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Noise
Any unwanted changes in the system that appears due to system environment
interaction =⇒ Noise =⇒ Loss of coherence.

The evolution of a system under such interaction is represented by a Completely
Positive and Trace Preserving map A1.

A(ρ) = Tre[VA(ρ⊗ ρe)V†A] =
∑

i

AiρA†
i

ρ
VA

E(ρ)
ρe

One of the dominant noise processes in several physical realization of qubits
(Superconducting qubits) is the Amplitude damping (AD) noise.

Single qubit AD channel: D0 =

(
1 0
0
√

1− γ

)
,D1 =

(
0
√
γ

0 0

)

1M. A. Nielsen, I. L. Chuang Quantum Computation and Quantum Information, Cambridge University
Press.
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Quantum error correction: Perfect Error Correction

Knill-Lafllame condition: PA†
i AjP = λijP

At least five qubits are necessary to
correct arbitrary single qubit noise.

There exists a recovery R ∼ {PU†
i }a.

aM. A. Nielsen, I. L. Chuang Quantum Computation
and Quantum Information, Cambridge University
Press

|data qubits⟩ Encoding Noise

Syndrome extraction

Recovery by Puali matrix

|ancilla qubits⟩ •
1

First to detect which qubit get affected by
the noise process.

Apply the recovery accordingly.
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Approximate Quantum Error Correction (AQEC)

Beny- Oreskov condition:
PA†

i AjP︸ ︷︷ ︸
M

= λijP + PBijP.

(C. Bény et al. PRL. 104, 120501)

The error subspaces are not orthogonal to
each other. The unitarity (or deformability)
condition gets violated.

For a t− error correcting code the
deformation ∼ ⟨mL|Bmn

ij |nL⟩ should be
small ∼ ϵt+1. (ϵ is the noise strength)

F 2 = ⟨ψ|R◦E(|ψ⟩⟨ψ|)||ψ⟩ ∼ 1−O(ϵt+1)

What is the recovery ?
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Example: [4,1]-Leung code a and AD noise
aDebbie Leung et al. Phys. Rev. A 56, 2567 (1997)

|0L⟩ =
1√
2
(|0000⟩+ |1111⟩) |1L⟩ =

1√
2
(|0011⟩+ |1100⟩)

Stabilizer generator : ⟨XXXX , IIZZ ,ZZII⟩.
These operators are not sufficient to detect which qubit has faced the damping 2.

Errors ZZII IIZZ
D1000 -1 +1
D0100 -1 +1
D0010 +1 -1
D0001 +1 -1

Table: Syndrome Table 1

Errors ZZII IIZZ ZIII IIIZ
D1000 -1 +1 -1 +1
D0100 -1 +1 +1 +1
D0010 +1 -1 +1 +1
D0001 +1 -1 +1 -1

Table: Syndrome Table 2.

2Andrew Fletcher et al. arXiv:0710.1052v1 (2007)
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The Algorithm
Given the actual noise operators {Ak}

PA†
k AlP = λklP + PBklP −→ ⟨mL|E†

k El |nL⟩ = δklδmnβ
m
k (1)

We start with the choice E1 = A1.

Construct E2 = A2 − U1P1U†
1A2 ← U1 ← E1P = U1

√
PE†

1E1P . P1 is projector onto

the non-null space of
√

PE†
1E1P.

By construction PE†
1E2P = 0.

We generate the k th operator Ek = Ak −
k−1∑
i=1

UiPiU
†
i Ak .

The operator Pi is the projector onto the non-null space of EiP, i.e, a space spanned by
the eigenvectors of EiP with non-zero eigenvalues. Uis are the polar decomposition
unitary of EiP.
U†

i Ui = δij =⇒ ∑
i

E†
i Ei ≤ I .

Recovery ?
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Recovery

Figure: Subspaces after the orthogonalisation.

We have ⟨mL|E†
k El |nL⟩ = δklδmnβ

m
k .

After the orthogonalisation the deformation is still there.
One can easily verify that PU†

k UlP = δklP.

We design a recovery R ∼ {PU†
k} Not optimal.
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Validation of the Recovery

The aim is to recovery or map these orthogonal subspaces which we have obtained
from the channel with Kraus {Ei} to the code space.

