

# Percolation of aligned and overlapping shape-anisotropic objects on lattices

## Jasna C K

Department of Physics, Cochin University of Science and Technology, Kerala

9<sup>th</sup> Indian Statistical Physics Community Meeting – ISPCM 2024

3 April 2024

#### **Outline of the talk**

□ Introduction to percolation

Percolation of aligned overlapping anisotropic shapes on lattices

**Geni continuum models** 

**Conclusions** 

# Percolation

Model to study random and disordered media.

□ Percolation phase transition : Emergence of a spanning cluster.

Classification : Lattice percolation and Continuum percolation





Control parameters: Occupation probability(Lattice) Number density(Continuum )

**Order parameter:** Probability of a spanning cluster

Transition point : Percolation threshold

# Percolation of extended overlapping shapes on lattices

Extended shapes on lattices : Discs, squares, rectangles, sticks, diamonds etc.(Koza et.al 2014, Brzeski et.al 2022).

□ Interpolates between lattice and continuum

Features : Multisite occupancy and multiple occupancy.





# Motivation

How does anisotropic shapes show discrete to continuum transition?

□ 2D continuum model of aligned rectangles : Percolation threshold independent of aspect ratio. (Klatt et.al, 2017).

□Affine symmetry is present in continuum cases(Torquato, 2012).



□ Aligned overlapping rectangle model useful in study of transport properties in porous media. (Koponen et.al 1997)



Ghanbarian et.al 2013

Koponen et.al 1997

# Percolation of aligned and overlapping rectangle model

Typical example of anisotropic shapes on lattices.

Connected path of rectangles in vertical direction : Spanning cluster

 $\Box \phi = 1 - \exp(-\eta)$ ,  $\phi$ -Density of occupied sites,  $\eta$ -Areal density.





#### k<sub>1</sub> x k<sub>2</sub> rectangles in L x L system 2D square lattice

# **Excluded volume theory**

□ Analytic approximation technique to obtain percolation threshold  $\phi_c$ (Critical density of occupied sites).

**Excluded volume theory :** Product of number density of basic percolating units and average excluded volume is an invariant quantity for similar systems at criticality (Balberg et.al 1984, Balberg 1987).

$$n_{\rm c} V_{\rm ex} = B_{\rm c}$$

#### $\Box n=\eta/V$ gives :







Excluded area/volume is a connectedness factor in lattice systems

 $V_{ex}$ (Continuum)=4 $k_1k_2$  $V_{ex}$ (Lattice)= (2 $k_1$ +1)(2 $k_2$ +1)-5

#### Lattice version of excluded volume theory predictions

□ For aligned rectangles :

$$\phi_c^{k_1,k_2} \approx 1 - exp(-B_c rac{k_1k_2}{(2k_1+1)(2k_2+1)-5})$$

Theory predicts :

For width  $k_2=1$ , threshold is monotonically decreasing with  $k_1$ . For width  $k_2=2$ , threshold is a constant. For width  $k_2=3$ , threshold is monotonically increasing with  $k_1$ .

For aligned rectangles of width 2, threshold is independent of its length!

□ Theory predicts similar results for triangular lattice as well : For width  $k_2=1$ , threshold is a constant. For width  $k_2=2$ , threshold is monotonically increasing



#### **Excluded volume theory results for various shapes**

| Shape                                   | Lattice            | CCVF $\phi_c$ from discrete excluded                                 | Limiting Values of $\phi_c$                                                                    |
|-----------------------------------------|--------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                         |                    | volume theory                                                        |                                                                                                |
| Rectangles of size                      | 2D Square          | $1 - \exp\left(-B_c \frac{k_1 k_2}{(2k_1+1)(2k_2+1)-5}\right)$       | $1  -  \exp\left(-B_c \frac{k_2}{4k_2+2}\right)$                                               |
| $k_1 	imes k_2$                         |                    |                                                                      | $(k_1 \to \infty, \text{ finite } k_2)$                                                        |
| Squares $(k_1 = k_2 = k)$               | 2D Square          | $1 - \exp\left(-B_c \frac{k^2}{(2k+1)^2 - 5}\right)$                 | $\begin{array}{rcrcr} 0.6667 & (k \to \infty), & B_c = \\ 4.3953711(5) & \end{array}$          |
| Diamonds of linear size $k$             | 2D Square          | $1 - \exp\left(-B_c \frac{k^2 + 1}{4k(k+1)}\right)$                  | $1 - \exp\left(-B_c/4\right) \ (k \to \infty)$                                                 |
| Cubes $(k_1 = k_2 = k_3 = k)$           | 3D Cubic           | $1 - \exp\left(-B_c \frac{k^3}{(2k-1)^3 + 6(2k-1)^2 - 1}\right)$     | $\begin{array}{rcrcrcc} 0.2773 & (k \  ightarrow \ \infty), \ B_c \ = \ 2.5978(5) \end{array}$ |
| Sticks of length $k_1$                  | 3D Cubic           | $1 - \exp\left(-B_c \frac{k_1}{5(2k_1 - 1) + 1}\right)$              | 0.22877 $(k_1 \to \infty)$ , $B_c = 2.5978(5)$                                                 |
| Parallelograms of size $k_1 \times k_2$ | 2D Triangu-<br>lar | $1 - \exp\left(-B_c \frac{k_1 k_2}{(2k_1 + 1)(2k_2 + 1) - 3}\right)$ | $ \frac{1 - \exp\left(-B_c \frac{k_2}{4k_2+2}\right)}{(k_1 \to \infty, \text{ finite } k_2)} $ |

