Using Random Matrix Theory to Analyze Power Law Signatures in scRNA-seq data

Archishman Raju

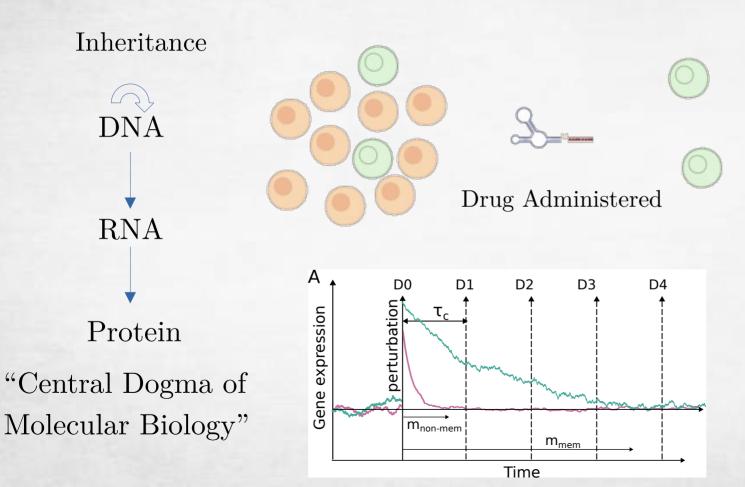
NCBS

24 April 2025

With Suvranil Ghosh and Shaon Chakrabarti

S. Ghosh, S. Chakrabarti and AR bioRxiv:2025.01.15.633183

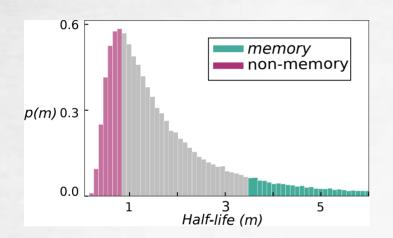
Inheritance of cell state heterogeneity



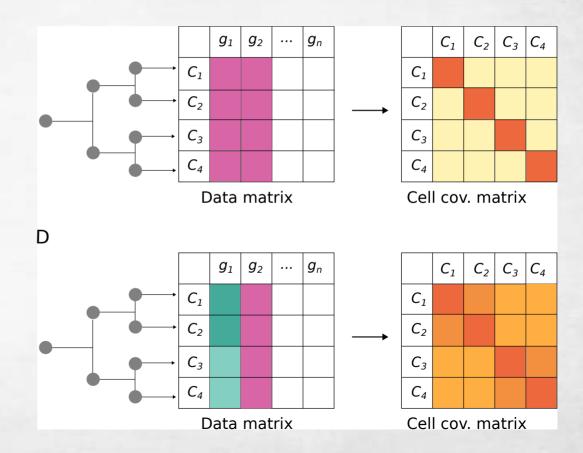
Genetically identical cells can be in different cell states depending on their RNA or protein concentration.

This expression can be inheritable

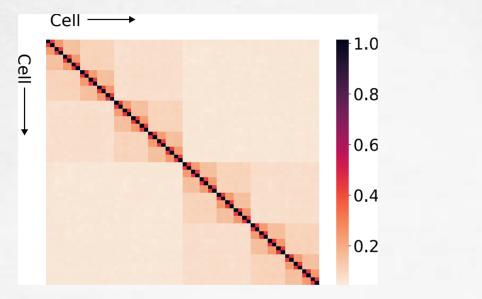
Lineage Correlations are in Cell-Covariance



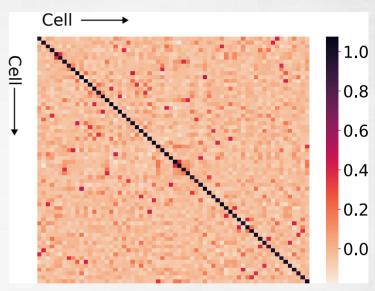
Inheritance is dependent on timescales. The cell covariance matrix carries signatures of "memory genes"



Can a sample identify memory genes?



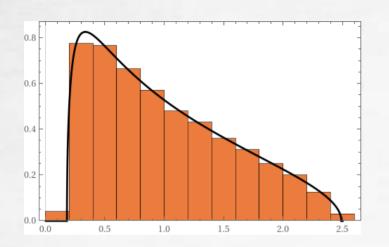
True Covariance Matrix

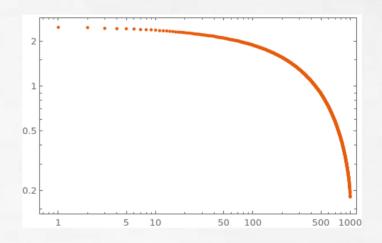


Sample Covariance Matrix

Can we identify the time-scale of the dynamics of gene expression from a single snapshot?

