Real-Space Stochastic GW Calculations Benchmark on GW100

Ishita Shitut ¹, Weiwei Gao ², James Chelikowsky ³, Amir Natan ⁴, H. R. Krishnamurthy ¹, Manish Jain ¹

> ¹Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore

> > ²Dalian University of Technology

³University of Texas at Austin

⁴Department of Physical Electronics, Tel-Aviv University

APS March Meeting, Chicago, Illinois, March 14-18, 2022

Stochastic Implementation of GW Approximation

Within GW approximation,

$$\Sigma(\mathbf{r},\mathbf{r}',t) = iG(\mathbf{r},\mathbf{r}',t)W(\mathbf{r},\mathbf{r}',t)$$

Approximate Stochastic Resolution of Identity¹ : $I \approx \frac{1}{N_{\bar{\zeta}}} \sum |\bar{\zeta}\rangle \langle \bar{\zeta}|$ where $|\bar{\zeta}\rangle$ is a random orbital which satisfies the condition $|\bar{\zeta}(\mathbf{r})|^2 = dV$. Stochastic G:

$$iG(t) = iG(t)I \approx e^{-iH_0t}[(I-P)\theta(t) - P\theta(-t)]\frac{1}{N_{\bar{\zeta}}}\sum |\bar{\zeta}\rangle \langle \bar{\zeta}|$$

$$iG(\mathbf{r},\mathbf{r}',t) \approx \frac{1}{N_{\bar{\zeta}}} \sum \zeta(\mathbf{r},t) \bar{\zeta}(\mathbf{r}')$$

where,

$$\begin{aligned} \zeta(\mathbf{r},t) &= \left\langle \mathbf{r} | e^{-iH_0 t} (I-P) | \bar{\zeta} \right\rangle \qquad t > 0 \\ &= - \left\langle \mathbf{r} | e^{-iH_0 t} P | \bar{\zeta} \right\rangle \qquad t < 0 \end{aligned}$$

¹V Vlcěk et al., Phys. Rev. B **98**, 075107 (2018)

Decoupling \mathbf{r} and \mathbf{r}' dependence

Diagonal matrix element of self energy for nth DFT orbital ϕ_n ,

$$\langle \phi_n | \Sigma(t) | \phi_n \rangle = \int \int \phi_n(\mathbf{r}) i G(\mathbf{r}, \mathbf{r}', t) W(\mathbf{r}, \mathbf{r}', t) \phi_n(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

$$\langle \phi_n | \Sigma(t) | \phi_n \rangle \approx \frac{1}{N_{\bar{\zeta}}} \sum_{\bar{\zeta}} \int \phi_n(\mathbf{r}) \zeta(\mathbf{r}, t) u(\mathbf{r}, t) d\mathbf{r}$$

where,

$$u(\mathbf{r},t) = \int W(\mathbf{r},\mathbf{r}',t)\overline{\zeta}(\mathbf{r}')\phi_n(\mathbf{r}')d\mathbf{r}'$$

Procedure of Stochastic GW

• Generate stochastic function $\bar{\zeta}(\mathbf{r})$.

• Perturb all occupied $\phi(\mathbf{r})$ with $v_{pert}(\mathbf{r}) = \int \nu(|\mathbf{r} - \mathbf{r}'|)\overline{\zeta}(\mathbf{r}')\phi_n(\mathbf{r}')d\mathbf{r}'$ and then propagate to calculate response function $u(\mathbf{r}, t)$

$$u^{R}(\mathbf{r},t) = rac{v_{H}^{\lambda}(\mathbf{r},t) - v_{H}(\mathbf{r})}{\lambda}$$

$$u^{R}(\mathbf{r},t) \Rightarrow u(\mathbf{r},t)$$

- Project and propagate $\bar{\zeta}(\mathbf{r})$ and then calculate, $\int \phi_n(\mathbf{r})\zeta(\mathbf{r},t)u(\mathbf{r},t)d\mathbf{r}$.
- Repeat these steps for several $\bar{\zeta}$ s and then take the average to get,

$$\langle \phi_n | \Sigma(t) | \phi_n \rangle pprox rac{1}{N_{\bar{\zeta}}} \sum_{\bar{\zeta}} \int \phi_n(\mathbf{r}) \zeta(\mathbf{r},t) u(\mathbf{r},t) d\mathbf{r}$$

• Take Fourier transform to get $\Sigma_{nn}(\omega)$.