Limiting values are finite

## Some interesting predictions of excluded volume theory

Length independence of threshold (k<sub>2</sub>=2) can be extended to higher dimensions.(Hyper cuboids in d-dimensions, for e.g. in 3-dim k<sub>2</sub>=2 and k<sub>3</sub>=4)

Define a parameter 
$$s = \frac{|n_v - n_h|}{|n_v + n_h|}$$
 for fraction of rectangles having mixed orientation.(Tarasevich et.al 2012)

□ s=1(fully aligned), s=o(isotropic).

□ s-dependent expression for  
excluded volume: 
$$V_{ex} = \left(\frac{1+s}{2}\right)^2 \left((2k_1+1)(2k_2+1)-5\right) + \left(\frac{1-s}{2}\right)^2 \left((2k_1+1)(2k_2+1)-5\right) + \frac{1-s^2}{4}\left((k_1+k_2+1)^2-4\right) + \frac{1-s^2}{4}\left((k_1+k_2+1)^$$

 $\hfill For all s<1 and for large k_1 , <math display="inline">\varphi_c$  always monotonically decreases. S=1 trends are unique

# **Simulation studies**

Percolation probability vs density of occupied sites is obtained for various system sizes.

 $\Box$  Threshold calculated for increasing values of  $k_1$  for particular width  $k_2$ .

U Width dependent trends in threshold



Scaling relation for threshold determination:

 $\phi_{c}(L)=B*\Delta(L)+\phi_{c}(\infty).$ 

- K<sub>2</sub>=1, φ<sub>c</sub> monotonically decreases.
- $K_2=2$ ,  $\varphi_c$  is nearly a constant.
  - **K₂=3**, φ<sub>c</sub> monotonically increases.

# Some related findings...

□ Model of aligned rectangles show isotropy in threshold.

□ Model belongs to standard percolation universality class.



 $P(\varphi) = f((\varphi - \varphi_{c})L^{1/\nu}) \qquad P_{max}(\varphi) = L^{-\beta/\nu}\mathsf{F}((\varphi - \varphi_{c})L^{1/\nu})$ 





# **Continuum limit of lattice models**

 $\Box$  Limiting value  $\phi_c$  (k  $\rightarrow \infty$ ) from discrete excluded volume theory.

Previous studies for symmetric shapes suggests : Continuum percolation of aligned objects can be regarded as a limit of corresponding discrete model.
 (Koza et.al 2016)

□ Special limiting case ( $k_1 \rightarrow \infty, k_2$ =const) is finite and different from continuum threshold of rectangles.

$$\phi_c^{k_1 \to \infty, k_2} \approx 1 - exp\left(-B_c \frac{k_2}{2(2k_2 + 1)}\right)$$

Lattice spacing tending to zero in only one direction.

A semi continuum model can be introduced as the continuum analogue of special limiting case.

# **Overlapping objects in lanes / Semi continuum models**

Objects in lanes have continuous x-coordinates, discrete y-coordinates.

Object width as integer multiple of lane width.



Objects of width 3 in lanes

# **Theory predictions : A comparison**

Semi continuum model of rectangles : Width dependent phenomena is observed.



 $\Box$  Threshold is independent of length  $k_1$  for a particular width  $k_2$ .

# A comparison for overlapping squares in lanes

Comparison between theory predictions for overlapping square model in lattice and semi continuum



#### Conclusions

- Lattice version of excluded volume theory yield predictions of higher accuracy for aligned overlapping objects on lattices.
- □ Shape anisotropy leads to width dependent trends in percolation threshold of systems.
- □ Similar trends can be obtained for anisotropic shapes on other lattices and dimensions.
- $\Box$  Width dependent trends are unique for s=1(fully aligned) cases.
- □ For shape anisotropic objects, special limiting case ( $k_1 \rightarrow \infty$ ,  $k_2$  = const ) appears as semi continuum model.
- Semi continuum models show a width dependent phenomena.

**Reference :** Jasna C K, V. Sasidevan. Effect of shape asymmetry on percolation of aligned and overlapping objects on lattices. Preprint. **arXiv : 2308.12932** 

Thank You...