What guarantees that the recovery should correct the actual noise ?.

Are there any constraints on the operators {Ei}s to achieve a recovery through which
we can correct the errors {Ai} ?

The amount of the overlap between the newly constructed subspaces and the older
subspaces← How close the {Ei}s and the {Ai}s are on the code space ?

|⟨ψ|E†
i Ai |ψ⟩| ≤

√
⟨ψ|E†

i Ei |ψ⟩
√
⟨ψ|A†

i Ai |ψ⟩.
Ei |ψ⟩ & Ai |ψ⟩ are linearly dependent. =⇒
|⟨ψ|E†

i Ai |ψ⟩| =
√
⟨ψ|E†

i Ei |ψ⟩
√
⟨ψ|A†

i Ai |ψ⟩
This bound is reflected in the fidelity as well.
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Recovery for approximate quantum error correction (QEC)
Worst-case fidelity F 2

min = min
|ψ∈⟩C

⟨ψ|R ◦ E(|ψ⟩⟨ψ|)|ψ⟩
Through a numerical search (semi-definite programming (SDP)) we can obtain an
optimal recovery 3. But it hard to execute the SDP.
There exists an analytical way to construct a near-optimal 4 and universal recovery 5 - -
this recovery is known as the Petz map.

RP,E ∼ {PE†
i E(P)−1/2}

Note that for a perfect code RP,E ∼ { 1√
λii

PE†
i } 4.

The Petz map is an optimal recovery 6 under the measure of entanglement fidelity
(F 2

Ent =
1

d2

∑
k ,l
|Tr(Rk El)|2),

if [M,TrL(M ⊗ Id)] = 0.

3Fletcher et al. IEEE 10.1109/TIT.2008.2006458
4Hui Khoon, PM (2010)
5Barnum-Knill (2002)
6B. Li, Z. Wang, G. Zheng, Liang Jiang arXiv:2410.23622v2
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Route to optimal recovery

(a) After the noise

(b) After orthogonalisation (c) After Petz Recovery

Petz map (original noise process A): RP,A ∼ {PA†
iA(P)−1/2}, A ∼ {Ai} ← The kraus

operators of the noise procecess.
Petz map (adapted to the channel E): RP,E ∼ {PE†

i E(P)−1/2}, E ∼ {Ei} ← The newly
constructed kraus.
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Examples
Noise model: Amplitude-damping noise

D0 =

(
1 0
0
√

1− γ

)
D1 =

(
0
√
γ

0 0

)
γ → damping strength / probability of losing a photon/ probability that the qubit decay
from |1⟩ → |0⟩.
Consider the [4,1]-Leung code

|0L⟩ =
1√
2
(|0000⟩+ |1111⟩)

|1L⟩ =
1√
2
(|0011⟩+ |1100⟩)

This code satisfies ⟨mL|E†
k El |nL⟩ = λmn

kl .
Because of our orthogonalisation algorithm, we accommodate either of the
{E0011,E1100} in the correctable set of errors.
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Performance of the recovery operations

[4,1]-Leung code
Recovery Worst case fidelity Entanglement fidelity

Leung (noise process) 1− 2.75γ2 1− 3γ2

Petz (original noise process) 1− 1.75γ2 1− 1.75γ2

RP,E (adapted to E) 1− 1.15γ2 1− 1.25γ2

Entanglement fidelity from the optimal recovery obtained from SDP7:

1− 1.25γ2 +O(γ3).

7Fletcher et al. Phys. Rev. A 75, 012338
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Comparison with the SDP optimised recovery

Figure: Optimal recovery from SDP. Figure: Petz recovery of the modified channel.
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Summary and outlook

We have proposed a framework to perform approximate quantum error correction
despite having overlapping syndrome-subspaces.

We show that the recovery through a Petz map can be made optimal for the four qubit
code.

Does the canonical Petz map serve as an optimal recovery (for any arbitrary codes and
noise )?

The Petz map can be implemented on a circuit 8.

Can we implement the Petz recovery for the modified channel (E) on the circuit with
fewer resources?

8D. Biswas , G. vaidya, P. Mandayam , Phys. Rev. Res. 6, 043034 (2024)

Ind ian Inst i tu te of Technology Madras 13