The null model is M-P





$$\rho(x) = \frac{1}{2\pi} \frac{\sqrt{(\lambda_+ - x)(x - \lambda_-)}}{\lambda x}$$

Marchenko-Pastur Distribution

Parameters are a function only of m/n for an m x n rectangular matrix

Deriving Eigenvalues of Cell Covariance

True Covariance Matrix

$$\begin{pmatrix} n_g & \sum_i \exp(-2\mu\tau_c) & \dots & \sum_i \exp(-2b\mu_i\tau_c) \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ \sum_i \exp(-2b\mu_i\tau_c) & \sum_i \exp(-2b\mu_i\tau_c) & \dots & n_g \end{pmatrix}$$

Eigenvalues of True Covariance Matrix

$$\lambda_{i} = \begin{cases} 1 + \sum_{j=1}^{b} 2^{j-1} \alpha_{j} & \text{when } i = 0, \\ 1 + \sum_{j=1}^{b-i} 2^{j-1} \alpha_{j} - 2^{b-i} \alpha_{b-i+1} & \text{when } 0 < i < b, \\ 1 - \alpha_{1} & \text{when } i = b, \end{cases}$$

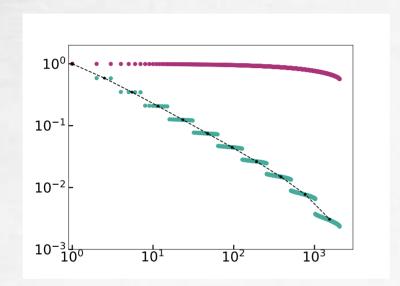
Stieltjes Transform can be used to derive sample covariance

$$G(z) = \int_{-\infty}^{\infty} \frac{P_S(\lambda)}{\lambda - z} d\lambda$$

$$\frac{1}{-G(z)} = z - \frac{n_c}{n_a} \int_{-\infty}^{\infty} \frac{\lambda}{1 + \lambda G(z)} dP_T(\lambda)$$

Marchenko & Pastur (1967) Oin & Colwell (2018)

Eigenvalues show a power-law form

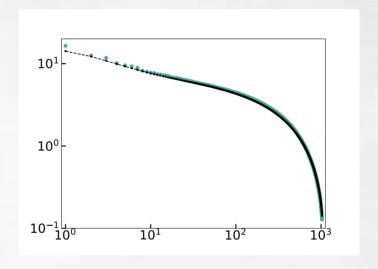


Green: Degenerate Power-Law distributed

eigenvalues

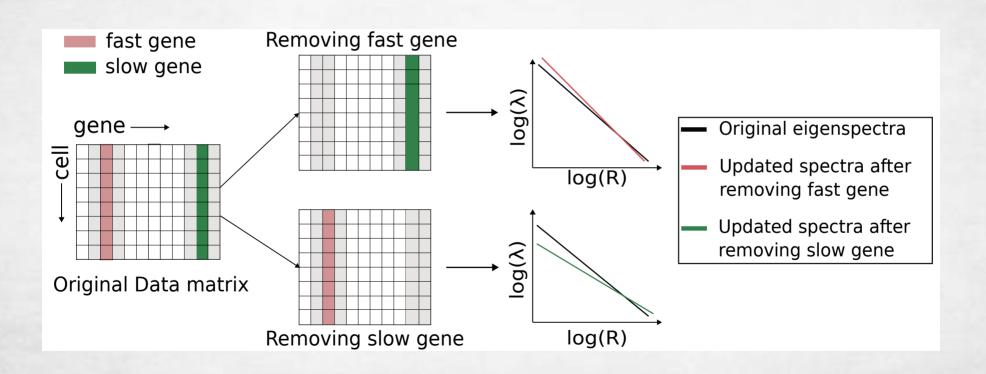
Purple: Slow division gives back MP

Black: Analytics

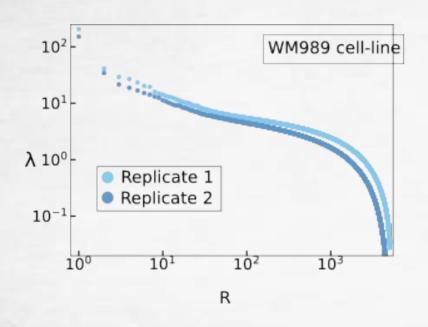


Sample Covariance Matrix numerics (green) and analytics (black) from ST + Order Statistics

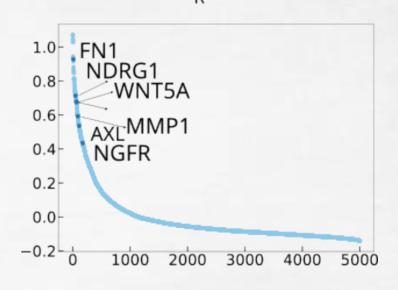
Simple Algorithm to Identify Memory Genes



Applying to scRNA seq data



Real Data is Distinctly non MP and looks power-law like in a regime



We can identify previously suggested memory genes in the literature from single snapshots