•
$$\varepsilon_n^{QP} = \varepsilon_n^{KS} + \left\langle \phi_n \left| \Sigma \left(\omega = \varepsilon^{QP} \right) - v_{\rm xc} \right| \phi_n \right\rangle$$

Decomposition into Stochastic and Embedded Subspace

Decomposing G into embedded and stochastic subspace²:

$$G\equiv ilde{G}+G^{\phi}$$

Embedded supspace:

$$iG^{\phi}\left(r,r',t
ight)=\sum_{j}e^{-iarepsilon_{j}t}\left[\left(1-f_{j}
ight) heta(t)-f_{j} heta(-t)
ight]\phi_{j}(r)\phi_{j}^{*}\left(r'
ight)$$

Stochastic subspace:

$$egin{aligned} & ilde{\mathcal{G}}(\mathbf{r},\mathbf{r}',t) pprox -rac{i}{N_{ar{\zeta}}}\sum \zeta(\mathbf{r},t)ar{\zeta}(\mathbf{r}') \ &|ar{\zeta}
angle = (1-P_{\phi})\left|ar{\zeta}^0
ight
angle \end{aligned}$$

where,

$$\mathcal{P}_{\phi} = \sum_{j \in \{\phi\}} \ket{\phi_j} raket{\phi_j}$$

²M Ramanova and V Vlcěk, J. Chem. Phys. **153**, 134103 (2020)

He atom in a small box : Testing the code

Comparing NanoGW calculations with Stochastic GW without embedding

Comparing NanoGW calculations with Stochastic GW with 30 embedded orbitals

	NanoC/M/3	Stochastic GW	
	Nanogw	Non-embedded	Embedded
Dimension (Bohr)	5	5	5
Grid Spacing (Bohr)	0.3	0.3	0.3
No of Orbitals	2000	60000	2030
	(Deterministic)	0.3 00 60000 20 (Stochastic) (30 Em -23.52 (0.15) -23.44	(30 Embedded)
QP Energy (eV)	-23.42	-23.52 (0.15)	-23.44 (0.02)

³M. L. Tiago and J. R. Chelikowsky, Phys. Rev. B 73, 205334 (2006)

Stochastic GW on H₂ molecule

Stochastic GW with 30 embedded orbitals

Stochastic GW with 1000 embedded orbitals

	30 Embedded	1000 Embedded
Dimension (Bohr)	20.4	20.4
Grid Spacing (Bohr)	0.3	0.3
No of Stochastic Orbitals	17600	10400
QP Energy (eV)	- 16.05 (0.05)	- 15.90 (0.01)

NanoGW⁴ QP Energy = -15.75 eV

⁴W. Gao and J. R. Chelikowsky, J. Chem. Theory Comput. 15, 5299 (2019)

Stochastic GW on SiH₄ molecule

Figure 3: Mean QP Energy computed by Stochastic GW

	Dimension (Bohr)	Grid Spacing (Bohr)	No of Orbitals	QP Energy (eV)
HOMO 1	20.4	0.3	2030	-12.27(0.03)
HOMO 2	20.4	0.3	2030	-12.34(0.04)
HOMO 3	20.4	0.3	2030	-12.27

NanoGW QP Energy = -12.25 eV

Mean QP Energy = -12.29(0.03) eV

Comparing Stochastic, Full Embedded and NanoGW: Phospherene Dimer

P₂:

	Dimension Box/Sphere (Bohr)	Number of Orbitals	QP Energy (eV)
Stochastic	26.4	2000 + 30 embed	-10.54(0.01)
Embedded	26.4	1055 embed	-10.34
NanoGW	25.58	888	-10.32

Comparing Stochastic GW QP energies with NanoGW

Formula	Dimension (Bohr)	No of Orbitals Stoch + Embed	QP Energy (eV)	NanoGW⁵ QP Energy (eV)
H ₂	20.4	10400 + 1000	-15.90(0.008)	-15.75
He	20.4	10400 + 1000	-23.47(0.03)	-23.20
SiH ₄	20.4	2000 + 30	-12.29(0.03)	-12.25
Si_2H_6	20.4	2000 + 30	-10.51(0.03)	-10.32
P ₂	26.4	2000 + 30	-10.54(0.01)	-10.32
Na_2	26.4	2000 + 30	-5.31(0.03)	-4.94
Na4	29.4	2000 + 30	-4.43(0.01)	-4.22
Na ₆	29.4	2000 + 30	-4.74(0.02)	-4.35

⁵W. Gao and J. R. Chelikowsky, J. Chem. Theory Comput. **15**, 5299 (2019)

Conclusion and Acknowledgement

- We observe that embedding some DFT eigenstates substantially reduces stochastic error for small molecules.
- We find that using embedded orbitals in the new GW implementation in PARSEC gives quasiparticle eigenvalues in excellent agreement with NanoGW.
- We also observe that stochastic orbitals in *our* implementation seems to systematically underestimate quasiparticle eigenvalues compared to NanoGW.
- We thank the Supercomputer Education and Research Centre at IISc for providing access to Param Pravega. **Funding**:

Indian Institute of Science

National Supercomputing Mission

Science and Engineering Research Board