
TURBULENCE  ENERGY 
SPECTRUM 

RANDOMLY  FORCED MODELS



HOMOGENEOUS  ISOTROPIC  TURBULENCE

• Amid all the complexities of the turbulent flow involving vortices 
etc there are some robust universal features related to the kinetic 
energy content  at a given wave number :

• This  defines the correlator and the  spectrum           

• In the absence of  dissipation and forcing, energy  conserved

• In a steady state where forcing  rate and dissipation rate  are equal  
one  has  the  Kolmogorov spectrum  
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Kolmogorov Spectrum

• Kolmogorov (1941)

• The  rate of energy flow                      across  a  particular wave-
number  ( from below it to above it ) is independent of ‘k’ and the 
pre-factor is an universal constant

• This  defines  a  “mean field  theory “

• One  needs  to  define  over  what  range  of  wave- numbers the  
above  picture is valid
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The  Universal  Range

• The  energy of turbulent flow has to come from external 
forcing. Usually done at large length scales . Stirring  coffee

• Consider forced incompressible Navier Stokes flow in D=3:

• Energy  equation 

• Large  length scale input,  short length scale dissipation,  In 
steady state the energy flux is constant. Mean field theory.
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A  STOCHASTIC  MODEL

DeDominicis and Martin 1979  : Make the external force 
stochastic  with long range correlation . The external force is 
defined by the correlation function 

The focus of that work and the subsequent  effort of  Yakhot
and Orszag was the use of the Renormalization Group . This 
created a lot of adverse  reactions because  the Kolmogorov
spectrum required  y=4 where there were infinite number of 
marginal operators, further there was  another kind of 
divergence at  y=3.
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The  problem with scales

A  RG  kind of approach immediately asks the question -in 
which asymptotic  limit are we going to find the scaling law

The standard answer would be that in the long wavelength 
limit -but  thats not where the Kolmorgorov universal range is

Use the model  but  use age old self consistent perturbation 
theory  and see if it works  and makes sense

Need to work in Fourier space  for convenience

3
2

3
( ) ( ) ( ) ( ) ( )

(2 )
t

d p
u k M u p u k p k u k f k     


 + − = − +

( ) ( ) ( )
2

i
M k k P k k P k     = + 



A  Different  Point  of  View

• Self -consistent  calculation  in Fourier space  and use the  
DeDominicis-Martin parameter ‘y’ for setting up a 
perturbative evaluation  of integrals. The form of the 
stochastic forcing is a convenient  tool for that.

• What are the quantities which one should calculate. The  rate 
of transfer of energy  across the surface of a sphere of radius 
‘k’  is  clearly one

• Another is the old Heisenberg-Chandrasekhar picture – the 
eddy viscosity which is related to the previous point

• The energy  in the range  0 to ‘k’
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Eddy viscosity

• Rate  of change  of energy  in  0 < p < k

• T(k) is the transfer term  due to nonlinearity and in analogy 
with the viscous term write it as 
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eddy viscosity and the transfer rate 

• The two key players have been identified

• The dynamics is 

• The effective viscosity is clearly the self energy obtained 
by studying the propagator

• The correlation function is the energy spectrum

• The transfer rate is related to self energy and correlation 
function ( energy spectrum  )

• For Kolmogorov
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Perturbation theory niceties

• In the Kolmogorov range  dominant

• Arrange perturbation theory by self consistent loops- there is 
no small parameter really

• This is where the parameter ‘y’ in the external stirring force 
correlator becomes important.

• It orders the perturbation theory 
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Perturbation theory

• Assume ‘y’ is small

• The one loop contribution starts with a leading term of  1/y

• Correlator structure is 

• zero frequency self energy 

• Self –consistency ensures

• The integral has an ultraviolet pole at y=0
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Perturbation theory parameter

• One needs the amplitudes as well . The frequency scale is set 
by 

• The correlator :

• The  ratio

• The two loop carries an extra (above the one loop) factor   

• That  drives the loop ordering in ‘y’
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The infrared problem is not real

• What is it ?  Consider the integral for eddy viscosity 

• Focus on the contribution from  p<<k : M is now like k, the self 
energy is big and out of the integral, the frequency integral 
gives the equal time correlator and the momentum integral 
diverges
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Infrared cure

• The zero frequency self-energy has a 
divergence at small wave-numbers. Dynamic 
scaling says that the zero wave-vector self 
energy will have a small frequency divergence. 
The correlator at low wave number will be 
screened by the frequency of the response 
function and remove the divergence.



A recent result  on the Batchelor spectrum of passive scalar 
turbulence

• Bedrossian, Blumenthal  and Punshon –Smith

• Mathematically rigorous  proof of  Batchelor’s prediction  that 
passive scalars  advected in fluids at finite Reynolds number 
with a small diffusivity  should display  a            power 
spectrum

• D=2  Navier Stokes and D=3 hyper-viscous Navier Stokes

• Forcing  white in time regular in space

• Scalar subjected to  white noise
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THE STABLY STRATIFIED FLUID- BOLGIANO ,OBUKHOV SCALING

• Density gradient caused by temperature gradient

• Navier Stokes equation has the buoyancy force  in a 
Boussinesque approximation where  incompressibility is 
maintained after the  relaxation to include the buoyancy

• Temperature fluctuations                          follow  the usual heat 
diffusion equation
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THE  ENERGY  BALANCE 

Stably stratified  has all signs always working right. Energy 
flows from large length scales to short  length scales and it is 
very much like Kolmogorov.  But there is a new situation- the 
kinetic energy spectrum may be dominated by a thermal 
energy flow.

This is the pure Bolgiano-Obukhov limit.
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THE  BOLGIANO LIMIT

• The spectrum is always defined by                             where K  is the 
kinetic energy 

• The total energy in the sphere of radius ‘k’ is 

The rate of change which is the transfer rate to  momenta beyond 
‘k’ is 

The Bolgiano limit is  “ drop the kinetic energy flux” in the above 
and  Kolmogorov is as before  assume the transfer  k- independent 
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Kolmogorov Argument

• The dynamics of  the velocity field is slaved to the 
temperature  in the Bolgiano limit 

• This is what determines the “dimension “ of the temperature 
field  as

• The energy transfer rate now has the dimension  

• Dimensional analysis now yields the spectrum 

• Universal  spectrum once again  and a universal pre-factor
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A  Scalar Model  for Bolgiano limit ?

• The transfer integral
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THE  SCALAR  MODEL   WAVE NUMBER  FREQUENCY  SPACE 

• We use Fourier space  and write the slaving of the velocity 
field to the temperature field as

• The  dynamics of the  temperature field is
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Transfer Integrals  and scaling laws

• The  correlation  of                 is exactly as in the DeDominicis –
Martin set up 

• The transfer integral is k-independent for y=4

• The  self consistent one-loop answer for the relaxation rate 
gives  the dynamic exponent   z=2/5

• The  universal amplitude ratio

• The   thermal energy spectrum                          defined as 

• The Kinetic Energy  spectrum  gives  Bolgiano –Obukhov
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The  Crossover

• We have looked at  Kolmogorov spectrum and Bolgaiano
spectrum separately focussing  on the  two extremes

The passage  from one to the other  can be accomplished by 
exploiting a crossover trick found by Heisenberg and 
Chandrasekhar       (1950) 

The result is for any given computation of the energy 
spectrum            
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