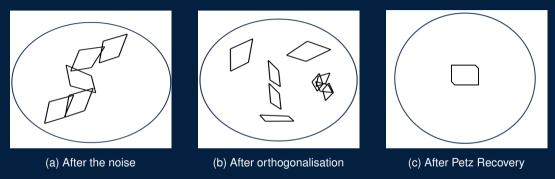
(a) After the noise



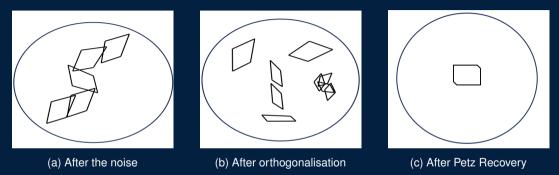


(a) After the noise

(b) After orthogonalisation

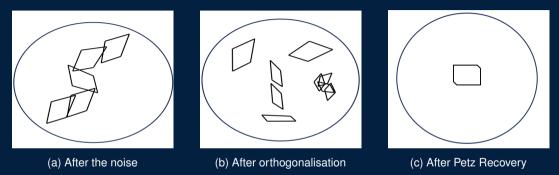


Petz map (original noise process \mathcal{A}): $\mathcal{R}_{P,\mathcal{A}} \sim \{ PA_i^{\dagger}\mathcal{A}(P)^{-1/2} \},$



Petz map (original noise process \mathcal{A}): $\mathcal{R}_{P,\mathcal{A}} \sim \{PA_i^{\dagger}\mathcal{A}(P)^{-1/2}\}, \mathcal{A} \sim \{A_i\} \leftarrow$ The kraus operators of the noise procecess.

Petz map (adapted to the channel \mathcal{E}): $\mathcal{R}_{P,\mathcal{E}} \sim \{ PE_j^{\dagger}\mathcal{E}(P)^{-1/2} \},$



- Petz map (original noise process \mathcal{A}): $\mathcal{R}_{P,\mathcal{A}} \sim \{PA_i^{\dagger}\mathcal{A}(P)^{-1/2}\}, \mathcal{A} \sim \{A_i\} \leftarrow$ The kraus operators of the noise procecess.
- Petz map (adapted to the channel \mathcal{E}): $\mathcal{R}_{P,\mathcal{E}} \sim \{PE_i^{\dagger}\mathcal{E}(P)^{-1/2}\}, \mathcal{E} \sim \{E_i\} \leftarrow$ The newly constructed kraus.

Examples

Noise model: Amplitude-damping noise

$$D_0 = egin{pmatrix} 1 & 0 \ 0 & \sqrt{1-\gamma} \end{pmatrix} \qquad D_1 = egin{pmatrix} 0 & \sqrt{\gamma} \ 0 & 0 \end{pmatrix}$$

 $\gamma \rightarrow$ damping strength / probability of losing a photon/ probability that the qubit decay from $|1\rangle \rightarrow |0\rangle$.

Consider the [4,1]-Leung code

$$egin{aligned} |0_L
angle &= rac{1}{\sqrt{2}} \left(|0000
angle + |1111
angle
ight) \ |1_L
angle &= rac{1}{\sqrt{2}} \left(|0011
angle + |1100
angle
ight) \end{aligned}$$

This code satisfies $\langle m_L | E_k^{\dagger} E_l | n_L \rangle = \lambda_{kl}^{mn}$.

Because of our orthogonalisation algorithm, we accommodate either of the $\{E_{0011}, E_{1100}\}$ in the correctable set of errors.

Performance of the recovery operations

	[4,1]-Leung code	
Recovery	Worst case fidelity	Entanglement fidelity
Leung (noise process)	1 $-$ 2.75 γ^2	$1-3\gamma^2$
Petz (original noise process)	$1-1.75\gamma^2$	$1-1.75\gamma^2$
$\mathcal{R}_{\mathcal{P},\mathcal{E}}$ (adapted to \mathcal{E})	$1-1.15\gamma^2$	$1 - 1.25\gamma^2$

Entanglement fidelity from the optimal recovery obtained from SDP⁷:

 $1 - 1.25\gamma^2 + \mathcal{O}(\gamma^3).$

⁷Fletcher *et al.* Phys. Rev. A 75, 012338

Comparison with the SDP optimised recovery

R_0	$ 0_L\rangle(\alpha\langle 0000 + \beta\langle 1111) + \frac{1}{\sqrt{2}} 1_L\rangle(\langle 0011 + \langle 1100)$
R_1	$ 0_L\rangle(\beta\langle 0000 -\alpha\langle 1111)+\frac{1}{\sqrt{2}} 1_L\rangle(\langle 0011 -\langle 1100)$
R_2	$ 0_L\rangle \langle 1110 + 1_L\rangle \langle 0010 $
R_3	$ 0_L\rangle \langle1101 + 1_L\rangle \langle0001 $
R_4	$ 0_L\rangle \langle 1011 + 1_L\rangle \langle 1000 $
R_5	$ 0_L\rangle \langle0111 + 1_L\rangle \langle1000 $
R_6	$ 0_L angle \langle 0110 $
R_7	$ 0_L\rangle \langle1001 $
R_8	$ 0_L angle \langle 1010 $
R_9	$ 0_L\rangle \langle1010 $

Figure: Opt	timal recovery	from	SDP.
-------------	----------------	------	------

R_0	$ 0_L\rangle(\alpha\langle 0000 +\beta\langle 1111)+\tfrac{1}{\sqrt{2}} 1_L\rangle(\langle 0011 +\langle 1100)$
R_1	$ 1_L\rangle(\beta\langle 0000 -\alpha\langle 1111)+\tfrac{1}{\sqrt{2}} 0_L\rangle(\langle 0011 -\langle 1100)$
R_2	$ 0_L\rangle \langle 1110 + 1_L\rangle \langle 0010 $
R_3	$ 0_L\rangle \langle 1101 + 1_L\rangle \langle 0001 $
R_4	$ 0_L\rangle \langle 1011 + 1_L\rangle \langle 1000 $
R_5	$ 0_L\rangle \langle0111 + 1_L\rangle \langle1000 $
R_6	$ 0_L\rangle \langle0110 $
R_7	$ 0_L\rangle \langle 1001 $
R_8	$ 0_L\rangle \langle 1010 $
R_9	$ 0_L\rangle \langle 1010 $

Figure: Petz recovery of the modified channel.

Summary and outlook

- We have proposed a framework to perform approximate quantum error correction despite having overlapping syndrome-subspaces.
- We show that the recovery through a Petz map can be made optimal for the four qubit code.
- Does the canonical Petz map serve as an optimal recovery (for any arbitrary codes and noise)?
- The Petz map can be implemented on a circuit ⁸.
- Can we implement the Petz recovery for the modified channel (*E*) on the circuit with fewer resources?

⁸D. Biswas , G. vaidya, P. Mandayam , Phys. Rev. Res. 6, 043034 (2024)

